Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/760
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarkar T.en_US
dc.date.accessioned2023-11-30T08:47:57Z-
dc.date.available2023-11-30T08:47:57Z-
dc.date.issued2020-
dc.identifier.issn1609-4840-
dc.identifier.otherEID(2-s2.0-85053492368)-
dc.identifier.urihttps://dx.doi.org/10.1515/cmam-2018-0032-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/760-
dc.description.abstractWe perform the error analysis of a stabilized discontinuous Galerkin scheme for the initial boundary value problem associated with the magnetic induction equations using standard discontinuous Lagrange basis functions. In order to obtain the quasi-optimal convergence incorporating second-order Runge-Kutta schemes for time discretization, we need a strengthened 4/3-CFL condition (∆t ∼ h4/3). To overcome this unusual restriction on the CFL condition, we consider the explicit third-order Runge-Kutta scheme for time discretization. We demonstrate the error estimates in L2-sense and obtain quasi-optimal convergence for smooth solution in space and time for piecewise polynomials with any degree l ≥ 1 under the standard CFL condition. © 2020 De Gruyter. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherDe Gruyter Open Ltden_US
dc.sourceComputational Methods in Applied Mathematicsen_US
dc.subjectDiscontinuous Galerkin Methodsen_US
dc.subjectError Analysisen_US
dc.subjectExplicit Runge-Kutta Methoden_US
dc.subjectMagnetic Inductionen_US
dc.subjectRate of Convergenceen_US
dc.titleA priori error analysis of a discontinuous Galerkin scheme for the magnetic induction equationen_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.