Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/702
Full metadata record
DC FieldValueLanguage
dc.rights.licenseAll Open Access, Green-
dc.contributor.authorPinero F.L.en_US
dc.contributor.authorSingh P.en_US
dc.date.accessioned2023-11-30T08:45:50Z-
dc.date.available2023-11-30T08:45:50Z-
dc.date.issued2023-
dc.identifier.issn0018-9448-
dc.identifier.otherEID(2-s2.0-85139876414)-
dc.identifier.urihttps://dx.doi.org/10.1109/TIT.2022.3213568-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/702-
dc.description.abstractIn this article, we consider decoding Grassmann codes, linear codes associated to the Grassmannian and its embedding in a projective space. We look at the orbit structure of Grassmannian arising from the multiplicative group {F}m in GLm(q). We project the corresponding Grassmann code onto these orbits to obtain a subcode of a q -ary Reed-Solomon code. We prove that some of these projections contain an information set of the parent Grassmann code. By improving the decoding capacity of Peterson's decoding algorithm for the projected subcodes, we prove that one can correct up to (d-1)/2 errors for Grassmann code, where d is the minimum distance of Grassmann code. © 1963-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Transactions on Information Theoryen_US
dc.subjectdecodingen_US
dc.subjecterror correcting codesen_US
dc.subjectLinear codesen_US
dc.subjectReed-Solomon codesen_US
dc.titleOrbit Structure of Grassmannian G2,mand a Decoder for Grassmann Code C(2, m)en_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.