http://10.10.120.238:8080/xmlui/handle/123456789/600
DC Field | Value | Language |
---|---|---|
dc.rights.license | All Open Access, Green | - |
dc.contributor.author | Kumar A. | en_US |
dc.contributor.author | Kumari M. | en_US |
dc.contributor.author | Moree P. | en_US |
dc.contributor.author | Singh S.K. | en_US |
dc.date.accessioned | 2023-11-30T08:42:47Z | - |
dc.date.available | 2023-11-30T08:42:47Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0025-5874 | - |
dc.identifier.other | EID(2-s2.0-85142001017) | - |
dc.identifier.uri | https://dx.doi.org/10.1007/s00209-022-03159-5 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/600 | - |
dc.description.abstract | We establish Ramanujan-style congruences modulo certain primes ℓ between an Eisenstein series of weight k, prime level p and a cuspidal newform in the ε-eigenspace of the Atkin–Lehner operator inside the space of cusp forms of weight k for Γ (p). Under a mild assumption, this refines a result of Gaba–Popa. We use these congruences and recent work of Ciolan, Languasco and the third author on Euler–Kronecker constants, to quantify the non-divisibility of the Fourier coefficients involved by ℓ. The degree of the number field generated by these coefficients we investigate using recent results on prime factors of shifted prime numbers. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.source | Mathematische Zeitschrift | en_US |
dc.subject | Euler–Kronecker constants | en_US |
dc.subject | Modular forms | en_US |
dc.subject | Ramanujan congruences | en_US |
dc.title | Ramanujan-style congruences for prime level | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Journal Article |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.