Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/964
Title: True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors
Authors: Chodankar N.R.
Pham H.D.
Nanjundan A.K.
Fernando J.F.S.
Jayaramulu K.
Golberg D.
Han Y.-K.
Dubal D.P.
Keywords: asymmetric supercapacitors
battery materials
hybrid supercapacitors
pseudocapacitive materials
Issue Date: 2020
Publisher: Wiley-VCH Verlag
Abstract: The development of pseudocapacitive materials for energy-oriented applications has stimulated considerable interest in recent years due to their high energy-storing capacity with high power outputs. Nevertheless, the utilization of nanosized active materials in batteries leads to fast redox kinetics due to the improved surface area and short diffusion pathways, which shifts their electrochemical signatures from battery-like to the pseudocapacitive-like behavior. As a result, it becomes challenging to distinguish “pseudocapacitive” and “battery” materials. Such misconceptions have further impacted on the final device configurations. This Review is an earnest effort to clarify the confusion between the battery and pseudocapacitive materials by providing their true meanings and correct performance metrics. A method to distinguish battery-type and pseudocapacitive materials using the electrochemical signatures and quantitative kinetics analysis is outlined. Taking solid-state supercapacitors (SSCs, only polymer gel electrolytes) as an example, the distinction between asymmetric and hybrid supercapacitors is discussed. The state-of-the-art progress in the engineering of active materials is summarized, which will guide for the development of real-pseudocapacitive energy storage systems. © 2020 Wiley-VCH GmbH
URI: https://dx.doi.org/10.1002/smll.202002806
http://localhost:8080/xmlui/handle/123456789/964
ISSN: 1613-6810
Appears in Collections:Review

Files in This Item:
There are no files associated with this item.
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.