Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/600
Full metadata record
DC FieldValueLanguage
dc.rights.licenseAll Open Access, Green-
dc.contributor.authorKumar A.en_US
dc.contributor.authorKumari M.en_US
dc.contributor.authorMoree P.en_US
dc.contributor.authorSingh S.K.en_US
dc.date.accessioned2023-11-30T08:42:47Z-
dc.date.available2023-11-30T08:42:47Z-
dc.date.issued2023-
dc.identifier.issn0025-5874-
dc.identifier.otherEID(2-s2.0-85142001017)-
dc.identifier.urihttps://dx.doi.org/10.1007/s00209-022-03159-5-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/600-
dc.description.abstractWe establish Ramanujan-style congruences modulo certain primes ℓ between an Eisenstein series of weight k, prime level p and a cuspidal newform in the ε-eigenspace of the Atkin–Lehner operator inside the space of cusp forms of weight k for Γ (p). Under a mild assumption, this refines a result of Gaba–Popa. We use these congruences and recent work of Ciolan, Languasco and the third author on Euler–Kronecker constants, to quantify the non-divisibility of the Fourier coefficients involved by ℓ. The degree of the number field generated by these coefficients we investigate using recent results on prime factors of shifted prime numbers. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceMathematische Zeitschriften_US
dc.subjectEuler–Kronecker constantsen_US
dc.subjectModular formsen_US
dc.subjectRamanujan congruencesen_US
dc.titleRamanujan-style congruences for prime levelen_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.