Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/525
Full metadata record
DC FieldValueLanguage
dc.rights.licenseAll Open Access, Green-
dc.contributor.authorHasan S.U.en_US
dc.contributor.authorPal M.en_US
dc.contributor.authorRiera C.en_US
dc.contributor.author Stănică P.en_US
dc.date.accessioned2023-11-30T08:40:20Z-
dc.date.available2023-11-30T08:40:20Z-
dc.date.issued2021-
dc.identifier.issn0925-1022-
dc.identifier.otherEID(2-s2.0-85095585431)-
dc.identifier.urihttps://dx.doi.org/10.1007/s10623-020-00812-0-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/525-
dc.description.abstractWe give some classes of power maps with low c-differential uniformity over finite fields of odd characteristic, for c= - 1. Moreover, we give a necessary and sufficient condition for a linearized polynomial to be a perfect c-nonlinear function and investigate conditions when perturbations of perfect c-nonlinear (or not) function via an arbitrary Boolean or p-ary function is perfect c-nonlinear. In the process, we obtain a class of polynomials that are perfect c-nonlinear for all c≠ 1 , in every characteristic. The affine, extended affine and CCZ-equivalence is also looked at, as it relates to c-differential uniformity. © 2020, This is a U.S. Government work and not under copyright protection in the USen_US
dc.description.abstractforeign copyright protection may apply.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceDesigns, Codes, and Cryptographyen_US
dc.subjectBoolean and p-ary functionsen_US
dc.subjectc-Differentialsen_US
dc.subjectDickson polynomialen_US
dc.subjectDifferential uniformityen_US
dc.subjectPerfect and almost perfect c-nonlinearityen_US
dc.subjectWalsh transformen_US
dc.titleOn the c-differential uniformity of certain maps over finite fieldsen_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.