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Abstract

Mathematics and cryptography have a long history together. Almost all the modern

crypto systems use the notions either from number theory or from finite fields in some

way or the other. This thesis is devoted to the study of some mathematical problems

arising from cyptography. More precisely, we study cryptographic properties of some

classes of polynomials over finite fields.

Substitution boxes (S-boxes) play a very crucial role in the design of secure crypto-

graphic primitives such as block ciphers. Differential attack, introduced by Biham and

Shamir [4] in 1991, is one of the most efficient attacks on the S-boxes used in the block

ciphers. To quantify the degree of security of a S-box against the differential attacks,

Nyberg [45] in 1993 introduced the notion of differential uniformity. In 2020, Ellingsen

et. al generalized the notion of differential uniformity and introduced the concept of

c-differential uniformity.

There is yet another important attack on block ciphers known as the boomerang at-

tack. This attack was proposed by Wagner [57] in 1999. In 2018, Cid et. al [19] introduced

the notion of boomerang connectivity table to analyze the boomerang attack. Further, to

quantify the resistance of a function against the boomerang attack, Boura and Canteaut

in 2018 introduced the concept of boomerang uniformity. In 2020, Stănică generalized the

concept of boomerang uniformity and introduced the notion of c-boomerang uniformity.

Now we summarize our contributions in the subsequent paragraphs.

First, we consider optimal functions with respect to differential uniformity over finite

fields of odd characteristic known as planar functions. To be more precise, we discuss the

problem of classifying Dembowski-Ostrom polynomials from the composition of reversed

Dickson polynomials of arbitrary kind and monomials over finite fields of odd character-

istic. Moreover, by using a variant of the Weil bound for the number of points of affine

algebraic curves over finite fields, we discuss the planarity of all such Dembowski-Ostrom

polynomials.

Afterwards, we study the c-differential uniformity of some functions over finite fields of

odd characteristic and give several classes of power maps with low c-differential uniformity,

for c = −1. We also give a necessary and sufficient condition for a linearized polynomial

to be a perfect c-nonlinear function and investigate conditions when perturbations of
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perfect c-nonlinear (or not) function via an arbitrary Boolean or p-ary function is perfect

c-nonlinear. In the process, we obtain a class of polynomials that are perfect c-nonlinear

for all c 6= 1, in every characteristic.

Next, we consider the c-differential uniformity and boomerang uniformity of two classes

of permutation functions over finite fields of even characteristic. One of these classes is in

fact a class of involutions, which has been used by Beierle and Leander [3] to construct a

class of differentially 4-uniform functions. We shall show that the c-differential uniformity

of this involution is 2 for all c 6= 0, 1. We also give the boomerang connectivity table entries

of this class of involutions. The other class is of differentially 4-uniform permutations

given by Tan et. al [55]. We give a bound for its c-differential uniformity and boomerang

uniformity.

Further, we consider the boomerang uniformity of an infinite class of power maps over

finite fields of even characteristic. We show that for non-permutations, the differential

uniformity is not necessarily smaller than the boomerang uniformity, as was the case for

permutations.

At the end, we give a complete description of the c-boomerang connectivity table

entries for the Gold function over finite fields of even characteristic, by using double Weil

sums. In the process we generalize a result of Boura and Canteaut [8] for the classical

boomerang uniformity.
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Chapter 1

Introduction

This thesis comprises of a study of some polynomials over finite fields, which have appli-

cations in cryptography and coding theory, and it consists of two parts. The first part

is devoted to the study of the differential uniformity (DU) and its generalisation called

the c-differential uniformity (cDU), of some classes of polynomials over finite fields. The

second part of the thesis is dedicated to the study of the boomerang uniformity (BU) and

its generalisation called the c-boomerang uniformity (cBU), of some classes of polynomials

over finite fields of even characteristic. Chapters 2, 3 and part of Chapter 4 shall form

the first part, while the remaining part of Chapter 4 and Chapters 5 and 6 constitute

the second part. In the following, we explain some relevant background and give a brief

motivated account of the contents of these chapters.

We denote, by Fq the finite field with q = pn elements, where p is a prime number and

n is a positive integer. By F∗q = 〈g〉, where g is a primitive element of Fq, we denote the

multiplicative cyclic group of non-zero elements of Fq. We call a function f from Fpn to Fp
a p-ary function in n variables. For positive integers n and m, any function f : Fpn → Fpm

is called a vectorial p-ary function, or (n,m)-function. When m = n, f can be uniquely

represented as a univariate polynomial over Fq of the form f(X) =
∑q−1

i=0 aiX
i, ai ∈ Fq.

Therefore in such a scenerio, we often consider f as a polynomial f ∈ Fq[X]. We recall

that a polynomial f ∈ Fq[X] is a permutation polynomial (PP) over Fq if the associated

mapping X 7→ f(X) is a bijection from Fq to Fq.

The canonical additive character is a homomorphism χ1 : Fq → C of the additive

1



CHAPTER 1. INTRODUCTION 2

group of Fq defined as follows

χ1(X) = exp

(
2πiTr(X)

p

)
,

where C is the field of complex numbers and Tr : Fq → Fp is the absolute trace defined

by Tr(X) = X + Xp + Xp2 + · · · + Xpn−1
(to emphasize the dimension, we sometimes

write this as Trn1 ). We define the relative trace Trne : Fpn → Fpe , e|n, by Trne (X) =

X +Xpe +Xp2e + · · ·+Xpe(
n
e −1)

. Note that all additive characters of Fq can be expressed

in terms of χ1 [36, Theorem 5.7].

For each 0 ≤ k ≤ q − 2, the k-th multiplicative character is a homomorphism ψk :

F∗q → C of the multiplicative group of Fq defined as follows

ψk
(
g`
)

= exp

(
2πik`

q − 1

)
for ` = 0, . . . , q − 2.

It is well-known that the group of multiplicative characters of Fq is a cyclic group of order

q − 1 with identity element ψ0 [36, Corollary 5.9].

In the theory of finite fields, exponential sums are important tools in the study of

number of solutions of equations over finite fields. As a special case, the Gauss’ sums are

defined as follows

G(ψ, χ) =
∑
X∈F∗q

ψ(X)χ(X),

where χ and ψ are additive and multiplicative characters of Fq, respectively.

A Weil sum is yet another important character sum defined as follows

∑
X∈Fq

χ(f(X)),

where χ is an additive character of Fq and f(X) is a polynomial in Fq[X]. It is well-

known that a polynomial f(X) over finite field Fq is a PP if and only if its Weil sum∑
X∈Fq χ(f(X)) = 0 for all nontrivial additive characters χ of Fq.

Differential cryptanalysis, introduced by Biham and Shamir [4], is one of the most

powerful attacks against block ciphers. To quantify the ability of a given function to resist

the differential attack, Nyberg [45] introduced the concept of differential uniformity. For

any function f : Fq → Fq and a ∈ Fq, the derivative of f in the direction a, denoted by
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Df (X, a), is defined as

Df (X, a) := f(X + a)− f(X) for all X ∈ Fq.

For any a, b ∈ Fq, the Difference Distribution Table (DDT) entry at point (a, b), denoted

by ∆f (a, b), is defined as

∆f (a, b) := |{X ∈ Fq | Df (X, a) = b}|.

The differential uniformity of f , denoted by ∆f , is defined as

∆f := max{∆f (a, b) | a, b ∈ Fq, a 6= 0}.

If ∆f = δ, we say that the function f is δ-uniform. When δ = 1, 2, we say that the

function f is perfect nonlinear (PN) and almost perfect nonlinear (APN), respectively. It

is easy to observe that over finite fields of even characteristic, the solutions of the equation

Df (X, a) = b always comes into pairs, i.e., if X is a solution then so is X + a. Therefore,

the least possible value for the DU of a function over finite fields of even characteristic is

two. Thus, APN functions have lowest possible DU over finite fields of characteristic 2.

Though PN functions do not exist over finite fields of even characteristic, they do exist

over finite fields of odd characteristic where they are often called as planar functions. A

polynomial f ∈ Fq[X] is called exceptional planar if it is planar over Fpn for infinitely

many n. Planar functions are very important due to their wide range of applications.

For example, planar functions are used to construct finite projective planes [24], relative

difference sets [30] and error-correcting codes [14].

A Dembowski-Ostrom (DO) polynomial over finite field Fq is a polynomial that admits

the following shape ∑
i,j

aijX
pi+pj ,

where aij ∈ Fq. DO polynomials have been used in designing a public key cryptosystem

known as HFE [46]. Note that DO polynomials provide a very rich source of planar

functions. It was conjectured by Rónyai and Szönyi [49] (see also [43, Conjecture 9.5.19])

that all planar functions are of “DO type”. This conjecture is still open except in the case
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of characteristic 3 for which a counter example was given by Coulter and Matthews [20].

For any nonnegative integer k, the k-th Dickson polynomial of the first kind Dk(X, a)

over Fq was introduced by Dickson [25] in 1897, and is defined as follows

Dk(X, a) :=

b k
2
c∑

i=0

k

k − i

(
k − i
i

)
(−a)iXk−2i,

where a ∈ Fq is a parameter and D0(X, a) = 2. More than two decades later, Schur

[50] introduced a variant of Dickson polynomial of the first kind in 1923, which is now

known as Dickson polynomial of the second kind. For any nonnegative integer k, the k-th

Dickson polynomial of the second kind Ek(X, a) over Fq is defined as follows

Ek(X, a) :=

b k
2
c∑

i=0

(
k − i
i

)
(−a)iXk−2i,

where a ∈ Fq is a parameter and E0(X, a) = 1. Dickson polynomials of the first and second

kind over Fq have been studied extensively, especially with respect to their permutation

behaviour. For a non-zero element a in Fq, Nöbauer [44] proved that the Dickson polyno-

mial of the first kind Dk(X, a) permutes the elements of Fq if and only if gcd(k, q2−1) = 1.

