http://10.10.120.238:8080/xmlui/handle/123456789/763
DC Field | Value | Language |
---|---|---|
dc.rights.license | All Open Access, Bronze, Green | - |
dc.contributor.author | Senapati S. | en_US |
dc.contributor.author | Vashisth M. | en_US |
dc.date.accessioned | 2023-11-30T08:47:57Z | - |
dc.date.available | 2023-11-30T08:47:57Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 2163-2472 | - |
dc.identifier.other | EID(2-s2.0-85136272685) | - |
dc.identifier.uri | https://dx.doi.org/10.3934/eect.2021060 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/763 | - |
dc.description.abstract | In this article, we study the stability in the inverse problem of determining the time-dependent convection term and density coefficient appearing in the convection-diffusion equation, from partial boundary measurements. For dimension n ≥ 2, we show the convection term (modulo the gauge term) admits log-log stability, whereas log-log-log stability estimate is obtained for the density coefficient. © 2022, American Institute of Mathematical Sciences. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Mathematical Sciences | en_US |
dc.source | Evolution Equations and Control Theory | en_US |
dc.subject | Carleman estimates | en_US |
dc.subject | Inverse problems | en_US |
dc.subject | parabolic equa-tion | en_US |
dc.subject | partial Dirichlet to Neumann map | en_US |
dc.subject | stability estimate | en_US |
dc.title | STABILITY ESTIMATE FOR A PARTIAL DATA INVERSE PROBLEM FOR THE CONVECTION-DIFFUSION EQUATION | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Journal Article |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.