Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKitture R.D.en_US
dc.contributor.authorPradhan S.S.en_US
dc.date.accessioned2023-11-30T08:42:12Z-
dc.date.available2023-11-30T08:42:12Z-
dc.date.issued2022-
dc.identifier.issn0219-4988-
dc.identifier.otherEID(2-s2.0-85108182718)-
dc.identifier.urihttps://dx.doi.org/10.1142/S021949882250181X-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/588-
dc.description.abstractIn 1993, Sim proved that all the faithful irreducible representations of a finite metacyclic group over any field of positive characteristic have the same degree. In this paper, we restrict our attention to non-modular representations and generalize this result for-(1) finite metabelian groups, over fields of positive characteristic coprime to the order of groups, and (2) finite groups having a cyclic quotient by an abelian normal subgroup, over number fields. © 2022 World Scientific Publishing Company.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.sourceJournal of Algebra and its Applicationsen_US
dc.subjectClifford's theoryen_US
dc.subjectcrossed productsen_US
dc.subjectfaithful irreducible representationsen_US
dc.subjectinertia subgroupen_US
dc.subjectMetabelian groupsen_US
dc.subjectSchur indexen_US
dc.titleDegrees of faithful irreducible representations of metabelian groupsen_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.