However, except for a few cases, the permutation behaviour of Dickson polynomials of

the second kind Ek(X, a) remains unresolved. One may refer to the monograph [35] for

more on Dickson polynomials.

In 2010, Coulter and Matthews [22] classified DO polynomials from the composition

of Dickson polynomials of the first and second kind with the monomial Xd, where d

is a positive integer, and further discussed the planarity of such DO polynomials. The

motivation behind considering this composition actually stemmed from the known fact

that the exceptional planar polynomials X10 ±X6 −X2 are essentially the composition

of the Dickson polynomials D5(X,±1) and the monomial X2.

The notion of k-th reversed Dickson polynomial (RDP) of the first kind was introduced

by Hou, Mullen, Sellers and Yucas [33] by simply reversing the roles of the variable X and

the parameter a in the k-th Dickson polynomial of the first kind Dk(X, a). Moreover, the

authors showed that the reversed Dickson polynomials of the first kind are closely related

to APN functions.
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Motivated by the results of Coulter and Matthews [22], Zhang, Wu and Liu [64]

classified DO polynomials from RDPs of the first kind in the even characteristic case and

they also characterized APN functions among all such DO polynomials.

For any nonnegative integers k and m, the notion of k-th Dickson polynomial of the

(m + 1)-th kind, denoted as Dk,m(X, a), was introduced by Wang and Yucas [58], and is

defined as follows

Dk,m(X, a) :=

b k
2
c∑

i=0

k −mi
k − i

(
k − i
i

)
(−a)iXk−2i, (1.1)

where 0 ≤ m ≤ p− 1, a ∈ Fq and D0,m(X, a) = 2−m. The k-th RDP of the (m+ 1)-th

kind is also defined in a similar way by just reversing the role of the variable X and the

parameter a in (1.1). More precisely, for any nonnegative integers k and m, the k-th RDP

of the (m+ 1)-th kind Dk,m(a,X) is defined as follows

Dk,m(a,X) :=

b k
2
c∑

i=0

k −mi
k − i

(
k − i
i

)
(−X)iak−2i, (1.2)

where 0 ≤ m ≤ p− 1, a ∈ Fq and D0,m(a,X) = 2−m. The k-th RDP of the (m+ 1)-th

kind also satisfies the following recurrence relation

Dk,m(a,X) = mEk(a,X)− (m− 1)Dk(a,X). (1.3)

In Chapter 2, we extend the results of Zhang, Wu and Liu [64] to the odd charac-

teristic case, where we give a complete classification of DO polynomials arising from the

composition of RDPs of the (m+ 1)-th kind with the monomial Xd, where d is a positive

integer. Moreover, by using a variant of the Weil bound for the number of points of affine

algebraic curves over finite fields, we discuss the planarity of all such DO polynomials.

Deviating from the usual differentials (f(X+a), f(X)), Borisov et. al. [6] introduced

the notion of so called multiplicative differentials of the form (f(cX), f(X)) and they

used this new type of differentials to attack some existing ciphers. Motivated by the

multiplicative differentials as discussed in [6], Ellingsen et. al [28] defined a new (output)

multiplicative differential in the following way. For any function f from a finite field Fq
to itself and for any a, c ∈ Fq, the (multiplicative) c-derivative of f with respect to a is
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defined as

cDf (X, a) = f(X + a)− cf(X) for all X ∈ Fq.

For a, b ∈ Fq, the c-difference distribution table (cDDT) entry of f at point (a, b), denoted

by c∆f (a, b), is given by

c∆f (a, b) = |{X ∈ Fq : cDf (X, a) = b}|.

The c-differential uniformity (cDU) of f , denoted as c∆f , is then defined as

c∆f := max{c∆f (a, b) : a, b ∈ Fq, and a 6= 0 if c = 1}.

When c∆f = δ, we say that cDU of f is δ. It is easy to see that when c = 1, cDU

coincides with the usual notion of DU. If δ = 1 then f is called perfect c-nonlinear (PcN)

function and when δ = 2 then f is called almost perfect c-nonlinear (APcN) function.

Also it is easy to observe from the definition of PcN function that when c 6= 1 and a = 0

then f(X + a) − cf(X) = (1 − c)f(X) is a permutation polynomial if and only if f(X)

is a permutation polynomial. Therefore, we shall consider the perfect c-nonlinearity of

permutation polynomials only.

In chapter 3, we establish a relation between the c-derivative of the power map Xd

and Dickson polynomial of the first kind over Fq, for c = −1. In fact, such a relationship

has its origin in [60, Proposition 8], where it was established for the fields of characteristic

3. We extend this result to finite fields of odd characteristic and use it to construct

several classes of PcN power maps. We also give a necessary and sufficient condition for

a linearized polynomial to be PcN. We also find necessary and sufficient conditions for

the sum f + γF to be PcN, where γ ∈ Fq, f is PcN and F is any Boolean function. We

also show that in some instances such perturbations do not produce PcN functions. We

further discuss the affine, extended affine and CCZ-equivalence as it relates to cDU.

In a block cipher, nonlinearity of the function f is also an important property. Let

F : F2n → F2 be a Boolean function. The Walsh-Hadamard transform is defined as the

integer-valued function

WF (u) :=
∑
X∈F2n

(−1)F (X)+Tr(uX), u ∈ F2n ,
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where Tr : F2n → F2 is the absolute trace function. The (vectorial) Walsh transform

Wf (a, b) of a function f : F2n → F2n at (a, b) ∈ F2n × F2n is the Walsh-Hadamard

transform of its component function Tr(bf(X)) at a, that is,

Wf (a, b) :=
∑
X∈F2n

(−1)Tr(bf(X)+aX).

The nonlinearity, denoted by NL(f), of the function f is defined by

NL(f) := 2n−1 − 1

2
max

(a,b)∈F∗2n×F2n

|Wf (a, b)|.

In Chapter 4, the first part deals with the cDU of two classes of permutation polyno-

mials. The first class of permutation polynomials is in fact a class of involutions which

has been used by Beierle and Leander [3] to construct a class of differentially 4-uniform

functions with trivial nonlinearity. We give the cDDT entries of this class of involutions

explicitely, for all c 6= 0, 1. The second class of permutations is a class of differentially

4-uniform functions introduced by Tan et. al [55]. We give a bound for the cDU of this

class of permutations.

The second part of the thesis is devoted to another cryptographic property of func-

tions over finite fields called Boomerang uniformity (BU). The BU is connected to the

boomerang attack against block ciphers introduced by Wagner [57]. The boomerang at-

tack may be thought of as an extension of the differential attack [4]. In order to analyze

the boomerang attack in a better way, and analogously to the DDT concerning differen-

tial attack, Cid et al. [19] introduced the notion of boomerang connectivity table (BCT).

Further, to quantify the resistance of a function against the boomerang attack, Boura and

Canteaut [8] introduced the concept of boomerang uniformity (BU), which is the maxi-

mum value in the BCT excluding the first row and first column. For effectively computing

the entries in the BCT, Li et al. [37] proposed an equivalent formulation as follows. For

any a, b ∈ Fq, the BCT entry of the function f at point (a, b), denoted by Bf (a, b), is the

number of solutions in Fq × Fq of the following system of equations

f(X)− f(Y ) = b,

f(X + a)− f(Y + a) = b.



CHAPTER 1. INTRODUCTION 8

The BU of the function f , denoted by Bf , is given by

Bf = max{Bf (a, b) | a, b ∈ F∗q}.

In Chapter 4, the second part is devoted to the BU of the class of involutions given by

Beierle and Leander [3] and the class of differentially 4-uniform permutations introduced

by Tan et. al [55]. For the class of involutions, we explicitely compute the BCT entries

and show that there are only two values for the BCT entries. For the class of differentially

4-uniform permutations, we give bound for its BU.

Cid et al. [19] (see also [42]) showed that for any function f and for any (a, b) ∈ Fq×Fq,

the BCT entry is greater than or equal to the corresponding DDT entry. In fact, the

authors Cid et al. [19] (see also [42, Theorem 1]) showed that for permutation functions f ,

∆f ≤ Bf . Cid et. al [19, Lemma 4] also showed that for APN permutations, the BCT is the

same as the DDT, except for the first row and the first column. Thus, APN permutations

offer an optimal resistance to both differential and boomerang attacks. However, over

finite fields F2n with n even, which is the most interesting case in cryptography, the only

known example of APN permutation is due to Dillon [10] over F26 . The existence of APN

permutations over F2n , n ≥ 8 even, is an open problem and often referred to as the Big

APN Problem. Therefore, over F2n , n even, the functions with DU and BU four offer the

best (known) resistance to differential and boomerang attacks. So far, there are six classes

of permutations over F2n , n even, with boomerang uniformity 4 (see [8, 37, 38, 39, 42, 56]).

In Chapter 5, we give a class of power functions (non-permutation) having boomerang

uniformity 4. This is the first example of a non-permutation function with boomerang

uniformity 4. We also show that for this class of power maps ∆f > Bf . To the best of

our knowledge this is the first such example of a class of functions (non-permutation).

Recently, Stănică [51] extended the notion of BCT and BU and defined the c-boomerang

connectivity table (cBCT) and c-boomerang uniformity (cBU) for an arbitrary polyno-

mial function f over Fq, for any c 6= 0 ∈ Fq. Let a, b ∈ Fq, then the entry of the cBCT at

(a, b) ∈ Fq×Fq, denoted as cBf (a, b), is the number of solutions in Fq×Fq of the following

system f(X)− cf(Y ) = b

f(X + a)− c−1f(Y + a) = b.
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The cBU of f is defined as

cBf = max {cBf (a, b) | a, b ∈ F∗q}.

In yet another recent paper, Stănică [52] further studied the cBCT and gave an elegant

description of the cBCT entries of the power maps in terms of double Weil sums. He

further simplified his expressions for the Gold function Xpk+1 over Fpn , for all 1 ≤ k < n

and p odd.

