Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/761
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarkar T.en_US
dc.contributor.authorChandrashekar P.en_US
dc.date.accessioned2023-11-30T08:47:57Z-
dc.date.available2023-11-30T08:47:57Z-
dc.date.issued2019-
dc.identifier.issn0168-9274-
dc.identifier.otherEID(2-s2.0-85057974581)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.apnum.2018.11.010-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/761-
dc.description.abstractWe design and analyze a discontinuous Galerkin scheme for the initial–boundary value problem associated with the magnetic induction equations using standard discontinuous Lagrange basis functions. The semi-discrete scheme is constructed by using the symmetrized version of the equation as introduced by Godunov. The resulting schemes are shown to be stable. Numerical experiments are performed in order to demonstrate the accuracy and convergence of the DG scheme through the L2-error and divergence error analysis. In the presence of discontinuities we add an artificial viscosity term to stabilize the solution. © 2018 IMACSen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceApplied Numerical Mathematicsen_US
dc.subjectDiscontinuous Galerkin methoden_US
dc.subjectMagnetic induction equationen_US
dc.subjectRate of convergenceen_US
dc.subjectStability and error Analysisen_US
dc.titleStabilized discontinuous Galerkin scheme for the magnetic induction equationen_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.