http://10.10.120.238:8080/xmlui/handle/123456789/432
DC Field | Value | Language |
---|---|---|
dc.rights.license | All Open Access, Green | - |
dc.contributor.author | Bijender | en_US |
dc.contributor.author | Kumar A. | en_US |
dc.contributor.author | Kumar R. | en_US |
dc.date.accessioned | 2023-11-30T08:32:30Z | - |
dc.date.available | 2023-11-30T08:32:30Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0025584X | - |
dc.identifier.other | EID(2-s2.0-85173737095) | - |
dc.identifier.uri | https://dx.doi.org/10.1002/mana.202200510 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/432 | - |
dc.description.abstract | In 2011, Herzog et al. conjectured that if J is the cover ideal of a chordal graph, then (Formula presented.) is componentwise linear for all (Formula presented.). In 2022, Hà and Van Tuyl considered objects more general than chordal graphs and posed the following problem: let (Formula presented.) be the cover ideal of a simplicial tree Γ. Is it true that (Formula presented.) is componentwise linear for all (Formula presented.) In this paper, we give an affirmative answer to this problem. © 2023 Wiley-VCH GmbH. | en_US |
dc.language.iso | en | en_US |
dc.publisher | John Wiley and Sons Inc | en_US |
dc.source | Mathematische Nachrichten | en_US |
dc.subject | componentwise linear | en_US |
dc.subject | regularity | en_US |
dc.subject | sequentially Cohen–Macaulay | en_US |
dc.subject | symbolic powers | en_US |
dc.subject | vertex cover ideal | en_US |
dc.subject | vertex decomposable | en_US |
dc.title | Powers of vertex cover ideals of simplicial trees | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Journal Article |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.