In Chapter 6, we extend the work of Stănică [52] to the finite fields of characteristic

2. More precisely, we give a complete description of the cBCT for the Gold function over

finite fields of even characteristic, by using double Weil sums. In the process we generalize

a result of Boura and Canteaut [8] for the classical BU.



Chapter 2

Dembowski-Ostrom Polynomials and

Reversed Dickson Polynomials

In this chapter, we give a complete classification of Dembowski-Ostrom (DO) polynomials

arising from the composition of reversed Dickson polynomials (RDPs) of the (m + 1)-th

kind and the monomial Xd, where d is a positive integer, in odd characteristic, and

we further characterize planar functions among these DO polynomials. DO polynomials

do not have any constant term. We shall, therefore, consider the polynomials D̂k,m :=

Dk,m(a,Xd)−Dk,m(a, 0) for the purpose of classifying DO polynomials. Notice that D̂k,m

is given by

D̂k,m =

b k
2
c∑

i=1

k −mi
k − i

(
k − i
i

)
(−Xd)iak−2i.

For the sake of simplicity, we shall denote D̂k,0, D̂k,1, D̂k,2, D̂k,3, and D̂k,4 by D̂k, Êk,

F̂k, Ĝk and Ĥk, respectively. This chapter has been organized as follows. In Section 2.1,

we state some lemmas that will be used in the subsequent sections. In Sections 2.2, 2.3,

2.4 and 2.5, we classify DO polynomials from D̂k, Êk, Ĝk and Ĥk, respectively. The case

m ≥ 5 has been considered in Section 2.6. In Section 2.7, we consider the planarity of

DO polynomials obtained in the previous sections. The complete list of DO polynomials

derived from reversed Dickson polynomials is given in Section 2.8.

Throughout this chapter, we always assume that p is an odd prime, d is a positive

integer, and i, j, k, `,m, n, s, t, α, β, γ, δ are nonnegative integers unless specified otherwise.

10
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2.1 Some Useful Lemmas

As alluded earlier, we shall first classify DO polynomials derived from the composition of

RDPs of the (m + 1)-th kind and the monomial Xd, where d is a positive integer. Since

DO polynomials are closed under the composition with the monomial Xp, it would be

sufficient to consider the cases when gcd(d, p) = 1. One may also note that the monomial

Xrd, where r is positive integer, is a DO monomial if and only if rd = pβ(pα + 1) for some

nonnegative integers α and β. Here, β is the highest exponent of p such that pβ | r. It

is obvious that whenever gcd(r, p) = 1, we must have β = 0. In what follows, we shall

invoke these assumptions and conventions as and when required.

We now present some lemmas which will be useful in the sequel.

Lemma 2.1.1. Let d be a positive integer and p > 3 be a prime such that gcd(d, p) = 1.

Assume that the coefficients of Xd and X2d in the polynomial D̂k,m are non-zero. Then

the polynomial D̂k,m is not a DO polynomial.

Proof. Assume that p > 3 and the coefficients of Xd and X2d in the polynomial D̂k,m are

non-zero. Therefore, if D̂k,m is a DO polynomial then d = pα + 1 and 2d = pβ + 1. Thus,

we have 2pα + 1 = pβ, which is true if and only if α = 0, β = 1 and p = 3. This is a

contradiction to our assumption that p > 3, hence D̂k,m is not a DO polynomial.

Lemma 2.1.2. Let d be a positive integer and p > 5 be a prime such that gcd(d, p) = 1.

Assume that the coefficients of Xd and X3d in the polynomial D̂k,m are non-zero. Then

the polynomial D̂k,m is not a DO polynomial.

Proof. The proof follows using a similar reasoning as in the proof of Lemma 2.1.1.

Lemma 2.1.3. Let d be a positive integer and p > 3 be an odd prime such that gcd(d, p) =

1. Assume that the coefficients of X3d and X4d in the polynomial D̂k,m are non-zero. Then

the polynomial D̂k,m is not a DO polynomial.

Proof. The proof is along the similar line as in the proof of Lemma 2.1.1.

Lemma 2.1.4. Let p = 3 and d be a positive integer such that gcd(d, 3) = 1. Assume that

the coefficients of Xd and X4d in the polynomial D̂k,m are non-zero. Then the polynomial

D̂k,m is not a DO polynomial.
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Proof. The proof follows by using a similar argument as in Lemma 2.1.1.

Now we recall the following lemma from [36, Proposition 6.39], which will be used

later.

Lemma 2.1.5. (Legendre’s formula) For any nonnegative integer ω and any prime p,

Ep(ω!) the largest exponent of p that divides ω! is given by

Ep(ω!) =
∞∑
i=1

⌊
ω

pi

⌋
=
ω − ωs
p− 1

,

where ωs is the sum of the digits in the representation of ω to the base p.

2.2 DO Polynomials from RDPs of the First Kind

Before we begin the classification of DO polynomials from RDPs of the first kind, we shall

slightly deviate and prove the following proposition that readily gives DO polynomials

arising from RDPs of the (m+ 1)-th kind when the parameter a is zero.

Proposition 2.2.1. The polynomial Dk,m(0, Xd) is DO if and only if k is even, m 6≡ 2

(mod p) and kd is of the form 2pj(pi + 1), where i, j ≥ 0.

Proof. We know that

Dk,m(0, Xd) =

0 if k is odd;

(2−m)(−Xd)
k
2 if k is even.

Clearly, Dk,m(0, Xd) is a DO polynomial if and only if k is even, m 6≡ 2 (mod p) and

kd = 2pj(pi + 1).

In view of Proposition 2.2.1, we shall assume that a is non-zero for the rest of the

chapter. We now consider RDPs of the first kind. For a 6= 0, we write X = Y (a − Y )

with an indeterminate Y ∈ Fq2 . Then

Dk,0(a,X) = Y k + (a− Y )k;
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see [29, Section 2]. Also, we have Dk,0(a, 0) = ak. Since Dkp,0(a,X) = (Dk,0(a,X))p and

Dkp,0(a, 0) = (Dk,0(a, 0))p, we have D̂kp = D̂p
k, where

D̂k = Dk,0(a,X
d)−Dk,0(a, 0) =

b k
2
c∑

i=1

k

k − i

(
k − i
i

)
(−Xd)iak−2i.

Since D̂kp = D̂p
k, it would be sufficient to consider the cases when gcd(k, p) = 1. The

following theorems give a complete classification of DO polynomials from polynomial D̂k

for k odd and k even, respectively.

Theorem 1. Let q be a power of an odd prime p, a ∈ F∗q and k odd. The polynomial D̂k

is a DO polynomial over Fq if and only if one of the following holds.

(i) p = 3, d = 2pt, k = 5p`, 7p`, where `, t ≥ 0.

(ii) p > 3, d = pt(pα + 1), k = 3p`, where `, t, α ≥ 0.

Proof. The sufficiency of the theorem is straightforward. It only remains to show the

necessity. Notice that when k is odd, then

D̂k = −kXdak−2 +
(k − 3)k

2!
X2dak−4 − (k − 4)(k − 5)k

3!
X3dak−6+

· · ·+ (−1)
k−3
2

(k − 1)k(k + 1)

24
X

d(k−3)
2 a3 + (−1)

k−1
2 k X

d(k−1)
2 a.

(2.1)

Since gcd(k, p) = 1, the first term −kak−2Xd in D̂k will always exist. Thus, if D̂k is a DO

polynomial then d = pj(pi + 1). Since gcd(d, p) = 1, we have j = 0. Therefore, we shall

always take d = pi + 1. Now we consider two cases, k 6≡ 3 (mod p) and k ≡ 3 (mod p).

Case 1. Let k 6≡ 3 (mod p). In this case, the coefficient of the second term in (2.1)

is non-zero. Therefore, if D̂k is a DO polynomial, then 2d = pβ(pα + 1) and d = pi + 1.

Since p is odd and gcd(d, p) = 1, β = 0. Hence, the first equation reduces to 2d = pα + 1.

Combining these two equations, we obtain 2pi + 1 = pα, which is true if and only if

p = 3, α = 1, i = 0 and d = 2. Therefore, in this case, we shall always assume that

p = 3 and d = 2. For k = 5 and k = 7, the polynomials D̂5 = a3X2 + 2aX4 and

D̂7 = 2a5X2 + 2a3X4 + 2aX6, are clearly DO polynomials. Now we claim that when

p = 3 and k > 7 is odd, D̂k is never a DO polynomial. Since gcd(k, 3) = 1, we have only

two cases to consider, namely, k ≡ 2 (mod 3) and k ≡ 1 (mod 3).
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In the case k ≡ 2 (mod 3), consider the second last term in (2.1) which is given by

(−1)
k−3
2

(k − 1)k(k + 1)

24
a3Xk−3.

If the coefficient of the second last term in (2.1) is non-zero, then we claim that (k − 3)

cannot be written as 3i + 3j for some nonnegative integers i and j. On the contrary

assume that k − 3 = 3i + 3j, which implies k − 2 = 3i + 3j + 1. Since k ≡ 2 (mod 3),

k − 2 = 3i + 3j + 1 if and only if i = j = 0. But i = j = 0 implies k = 5, which is a

contradiction to our assumption that k > 7. Therefore D̂k is not a DO polynomial in this

case.

Now assume that the coefficient of the second last term in (2.1) is zero. In this case,

we shall show that the fourth term always exists. Note that the fourth term contains the

monomial X8 whose exponent cannot be written as 3i + 3j for some nonnegative integers

i and j. The coefficient of the fourth term is given by

k(k − 5)(k − 6)(k − 7)

24
ak−8. (2.2)

Since gcd(k, 3) = 1, we have 3 - k and 3 - (k − 6). Since k ≡ 2 (mod 3), where k is

odd and greater than 7, (k− 5)(k− 7) is a multiple of 24, i.e. (k− 5)(k− 7) = 24b, where

b is an integer. Then the coefficient of the fourth term in (2.2) becomes k(k − 6)b.

