Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/763
Full metadata record
DC FieldValueLanguage
dc.rights.licenseAll Open Access, Bronze, Green-
dc.contributor.authorSenapati S.en_US
dc.contributor.authorVashisth M.en_US
dc.date.accessioned2023-11-30T08:47:57Z-
dc.date.available2023-11-30T08:47:57Z-
dc.date.issued2022-
dc.identifier.issn2163-2472-
dc.identifier.otherEID(2-s2.0-85136272685)-
dc.identifier.urihttps://dx.doi.org/10.3934/eect.2021060-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/763-
dc.description.abstractIn this article, we study the stability in the inverse problem of determining the time-dependent convection term and density coefficient appearing in the convection-diffusion equation, from partial boundary measurements. For dimension n ≥ 2, we show the convection term (modulo the gauge term) admits log-log stability, whereas log-log-log stability estimate is obtained for the density coefficient. © 2022, American Institute of Mathematical Sciences. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.sourceEvolution Equations and Control Theoryen_US
dc.subjectCarleman estimatesen_US
dc.subjectInverse problemsen_US
dc.subjectparabolic equa-tionen_US
dc.subjectpartial Dirichlet to Neumann mapen_US
dc.subjectstability estimateen_US
dc.titleSTABILITY ESTIMATE FOR A PARTIAL DATA INVERSE PROBLEM FOR THE CONVECTION-DIFFUSION EQUATIONen_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.