Skip navigation

Please use this identifier to cite or link to this item: http://10.10.120.238:8080/xmlui/handle/123456789/415
Full metadata record
DC FieldValueLanguage
dc.rights.licenseAll Open Access, Green-
dc.contributor.authorBeelen P.en_US
dc.contributor.authorJohnsen T.en_US
dc.contributor.authorSingh P.en_US
dc.date.accessioned2023-11-30T08:32:29Z-
dc.date.available2023-11-30T08:32:29Z-
dc.date.issued2023-
dc.identifier.issn1071-5797-
dc.identifier.otherEID(2-s2.0-85162133844)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.ffa.2023.102240-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/415-
dc.description.abstractWe consider linear codes over a finite field Fq, for odd q, derived from determinantal varieties, obtained from symmetric matrices of bounded ranks. A formula for the weight of a codeword is derived. Using this formula, we have computed the minimum distance for the codes corresponding to matrices upperbounded by any fixed, even rank. A conjecture is proposed for the cases where the upper bound is odd. At the end of the article, tables for the weights of these codes, for spaces of symmetric matrices up to order 5, are given. © 2023 Elsevier Inc.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc.en_US
dc.sourceFinite Fields and their Applicationsen_US
dc.subjectLinear codeen_US
dc.subjectMinimum distanceen_US
dc.subjectSymmetric determinantal varietiesen_US
dc.subjectSymmetric matricesen_US
dc.titleLinear codes associated to symmetric determinantal varieties: Even rank caseen_US
dc.typeJournal Articleen_US
Appears in Collections:Journal Article

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.