Now we show that 3 - b. On the contrary, assume that 3 | b. Then we have, (k −

5)(k − 7) = 72e for some integer e. Since k ≡ 2 (mod 3), write k = 3e1 − 1 for some

integer e1. Recall that the second last term in (2.1) vanishes. By substituting 3e1 − 1 for

k in the coefficient of the second last term, we obtain e1 ≡ 0 (mod 3). Let e1 = 3n1 for

some integer n1. Then k = 3e1 − 1 = 9n1 − 1 ≡ −1 (mod 9). From (k − 5)(k − 7) = 72e

and k ≡ −1 (mod 9), we have 3 ≡ 0 (mod 9), which is a contradiction. Therefore, our

assumption that 3 | b is wrong, and hence the coefficient of X8 is non-zero. Therefore,

when the second last term in (2.1) vanishes, D̂k is not a DO polynomial.

In the case k ≡ 1 (mod 3), we first look at the fourth term. Recall that the fourth

term contains the monomial X8 whose exponent cannot be written as 3i + 3j for some

nonnegative integers i and j. If the coefficient of the fourth term given in (2.2) is non-zero,

then clearly D̂k is not a DO polynomial. In the case of the coefficient of the fourth term
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is zero, we claim that the coefficient of the 7th term, which contains the monomial X14,

is non-zero. The coefficient of the 7th term is given by

k(k − 8)(k − 9)(k − 10)(k − 11)(k − 12)(k − 13)

7!
ak−14.

It is clear that the exponent of the monomial X14 cannot be written as 3i + 3j for

some nonnegative integers i and j. Since k is odd and k ≡ 1 (mod 3), it is clear that

3 | (k−10), 6 | (k−13), 9 - (k−10) and 12 - (k−13). Also, 3 - k, 3 - (k−9), 3 - (k−12),

3 - (k − 8) and 3 - (k − 11). Therefore, the coefficient of the 7th term is non-zero. Hence,

in the case of the coefficient of the fourth term is zero, D̂k is not a DO polynomial.

Case 2. Let k ≡ 3 (mod p). In this case, notice that if p = 3, then k ≡ 0 (mod 3),

which is a contradiction as gcd(k, p) = 1. Therefore we shall assume that p > 3. For

k = 3, the polynomial D̂3 = −3aXd is a DO polynomial if and only if d = pi + 1. For

k > 3, consider the third term in (2.1), which contains the monomial X3d. Since k ≡ 3

(mod p), k 6≡ 4, 5 (mod p). Hence the coefficient of the third term is non-zero. Thus, if

D̂k is a DO polynomial, then d = pi + 1 and 3d = pj + 1. Combining these two equations,

we have 3pi + 2 = pj, which is true if and only if i = 0, j = 1, p = 5 and d = 2. Notice

that the coefficient of last term in (2.1), which contains the monomial Xk−1, is non-zero.

Thus, if D̂k is a DO polynomial then k − 1 = 5j(5i + 1). Since k ≡ 3 (mod 5), k 6≡ 1

(mod 5), and hence j = 0. Also, notice that if i = 0 then k = 3, which is a contradiction

as k > 3. Therefore k − 1 = 5i + 1 which implies that k ≡ 2 (mod 5), a contradiction as

k ≡ 3 (mod 5). Therefore for k > 3, D̂k is never a DO polynomial. This completes the

proof.

Theorem 2. Let q be a power of an odd prime p, a ∈ F∗q and k even. The polynomial D̂k

is a DO polynomial over Fq if and only if one of the following holds.

(i) d = pt(pα + 1), k = 2p`, where `, t, α ≥ 0.

(ii) p = 3, d = 2pt, k = 4p`, where `, t ≥ 0.

Proof. The sufficiency of the theorem is straightforward. It only remains to show the
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necessity. Notice that when k is even, then

D̂k = −kak−2Xd +
k(k − 3)

2
ak−4X2d − k(k − 4)(k − 5)

6
ak−6X3d

+ · · ·+ (−1)
k
2
−1 k

2

4
a2Xd( k

2
−1) + (−1)

k
2 · 2 ·X

dk
2 .

(2.3)

Since gcd(k, p) = 1, the first term −kak−2Xd in D̂k will always exist. Thus, if D̂k is a DO

polynomial, then d = pj(pi + 1). Since gcd(d, p) = 1, we have j = 0. Therefore, we shall

always take d = pi + 1. When k = 2, the polynomials D̂2 = −2Xpα+1 is clearly a DO

polynomial. For k ≥ 4, we consider two cases, k 6≡ 3 (mod p) and k ≡ 3 (mod p).

Case 1. Let k 6≡ 3 (mod p). In this case, the coefficient of the second term in (2.3),

which contains the monomial X2d, is non-zero. Thus, if D̂k is a DO polynomial, then

2d = pβ(pα + 1) and d = pi + 1. Since p is odd and gcd(d, p) = 1, we have β = 0.

Combining these two equations, we obtain p = 3, i = 0, α = 1 and d = 2. Therefore

in what follows, we shall take p = 3 and d = 2. In the case k = 4, the polynomial

D̂4 = 2a2X2 + 2X4 is clearly DO polynomial.

Now for k > 4, even and k 6≡ 3 (mod 3), we claim that D̂k is not a DO polynomial.

Consider the fourth term, which contains the monomial X8. It is clear that 8 cannot be

written as 3i + 3j for some nonnegative integers i and j. If the coefficient of the fourth

term in (2.2) is non-zero, then D̂k is not a DO polynomial. Now consider the case where

the coefficient of the fourth term is zero. Note that the coefficient of the last term in (2.3),

which contains the monomial Xk, is always non-zero. Thus, if D̂k is a DO polynomial,

then k = 3i + 1. Clearly, i 6= 0, otherwise k = 2, a contradiction. If i > 0, then k ≡ 1

(mod 3). Now consider the second last term in (2.3), which contains the monomial Xk−2.

Clearly, the coefficient is non-zero as gcd(k, 3) = 1. If D̂k is a DO polynomial and k ≡ 1

(mod 3), then k − 2 = 3j + 1. If i = 0 then k = 4, which is a contradiction since k > 4.

If i > 0, then k = 3i + 3. This contradicts the assumption that gcd(k, 3) = 1. Thus D̂k is

not a DO polynomial in this case.

Case 2. Let k ≡ 3 (mod p). In this case, if p = 3, then k ≡ 0 (mod 3), which is a

contradiction as gcd(k, p) = 1. Therefore, we shall always consider p > 3. Notice that

the coefficient of the last term in (2.3), which contains the monomial X
kd
2 , is non-zero.

Thus, if D̂k is a DO polynomial, then kd
2

= pβ(pα + 1) and d = pi + 1. Since gcd(k, p) = 1

and gcd(d, p) = 1, β = 0. Hence, the first equation reduces to kd = 2pα + 2. Combining
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these two equations, we get kpi + k = 2pα + 2. If i = 0, then k = pα + 1, which implies

k ≡ 2 (mod p) or k ≡ 1 (mod p) depending on whether α = 0 or α > 0, respectively, a

contradiction. If i > 0, then α > 0, otherwise k(pi + 1) = 4, which is a contradiction as

p > 3. Therefore k ≡ 2 (mod p), a contradiction. This completes the proof.

2.3 DO Polynomials from RDPs of the Second Kind

Recall that Dk,1(a,X
d)−Dk,1(a, 0) is denoted by Êk, where

Êk = (1− k)ak−2Xd +
(k − 2)(k − 3)

2!
ak−4X2d − (k − 3)(k − 4)(k − 5)

3!
ak−6X3d + · · · .

(2.4)

The following theorems give necessary and sufficient conditions for RDPs of the second

kind to be DO polynomials for p = 3 and p ≥ 5, respectively.

Theorem 3. Let q be a power of the odd prime p = 3 and a ∈ F∗q. The polynomial Êk is

a DO polynomial over Fq if and only if one of the following holds.

(i) k = 2, 3, 5, 6 and d = pt(pα + 1), where α, t ≥ 0.

(ii) k = 4 and d = pt(pα + 1)/2, where α, t ≥ 0.

(iii) k = 7, 10, 13, 19 and d = 2pt, where t ≥ 0.

(iv) k = 15 and d = 4pt, where t ≥ 0.

Proof. The sufficient part of the theorem is straightforward, therefore, we only prove the

necessary part. If the polynomials Ê2 = −Xd, Ê3 = −2aXd and Ê5 = 2a3Xd are DO

polynomial, then d is of the form pα + 1. Similarly, the polynomial Ê4 = X2d is a DO

polynomial only if d is of the form (pα + 1)/2. If the polynomial Ê6 = a4Xd + 2X3d is a

DO polynomial, then d = 3α + 1 and 3d = 3t(3β + 1). Since 3t | 3, t = 1. Therefore, Ê6 is

a DO polynomial only if d is of the form pα + 1. The polynomial Ê7 = a3X2d + 2aX3d is

a DO polynomial only if 2d = 3α + 1 and 3d = 3t(3β + 1). Since 3t | 3, t = 1. Combining

these two equations, we obtain β = 0, α = 1 and d = 2. For k ≥ 8, we shall treat all

possible cases depending on the value of k modulo 9.
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Case 1. Let k ≡ 2, 8 (mod 9). In this case, k ≡ 2 (mod 3), therefore, k 6≡ 1 (mod 3)

and hence the coefficient of Xd in (2.4), is non-zero. Now, consider the fourth term

(k − 4)(k − 5)(k − 6)(k − 7)

4!
ak−8X4d. (2.5)

It is clear that 3 - (k − 4), 3 - (k − 6) and 3 - (k − 7). Also, since k ≡ 2, 8 (mod 9),

k 6≡ 5 (mod 9), and hence the highest exponent of 3 which divides the numerator of the

coefficient of fourth term is 1. By Lemma 2.1.5, the highest exponent of 3 which divides 4!

is 1. Therefore, coefficient of the fourth term is non-zero and Êk is not a DO polynomial

by Lemma 2.1.4.

