Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/597
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar A.en_US
dc.contributor.authorKumar R.en_US
dc.date.accessioned2023-11-30T08:42:47Z-
dc.date.available2023-11-30T08:42:47Z-
dc.date.issued2022-
dc.identifier.issn0022-4049-
dc.identifier.otherEID(2-s2.0-85107976831)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.jpaa.2021.106808-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/597-
dc.description.abstractLet S=K[x1,…,xn] be a polynomial ring, where K is a field, and G be a simple graph on n vertices. Let J(G)⊂S be the vertex cover ideal of G. Herzog, Hibi and Ohsugi have conjectured that all powers of vertex cover ideals of chordal graph are componentwise linear. Here we establish the conjecture for the special case of trees. We also show that if G is a unicyclic vertex decomposable graph, then symbolic powers of J(G) are componentwise linear. © 2021en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceJournal of Pure and Applied Algebraen_US
dc.subjectComponentwise linearen_US
dc.subjectRegularityen_US
dc.subjectSequentially Cohen-Macaulayen_US
dc.subjectSymbolic powersen_US
dc.subjectVertex cover idealen_US
dc.subjectVertex decomposableen_US
dc.titleOn the powers of vertex cover idealsen_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.