Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/589
Full metadata record
DC FieldValueLanguage
dc.rights.licenseAll Open Access, Green-
dc.contributor.authorKoley U.en_US
dc.contributor.authorRay D.en_US
dc.contributor.authorSarkar T.en_US
dc.date.accessioned2023-11-30T08:42:12Z-
dc.date.available2023-11-30T08:42:12Z-
dc.date.issued2021-
dc.identifier.issn2166-2525-
dc.identifier.otherEID(2-s2.0-85100535027)-
dc.identifier.urihttps://dx.doi.org/10.1137/19M1279447-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/589-
dc.description.abstractWe establish a notion of random entropy solution for degenerate fractional conservation laws incorporating randomness in the initial data, convective flux, and diffusive flux. In order to quantify the solution uncertainty, we design a multilevel Monte Carlo finite difference method (MLMC-FDM) to approximate the ensemble average of the random entropy solutions. Furthermore, we analyze the convergence rates for MLMC-FDM and compare them with the convergence rates for the deterministic case. Additionally, we formulate error vs. work estimates for the multilevel estimator. Finally, we present several numerical experiments to demonstrate the efficiency of these schemes and validate the theoretical estimates obtained in this work. © 2021 Society for Industrial and Applied Mathematics and American Statistical Associationen_US
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematics Publicationsen_US
dc.sourceSIAM-ASA Journal on Uncertainty Quantificationen_US
dc.subjectDegenerate convection-diffusion equationen_US
dc.subjectFractal conservation lawsen_US
dc.subjectMultilevel Monte Carlo methodsen_US
dc.subjectRandom entropy solutionsen_US
dc.subjectWork estimatesen_US
dc.titleMultilevel Monte Carlo Finite Difference Methods for Fractional Conservation Laws with Random Dataen_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.