Case 2. Let k ≡ 0, 3 (mod 9). In this case, k ≡ 0 (mod 3) and hence, the coefficient

of Xd in (2.4) is non-zero. Now consider the fourth term as given in (2.5) again. Following

similar arguments as in the Case 1 above, it is easy to see that the coefficient of the fourth

term is nonzero and hence Êk is not a DO polynomial by Lemma 2.1.4.

Case 3. Let k ≡ 1 (mod 9). In this case, if the polynomial Ê10 = a6X2d+a4X3d+2X5d

is a DO polynomial, then 2d = 3α + 1, 3d = 3t(3β + 1) and 5d = 3γ + 1. Since 3t | 3,

t = 1. Combining the first two equations, we obtain β = 0, α = 1 and d = 2. Now,

putting these values in third equation, we have 3γ = 9 and γ = 2. Similarly, if the

polynomial Ê19 = a15X2d+a13X3d+2a9X5d+2aX9d is a DO polynomial, then 2d = 3α+1,

3d = 3t(3β +1), 5d = 3γ +1 and 9d = 3s(3δ +1). Since 3t | 3 and 3s | 9, we have t = 1 and

s = 2. Combining first, second and fourth equation, we obtain β = 0, α = 1 and d = 2.

Now, putting these values in third equation, we have 3γ = 9 and γ = 2. For k ≥ 28, since

k ≡ 1 (mod 3), we have k 6≡ 0, 2 (mod 3), and hence the coefficient of X2d is non-zero.

Now, consider the 11th term

(k − 11)(k − 12)(k − 13) · · · (k − 19)(k − 20)(k − 21)

11!
ak−22(−Xd)11. (2.6)

By Lemma 2.1.5, the highest exponent of 3 that divides 11! is 4. In the numerator of the

coefficient of 11th term, (k−13), (k−16), (k−19) ≡ 0 (mod 3) and (k−13), (k−16) 6≡ 0

(mod 9). Now, if k 6≡ 19 (mod 27), then the highest exponent of 3 which divides the

numerator is 4. Hence the coefficient of X11d is non-zero. Thus, if Êk is a DO polynomial

then 2d = 3α+1 and 11d = 3β+1. Combining these equations, we have 11 ·3α+9 = 2 ·3β,
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which forces α = 2 and 3β = 54, a contradiction. Therefore, Êk is not a DO polynomial

in this case. In the case k ≡ 19 (mod 27), we have k ≥ 46. In this case, consider the 20th

term
(k − 20)(k − 21)(k − 22) · · · (k − 37)(k − 38)(k − 39)

20!
ak−40X20d. (2.7)

The arguments of Case 1 can be invoked here to shows that the coefficient of X20d is

non-zero. Thus, if Êk is a DO polynomial, then 2d = 3α+ 1 and 20d = 3β + 1. Combining

these equations, we have 10 ·3α+9 = 3β, which forces α = 2 and 3β = 99, a contradiction.

Therefore, Êk is not a DO polynomial in this case.

Case 4. Let k ≡ 4 (mod 9). In this case, if the polynomial Ê13 = a9X2d+a3X5d+aX6d

is a DO polynomial, then 2d = 3α + 1, 5d = 3β + 1 and 6d = 3t(3γ + 1). Since 3t | 6,

t = 1. Combining these equations, we obtain α = 1, β = 2 and d = 2. Now, for k ≥ 22,

since k ≡ 1 (mod 3), we have k 6≡ 0, 2 (mod 3), and hence the coefficient of X2d in (2.4)

is non-zero. Now, consider the 11th term as given in (2.6). By Lemma 2.1.5, the highest

exponent of 3 that divides 11! is 4. In the numerator of the coefficient of 11th term,

(k−13), (k−16), (k−19) ≡ 0 (mod 3) and (k−16), (k−19) 6≡ 0 (mod 9). Now if k 6≡ 13

(mod 27), then the highest exponent of 3 which divides the numerator is 4. Hence the

coefficient of X11d is non-zero. Thus if Êk is a DO polynomial, then 2d = 3α + 1 and

11d = 3β + 1. Combining these two equations, we have 11 · 3α + 9 = 2 · 3β, which forces

α = 2 and 3β = 54, a contradiction. Therefore Êk is not a DO polynomial in this case. In

the case k ≡ 13 (mod 27), k ≥ 22 is equivalent to k ≥ 40. In this case, consider the 20th

term as given in (2.7). By similar arguments as in the Case 1 one may prove that the

coefficient of X20d is non-zero. Therefore, if Êk is a DO polynomial, then 2d = 3α + 1 and

20d = 3β + 1. Combining these equations, we have 10 · 3α + 9 = 3β, which forces α = 2

and 3β = 99, a contradiction. Therefore Êk is not a DO polynomial in this case.

Case 5. Let k ≡ 5 (mod 9). In this case, if the polynomial Ê14 = 2a10X2d + a2X6d +

X7d is a DO polynomial, then d = 3α + 1, 6d = 3t(3β + 1) and 7d = 3γ + 1. Since 3t | 6,

t = 1. Combining the first two equations, we obtain α = 0, β = 1 and d = 2. Now putting

these values in third equation, we have 3γ = 13, a contradiction. Therefore, Ê14 is not a

DO polynomial. Now, for k ≥ 23, consider the 10th term

(k − 10)(k − 11)(k − 12)(k − 13) · · · (k − 17)(k − 18)(k − 19)

10!
ak−20X10d. (2.8)
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By Lemma 2.1.5, the highest exponent of 3 that divides 10! is 4. In the numerator of the

coefficient of 10th term, (k−11), (k−14), (k−17) ≡ 0 (mod 3) and (k−11), (k−17) 6≡ 0

(mod 9). Now if k 6≡ 14 (mod 27), then the highest exponent of 3 which divides the

numerator is 4. Hence the coefficient of X10d is non-zero. Thus if Êk is a DO polynomial,

then d = 3α + 1 and 10d = 3β + 1. Combining these equations, we get 10 · 3α + 9 = 3β,

which forces α = 2 and 3β = 99, a contradiction. Therefore Êk is not a DO polynomial

in this case. In the case k ≡ 14 (mod 27), k ≥ 23 is equivalent to k ≥ 41. Now, consider

the 16th term

(k − 16)(k − 17)(k − 18) · · · (k − 29)(k − 30)(k − 31)

16!
ak−32X16d. (2.9)

By way of similar arguments as done in Case 1, the coefficient of X16d is non-zero. Thus,

if Êk is a DO polynomial, then d = 3α + 1 and 16d = 3β + 1. Combining these equations,

we get 16 · 3α + 15 = 3β, which forces α = 1 and 3β = 63, a contradiction. Therefore Êk

is not a DO polynomial in this case.

Case 6. Let k ≡ 6 (mod 9). In this case, if the polynomial Ê15 = a13Xd + 2a9X3d +

aX7d is a DO polynomial, then d = 3α + 1, 3d = 3t(3β + 1) and 7d = 3γ + 1. Since 3t | 3,

t = 1. Combining these equations, we obtain α = 1, γ = 3 and d = 4. Now, for k ≥ 24,

consider the 10th term as given in (2.8). One may follow the similar arguments of Case 5

above to shows that if k 6≡ 15 (mod 27), the coefficient of X10d is non-zero. Therefore Êk

is not a DO polynomial in this case. In the case k ≡ 15 (mod 27), k ≥ 24 is equivalent

to k ≥ 42. In this case, consider the 16th term as given in (2.9). Similar arguments as

in the Case 1 show that the coefficient of X16d is non-zero. Therefore Êk is not a DO

polynomial in this case.

Case 7. Let k ≡ 7 (mod 9). In this case k ≥ 8 is equivalent to k ≥ 16. Also, since

k ≡ 1 (mod 3), we have k 6≡ 0 or 2 (mod 3) and hence the coefficient of X2d in (2.4) is

non-zero. Now consider the 8th term, which is given by

(k − 8)(k − 9)(k − 10)(k − 11)(k − 12)(k − 13)(k − 14)(k − 15)

8!
ak−16X8d. (2.10)

By following similar arguments as in the Case 1, it is not difficult to prove that the

coefficient of X8d is non-zero. Thus, if Êk is a DO polynomial, then 2d = 3α + 1 and
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8d = 3β + 1. Combining these equations, we have 4 · 3α + 3 = 3β, which forces α = 1

and 3β = 15, a contradiction. Therefore Êk is not a DO polynomial in this case. This

completes the proof.

Theorem 4. Let q be a power of an odd prime p ≥ 5 and a ∈ F∗q. The polynomial Êk is

a DO polynomial over Fq if and only if one of the following holds.

(i) k = 2, 3 and d = pn(pα + 1), where α, n ≥ 0.

(ii) k = 7, p = 5 and d = 2pn, where n ≥ 0.

Proof. It is enough to prove the necessary part. If the polynomials Ê2 = −Xd and

Ê3 = −2aXd are DO polynomial, then d is of the form pα + 1. By Lemma 2.1.1, the

polynomials Ê4 = −3a2Xd + X2d and Ê5 = −4a3Xd + 3aX2d are not DO polynomials.

The polynomial Ê6 = −5a4Xd + 6a2X2d − X3d is a DO polynomial only if 2d = pα + 1

and 3d = pβ + 1. Combining these equations, we get 3pα + 1 = 2pβ, which forces α = 0,

pβ = 2, a contradiction. Therefore, Ê6 is not a DO polynomial. For the polynomial

Ê7 = −6a5Xd + 10a3X2d − 4aX3d, we consider two cases, namely, p = 5 and p > 5. For

p = 5, if Ê7 = 4a5Xd + X3d is a DO polynomial, then d = 5α + 1 and 3d = 5β + 1.

Combining these equations, we have 3 · 5α + 2 = 5β, which forces α = 0, β = 1 and

d = 2. For p > 5, Ê7 = −6a5Xd + 10a3X2d − 4X3d. Since the coefficients of Xd and

X2d are non-zero, Lemma 2.1.1 confirms that Ê7 is not a DO polynomial. For k ≥ 8, we

shall consider four cases, namely, k 6≡ 1, 2, 3 (mod p), k ≡ 1 (mod p), k ≡ 2 (mod p) and

k ≡ 3 (mod p), respectively.

Case 1. Let k 6≡ 1, 2, 3 (mod p). In this case, the coefficients of Xd and X2d in (2.4)

are non-zero, therefore Êk is not a DO polynomial by Lemma 2.1.1.

Case 2. Let k ≡ 1 (mod p). In this case, we have (k− 2), (k− 3), (k− 4), (k− 5) 6≡ 0

(mod p). Therefore, the coefficients of X2d and X3d in (2.4) are non-zero. Thus, if Êk is

a DO polynomial, then 2d = pα + 1 and 3d = pβ + 1. Combining these equations, we have

3pα + 1 = 2pβ, which forces α = 0 and pβ = 2, a contradiction. Therefore Êk is not a DO

polynomial.

Case 3. Let k ≡ 2 (mod p). In this case, the coefficient of the first term in (2.4),

which contains the monomial Xd, is non-zero. Now we consider two cases, namely, p = 5

and p > 5. In the case p = 5, k ≥ 8 is equivalent to k ≥ 12. We now show that if k 6≡ 7



CHAPTER 2. DO POLYNOMIALS AND RDPs 22

(mod 25), then the sixth term exists whose coefficient is given by

(k − 6)(k − 7)(k − 8)(k − 9)(k − 10)(k − 11)

6!
ak−12.

Since k ≡ 2 (mod 5), we have (k − 6), (k − 8), (k − 9), (k − 10), (k − 11) 6≡ 0 (mod 5).

Also, if k 6≡ 7 (mod 25), then the highest exponent of 5 which divides the numerator

is 1. By Lemma 2.1.5, the highest exponent of 5 that divides 6! is 1. Therefore the

coefficient of X6d is non-zero. Thus, if Êk is a DO polynomial, then d = 5α + 1 and

6d = 5β + 1. Combining these equations, we have 6 · 5α + 5 = 5β, which forces α = 1

and 5β = 35, a contradiction. Therefore Êk is not a DO polynomial in this case. Now if

k ≡ 7 (mod 25), then the condition k ≥ 12 is equivalent to k ≥ 32. In this case, using

the similar arguments, we can show that the coefficient of X8d is non-zero. Thus, if Êk is

a DO polynomial, then d = 5α + 1 and 8d = 5β + 1. Combining these equations, we have

8 · 5α + 7 = 5β, which forces α = 0 and 5β = 15, a contradiction. Therefore Êk is not a

DO polynomial in this case. In the case p > 5, since k ≡ 2 (mod p), we have k 6≡ 1, 3, 4, 5

(mod p). Hence the coefficients of Xd and X3d in (2.4) are non-zero, therefore Êk is not

DO polynomial by Lemma 2.1.2.

Case 4. Let k ≡ 3 (mod p). In this case, the first term (1 − k)Xd in (2.4) does not

vanish. Now we consider two cases, namely, p = 5 and p > 5. In the case p = 5, since

k ≡ 3 (mod 5), we have k 6≡ 0, 1, 2, 4 (mod 5), and hence the fourth term as given in (2.5)

does not vanish. Therefore, if Êk is a DO polynomial, then d = 5i + 1 and 4d = 5j + 1.

Combining these equations, we have 4 · 5i + 3 = 5j, which forces i = 0 and 5j = 7, a

contradiction. Therefore Êk is not a DO polynomial in this case. In the case p > 5, since

k ≡ 3 (mod p), we have (k − 1), (k − 4), (k − 5), (k − 6), (k − 7), (k − 8), (k − 9) 6≡ 0

(mod p). Therefore, the fourth term as given in (2.5) and the fifth term whose coefficient

is given by
(k − 5)(k − 6)(k − 7)(k − 8)(k − 9)

5!
ak−10,

do not vanish. Thus, if Êk is a DO polynomial, then d = pα + 1, 4d = pβ + 1 and

5d = pγ +1. Combining the first two equations, we have 4pα+3 = pβ, which forces α = 0,

β = 1, p = 7 and d = 2. Now putting these values in third equation, we have 7γ = 9,

a contradiction. Therefore Êk is not a DO polynomial in this case. This completes the

proof.
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One may recall from [58, Theorem 3.1] that RDPs of the second kind and RDPs of

the third kind admit the following relationship

Dk,2(a,X) = aDk−1,1(a,X).

Thus, it is obvious that F̂k is a DO polynomial whenever Êk−1 is a DO polynomial.

Consequently, the classification of DO polynomials from RDPs of the third kind F̂k follows

immediately. In view of this, we shall consider RDPs of the fourth kind in the next section.

2.4 DO Polynomials from RDPs of the Fourth Kind

Recall that Dk,3(a,X
d)−Dk,3(a, 0) is denoted by Ĝk, where

Ĝk = (3− k)ak−2Xd +
(k − 3)(k − 6)

2
ak−4X2d − (k − 4)(k − 5)(k − 9)

3!
ak−6X3d + · · · .

(2.11)

Also, from (1.3), it is easy to see that Ĝk = D̂k (mod 3). Therefore, for p = 3, Ĝk is a DO

polynomial whenever D̂k is a DO polynomial and the classification of DO polynomials

from D̂k has already been discussed in Section 2.2. Therefore, throughout this section, we

consider p ≥ 5. The following theorem gives a complete classification of DO polynomials

derived from Ĝk.

Theorem 5. Let q be a power of an odd prime p ≥ 5 and a ∈ F∗q. The polynomial Ĝk is

a DO polynomial over Fq if and only if one of the following holds.

(i) k = 2 and d = pt(pα + 1), where α, t ≥ 0.

(ii) k = 6, 11, p = 5 and d = 2pt, where t ≥ 0.

Proof. It is enough to prove only the necessary part. If the polynomial Ĝ2 = Xd is a DO

polynomial, then d = pα + 1. The polynomial Ĝ3 is the zero polynomial and hence it is

not a DO polynomial. The polynomials Ĝ4 = −a2Xd −X2d, Ĝ5 = −2a3Xd − aX2d and

Ĝ7 = −4a5Xd + 2a3X2d + 2aX3d are not DO polynomials by Lemma 2.1.1. In the case

of the polynomial Ĝ6 = −3a4Xd +X3d, we consider two cases, namely, p = 5 and p > 5.

In the case p = 5, if Ĝ6 is a DO polynomial, then d = 5i + 1 and 3d = 5j + 1. Combining
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these equations, we have 3 ·5i+ 2 = 5j, which is true if and only if i = 0, j = 1 and d = 2.

When p > 5, Ĝ6 is not a DO polynomial by Lemma 2.1.2. For k ≥ 8, we consider two

cases, namely, p = 5 and p > 5.

Case 1. Let p > 5. Note that when k 6≡ 3, 6 (mod p), the coefficients of Xd and X2d

in Ĝk are non-zero. Therefore, Ĝk is not a DO polynomial by Lemma 2.1.1. In the case

k ≡ 3 (mod p), the coefficient of X3d is non-zero and also, the coefficient of X4d in Ĝk,

given by
(k − 5)(k − 6)(k − 7)(k − 12)

4!
ak−8

is non-zero. Therefore, Ĝk is not a DO polynomial by Lemma 2.1.3. When k ≡ 6 (mod p),

the coefficients of Xd and X3d in Ĝk are non-zero, therefore, Ĝk is not a DO polynomial

by Lemma 2.1.2.

Case 2. Let p = 5. Notice that when k 6≡ 1, 3 (mod 5), the coefficients of Xd

and X2d in Ĝk are non-zero, therefore Ĝk is not a DO polynomial by Lemma 2.1.1. In

the case k ≡ 3 (mod 5), the coefficients of X3d and X4d in Ĝk are non-zero, therefore

Ĝk is not a DO polynomial by Lemma 2.1.3. For k ≡ 1 (mod 5), if the polynomial

Ĝ11 = 2a9Xd + a5X3d + 4aX5d is a DO polynomial, then d = 5α + 1, 3d = 5β + 1 and

5d = 5t(5γ + 1). Since 5t | 5, t = 1. Thus, by combining these equations, we obtain

α = 0, β = 1 and d = 2. For k ≥ 16, since k ≡ 1 (mod 5), we have k 6≡ 0, 2, 3, 4 (mod 5)

and hence the coefficient of X3d in Ĝk is non-zero. Now consider the 6th term whose

coefficient is given by

(k − 7)(k − 8)(k − 9)(k − 10)(k − 11)(k − 18)

6!
ak−12.

By Lemma 2.1.5, the highest exponent of 5 which divides 6! is 1. Also, if k 6≡ 11 (mod 25),

then highest exponent of 5 that divides the numerator of coefficient of X6d is 1, hence

the coefficient of X6d is non-zero. Thus, if Ĝk is a DO polynomial, then 3d = 5α + 1 and

6d = 5β + 1. Combining these equations, we get 2 · 5α + 1 = 5β, which forces α = 0 and

5β = 3, a contradiction. Thus Ĝk is not a DO polynomial in this case. In the case k ≡ 11

(mod 25), consider the 11th term whose coefficient is given by

(k − 12)(k − 13) · · · (k − 19)(k − 20)(k − 21)(k − 33)

11!
ak−22.
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It is easy to verify that the coefficient of X11d is non-zero. Thus, if Ĝk is a DO polynomial,

then 3d = 5α+1 and 11d = 5β+1. Combining these equations, we have 11 ·5α+8 = 3 ·5β,

which forces α = 0 and 3 · 5β = 19, a contradiction. Thus Ĝk is not a DO polynomial in

this case.

2.5 DO Polynomials from RDPs of the Fifth Kind

Here we consider RDPs of the fifth kind. Recall that Dk,4(a,X
d) −Dk,4(a, 0) is denoted

by Ĥk, where

Ĥk = (4− k)ak−2Xd +
(k − 3)(k − 8)

2
ak−4X2d − (k − 4)(k − 5)(k − 12)

3!
ak−6X3d + · · · .

(2.12)

It is easy to see from (1.3) that Ĥk = Êk (mod 3), thus for p = 3, Ĥk is a DO polynomial

whenever Êk is a DO polynomial. Thus, throughout this section, we take p ≥ 5.

Theorem 6. Let q be a power of an odd prime p ≥ 5 and a ∈ F∗q. The polynomial Ĥk is

a DO polynomial over Fq if and only if one of the following holds.

(i) k = 2, 3 and d = pt(pα + 1), where α, t ≥ 0.

(ii) k = 4 and d = pt(pα + 1)/2, where α, t ≥ 0.

Proof. The sufficiency of the theorem is straightforward. It only remains to show the

necessity. If the polynomials Ĥ2 = 2Xd and Ĥ3 = aXd are DO polynomials, then d =

pα+1. Similarly, if the polynomial Ĥ4 = −2X2d is a DO polynomial, then d = (pα + 1)/2.

In the case of polynomials Ĥ5 = −a3Xd − 3aX2d, Ĥ6 = −2a4Xd − 3a2X2d + 2X3d and

Ĥ7 = −3a5Xd − 2a3X2d + aX3d, the coefficients of Xd and X2d are non-zero. Therefore,

Ĥ5, Ĥ6 and Ĥ7 are not DO polynomials by Lemma 2.1.1. The polynomial Ĥ8 = −4a6Xd+

8a2X3d−2X4d is not a DO polynomial by Lemma 2.1.3. If the polynomial Ĥ9 = −5a7Xd+

3a5X2d + 10a3X3d − 7aX4d is a DO polynomial, then 2d = 5α + 1 and 4d = 5β + 1.

Combining these equations, we get 2 · 5α + 1 = 5β, which forces α = 0, 5β = 3, a

contradiction. Thus Ĥ9 is not a DO polynomial. For k ≥ 10, we consider two cases, p = 5

and p > 5.
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Case 1. Let p = 5. Notice that when k 6≡ 3, 4 (mod 5), the coefficients of Xd and

X2d in Ĥk are non-zero, therefore, Ĥk is not a DO polynomial by Lemma 2.1.1. In the

case k ≡ 3 (mod 5), the coefficients of Xd is clearly non-zero and also, the coefficient of

X4d in Ĥk given by
(k − 4)(k − 5)(k − 6)(k − 7)

4!
ak−8

is non-zero. Thus, if Ĥk is a DO polynomial, then d = 5α+ 1 and 4d = 5β + 1. Combining

these equations, we have 4 · 5α + 3 = 5β, which forces α = 0 and 5β = 7, a contradiction.

Thus Ĥk is not a DO polynomial in this case. When k ≡ 4 (mod 5), the coefficient of

X2d in Ĥk is non-zero. Also, if k 6≡ 9 (mod 25), the coefficient of X5d in Ĥk given by

(k − 6)(k − 7)(k − 8)(k − 9)(k − 20)

5!
ak−10

is non-zero. Thus, if Ĥk is a DO polynomial, then 2d = 5α + 1 and 5d = 5t(5β + 1).

Since 5t | 5, t = 1 and hence, the second equation reduces to d = 5β + 1. Combining

these equations, we have 2 · 5β + 1 = 5α, which forces β = 0 and 5α = 3, a contradiction.

Thus Ĥk is not a DO polynomial. In the case k ≡ 9 (mod 25), the condition k ≥ 10 is

equivalent to k ≥ 34. Now consider the 9th term whose coefficient is given by

(k − 10)(k − 11)(k − 12) · · · (k − 16)(k − 17)(k − 36)

9!
ak−18.

Since k ≡ 9 (mod 25), we have k 6≡ 14 (mod 25). Hence the highest exponent of 5, which

divides the numerator is 1. By Lemma 2.1.5, highest exponent of 5, which divides 9! is

1. Therefore, the coefficient of X9d is non-zero. Thus, if Ĥk is a DO polynomial, then

2d = 5α + 1 and 9d = 5β + 1. Combining these two equations, we have 9 · 5α + 7 = 2 · 5β,

which forces α = 0 and 5β = 8, a contradiction. Thus Ĥk is not a DO polynomial.

Case 2. Let p > 5. Notice that when k 6≡ 3, 4, 8 (mod p), the coefficients of Xd and

X2d in Ĥk are non-zero, therefore Ĥk is not a DO polynomial by Lemma 2.1.1. In the

case k ≡ 3, 8 (mod p), the coefficients of Xd and X3d in Ĥk are non-zero, therefore Ĥk is

not a DO polynomial by Lemma 2.1.2. When k ≡ 4 (mod p), the coefficients of X2d and

X4d in Ĥk are non-zero. Thus, if Ĥk is a DO polynomial, 2d = pα + 1 and 4d = pβ + 1.

Combining these equations, we have 2 · pα + 1 = pβ, which forces α = 0 and pβ = 3, a

contradiction. Thus, Ĥk is not a DO polynomial. This completes the proof.
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2.6 The Case m ≥ 5

For m ≥ 5, we shall classify DO polynomials from the polynomial D̂k,m, where

D̂k,m = (m− k)ak−2Xd +
(k − 3)(k − 2m)

2
ak−4X2d

− (k − 4)(k − 5)(k − 3m)

3!
ak−6X3d + · · · .

(2.13)

From (1.3), it is straightforward to see that for p = 3, D̂k,m = D̂k, Êk, and F̂k, whenever

m ≡ 0, 1 and 2 (mod 3), respectively. Similarly, for p ≥ 5, D̂k,m = D̂k, Êk, F̂k, Ĝk and Ĥk,

whenever m ≡ 0, 1, 2, 3 and 4 (mod p), respectively. Thus the only cases that remain to

be considered are p > 5 and m 6≡ 0, 1, 2, 3, 4 (mod p) for which we have the following

theorem.

Theorem 7. Let q be a power of an odd prime p > 5 and a ∈ F∗q. The polynomial

D̂k,m where m 6≡ 0, 1, 2, 3, 4 (mod p) is a DO polynomial over Fq if and only if one of the

following holds.

(i) k = 2, 3 and d = pt(pα + 1), where α, t ≥ 0.

(ii) k = 5, m ≡ 5 (mod p) and d = pt(pα + 1)/2, where α, t ≥ 0.

(iii) k = 5, 2m ≡ 5 (mod p) and d = pt(pα + 1), where α, t ≥ 0.

Proof. Only sufficiency of the theorem is required to be proved. If the polynomials D̂2,m =

(m−2)Xd and D̂3,m = (m−3)aXd are DO polynomials, then d is of the form pα+1. The

polynomial D̂4,m = (m− 4)a2Xd + (2−m)X2d is not a DO polynomial by Lemma 2.1.1.

In the case of the polynomial D̂5,m = (m − 5)a3Xd + (5 − 2m)aX2d, we consider three

cases, namely, m ≡ 5 (mod p), 2m ≡ 5 (mod p) and m, 2m 6≡ 5 (mod p). In the case

m ≡ 5 (mod p), if D̂5,m = −5aX2d is a DO polynomial, then d is of the form (pα + 1)/2.

When 2m ≡ 5 (mod p) and if D̂5,m = (m− 5)a3Xd is a DO polynomial, then d is of the

form pα+1. In the case m, 2m 6≡ 5 (mod p), D̂5,m = (m−5)a3Xd+(5−2m)aX2d is not a

DO polynomial by Lemma 2.1.1. For k ≥ 6, we consider four cases, namely, k 6≡ 3,m, 2m

(mod p), k ≡ 3 (mod p), k ≡ m (mod p) and k ≡ 2m (mod p).

Case 1. Let k 6≡ 3,m, 2m (mod p). In this case, the coefficients of Xd and X2d in

D̂k,m are non-zero, and therefore D̂k,m is not a DO polynomial by Lemma 2.1.1.
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Case 2. Let k ≡ 3 (mod p). In this case, we have k 6≡ 4, 5 (mod p). Also, note that

k 6≡ m (mod p), otherwise m ≡ 3 (mod p). Similarly, k 6≡ 3m (mod p), otherwise m ≡ 1

(mod p). Therefore, the coefficients of Xd and X3d in D̂k,m are non-zero and hence D̂k,m

is not a DO polynomial by Lemma 2.1.2.

Case 3. Let k ≡ m (mod p). Notice that k 6≡ 3, 4 (mod p). Also, note that k 6≡

2m, 3m (mod p), otherwise m ≡ 0 (mod p). Therefore, the coefficient of X2d in D̂k,m is

non-zero. Also, when k 6≡ 5 (mod p), the coefficient of X3d in D̂k,m is non-zero. Thus, if

D̂k,m is a DO polynomial, then 2d = pα + 1 and 3d = pβ + 1. Combining these equations,

we get 3pα + 1 = 2pβ, which forces α = 0 and pβ = 2, a contradiction. Therefore, D̂k,m is

not a DO polynomial in this case. In the case k ≡ 5 (mod p), consider the coefficient of

the fifth term
(k − 6)(k − 7)(k − 8)(k − 9)(k − 5m)

5!
ak−10.

Since k ≡ 5 (mod p), we have (k − 6), (k − 7), (k − 8), (k − 9) 6≡ 0 (mod p). Also, note

that k 6≡ 5m (mod p), otherwise m ≡ 1 (mod p). Therefore, the coefficients of X2d and

X5d in D̂k,m are non-zero. Thus, if D̂k,m is a DO polynomial, then 2d = pα + 1 and

5d = pβ + 1. Combining these equations, we get 5pα + 3 = 2pβ, which forces α = 0 and

pβ = 4, a contradiction. Therefore, D̂k,m is not a DO polynomial.

Case 4. Let k ≡ 2m (mod p). Notice that k 6≡ m (mod p), otherwise m ≡ 0

(mod p). Therefore the coefficient of Xd in D̂k,m is non-zero. Also note that k 6≡ 3m

(mod p) and k 6≡ 4 (mod p), otherwise m ≡ 0 (mod p) and m ≡ 2 (mod p), respectively.

When k 6≡ 5 (mod p), the coefficient of X3d in D̂k,m is non-zero and hence D̂k,m is not

a DO polynomial by Lemma 2.1.2. In the case k ≡ 5 (mod p), the condition k ≥ 6 is

equivalent to k ≥ 13. Now consider the fifth term again. By similar arguments as done

in Case 3 above, it is easy to see that the coefficient of X5d is non-zero. Thus, if D̂k,m is

a DO polynomial, then d = pα + 1 and 5d = pβ + 1. Combining these equations, we get

5pα + 4 = pβ, which forces α = 0 and pβ = 9, a contradiction. Therefore D̂k,m is not a

DO polynomial. This completes the proof.
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2.7 Discussion on Planarity

We consider the planarity of DO polynomials obtained from RDPs of the (m + 1)-th

kind as listed in the Section 2.8. First, we shall discuss the tools and techniques that

are needed to understand the planarity of DO polynomials. These tools and techniques

are similar to the ones used in [22]. Recall that a polynomial function f : Fq → Fq is

said to be planar if the difference function ∆f (X, a) = f(X + a)− f(X)− f(a) permutes

the elements of Fq for each a ∈ F∗q. If f happens to be a DO polynomial, the difference

function ∆f (X, a) for each a ∈ F∗q, belongs to another well-known class of polynomials

called linearized polynomials. Therefore, a DO polynomial f is planar if and only if

the linearized polynomial ∆f (X, a) is a permutation polynomial for each a ∈ F∗q. The

permutation behaviour of linearized polynomial is well-known. In fact, [36, Theorem 7.9]

tells us that a linearized polynomial is a permutation polynomial over Fq if and only if its

only root in Fq is 0. Therefore, in order to show that a DO polynomial f is not planar,

it is sufficient to show that the difference function ∆f (X, Y ) = f(X + Y )− f(X)− f(Y )

has a root in F∗q × F∗q.

We recall that a DO polynomial function f from Fq to itself is called 2-to-1 function

if the cardinality of the image set on F∗q is (q − 1)/2. Qiu et al. [47] showed that the size

of the image set on F∗q of a planar polynomial f over Fq must be at least (q − 1)/2. For

a DO polynomial f , Weng and Zeng [59, Theorem 2.3] gave the following necessary and

sufficient condition for f to be planar.

Lemma 2.7.1. Let f be a DO polynomial over Fq. Then f is planar if and only if f is

2-to-1.

Lemma 2.7.1 has further consequences. First, if a DO polynomial f has a root z ∈ F∗q,

then −z is also a root of f . Therefore, the cardinality of image set of f on F∗q is strictly

less than (q − 1)/2 and hence, in such a case, f is not planar.

For the second consequence, we begin with an easy observation that if f(X) is a DO

polynomial, then so is f(Xpt). We know that Xpt is a linearized permutation polynomial

over Fpn . Therefore, the cardinality of the image set of f(X) and f(Xpt) on F∗q is same.

Hence if f(X) is planar, then f(Xpt) is also planar. Therefore in such situations, it would

be sufficient to consider the planarity of f(X).
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Another important tool that we would require to study the planarity of DO polyno-

mials is the following version of Weil bound as stated in [16, Lemma 2.4].

Lemma 2.7.2. Let f(X, Y ) be an absolutely irreducible polynomial in Fq[X, Y ]. Then

the number Nf of (u, v) ∈ Fq × Fq with f(u, v) = 0 satisfies

Nf ≥ q − (d− 1)(d− 2)
√
q − d− 1,

where d is the total degree of f .

We now describe the strategy for using the Weil bound to determine the planarity of

certain DO polynomials. Let f be a DO polynomial over Fq and consider the difference

function ∆f (X, Y ) = f(X+Y )−f(X)−f(Y ). If this difference function has an absolutely

irreducible factor, say h(X, Y ), of total degree dh, then Lemma 2.7.2 gives a lower bound

for the cardinality Nh of all the points (u, v) ∈ Fq×Fq such that h(u, v) = 0. If the degree

of the absolutely irreducible factor h(X, Y ) is not too large and q is large enough, then

we have many Fq-rational points on the affine algebraic curve defined by h(X, Y ) = 0.

Moreover, if Nh is strictly larger than the number of solutions to h(X, Y ) = 0 with either

X = 0 or Y = 0, then Lemma 2.7.2 yields the existence of a point (u, v) in F∗q × F∗q such

that h(u, v) = 0 and hence, for such a point, we have ∆f (u, v) = 0, i.e, ∆f (X, Y ) has a

root in F∗q × F∗q. Thus, in order to show that f is not exceptional planar (i.e., planar over

infinitely many extensions of Fq), it is sufficient to show that the difference function of f

contains an absolutely irreducible component with a solution in F∗q × F∗q.

It is straightforward to see that for b ∈ F∗q, RDPs of the (m + 1)-th kind admit the

following relationship

bkdDk,m(a,Xd) = Dk,m(abd, (Xb2)d). (2.14)

In view of (2.14), and due to the fact that the planarity property of a function f remains

invariant under linear transformations (i.e. if f(X) is planar so is αf(λX + µ) + β with

α, λ 6= 0), we have the following lemma.

Lemma 2.7.3. Let Dk,m(a,X) be the k-th RDP of the (m+1)-th kind. Then Dk,m(a,Xd)

is planar equivalent over Fq to Dk,m(abd, Xd) for any b ∈ F∗q.

Over the algebraic closure Fq of Fq, we derive a useful consequence of Lemma 2.7.3.

Note that one may always choose b ∈ Fq that satisfies the equation aXd = 1. In this
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way the factorizations of ∆Dk,m(a,Xd) and ∆Dk,m(1,Xd) over Fq are linearly related. As a

consequence, the absolutely irreducible factors of ∆Dk,m(a,Xd) are of the same form for all

non-zero a. Thus, without loss of generality, one may always take a = 1, while checking

the absolute irreducibility of certain polynomials.

Now we consider the planarity of the DO polynomials listed in the Section 2.8 in three

different cases.

Case 1. Let p = 3. The planarity of monomials D̂2 = X3α+1, Ê2 = 2X3α+1, Ê3 =

aX3α+1, Ê4 = X3α+1, and Ê5 = 2a3X3α+1 is well-known by [20, Theorem 3.3] and these

monomials are planar over F3n if and only if n/(α, n) is odd. It is easy to see that X = a

is a root of the polynomials D̂5 = 2aX4 + a3X2, Ê7 = 2aX6 + a3X4, D̂7 = 2aX6 +

2a3X4 + 2a5X2, Ê13 = aX12 +a3X10 +a9X4 and Ê19 = 2aX18 + 2a9X10 +a13X6 +a15X4.

Therefore, these DO polynomials are not planar. Now we consider the planarity of the

rest of the DO polynomials one by one.

(i) In the case of binomial f(X) = D̂4 = 2X4+2a2X2, consider the difference function

∆f (X, Y ) = f(X + Y ) − f(X) − f(Y ) = XY B(X, Y ), where B(X, Y ) = X2 + Y 2 − a2,

which is simply an irreducible conic since a is non-zero. Therefore, by Lemma 2.7.2, the

number NB of (u, v) ∈ Fq × Fq with B(u, v) = 0 is greater than or equal to q − 3. Note

that we can obtain at most 4 solutions (u, v) to B(X, Y ) = 0 by putting either X = 0 or

Y = 0. Therefore, when q − 3 > 4, there must exist a root (u, v) ∈ F∗q × F∗q of B(X, Y ).

Therefore, D̂4 is not planar when q > 7, i.e., n ≥ 2. For n = 1, D̂4 ≡ X2 (mod X3 −X)

which is clearly a planar function.

(ii) The DO binomial Ê6 = 2X3(3α+1) + a4X3α+1 can be written as composition of a

linearized polynomial and a monomial as (2X3 + a4X) ◦X3α+1. Now from [20, Theorem

2.3], Ê6 is planar if and only if 2X3 + a4X is a permutation polynomial and X3α+1 is

planar. Now, since X = a2 is a root of the linearized polynomial 2X3 + a4X, 2X3 + a4X

is not a permutation polynomial. Hence, Ê6 is not planar.

(iii) In the case of the DO polynomial f(X) = Ê10 = 2X10 + a4X6 + a6X4, consider

the difference function ∆f (X, Y ) = XY h(X, Y ), where h(X, Y ) = 2(X8+Y 8)−a4X2Y 2+

a6(X2+Y 2). The Magma algebra package [7] reveals that h(X, Y ) is absolutely irreducible.

Therefore, by Lemma 2.7.2, the number Nh of solutions (u, v) ∈ Fq × Fq of h(X, Y ) = 0

satisfies Nh ≥ q − 42
√
q − 9. Now h(X, 0) = 2X8 + a6X2 = X2(a+X)3(a−X)3 have in

total 8 solutions in Fq. Similarly, h(0, Y ) = 2Y 8a + a6Y 2 = Y 2(a − Y )3(a + Y )3 have in
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total 8 solutions in Fq. Therefore, in total 16 solutions can be obtained either by putting

X = 0 or Y = 0. Now if q−42
√
q−9 > 16, i.e., q−42

√
q−25 > 0 then h(X, Y ) possesses

a solution (u, v) ∈ F∗q × F∗q. This is true for n ≥ 7, therefore, for n ≥ 7, Ê10 is not planar.

For n = 1 Ê10 = X2 (mod X3−X), which is clearly a planar polynomial. Computations

show that for 2 ≤ n ≤ 6, the cardinality of the image set of Ê10 on F∗q is strictly less than

(3n − 1)/2. Therefore, by Lemma 2.7.1, Ê10 is not planar in these cases.

(iv) Consider the DO polynomial f(X) = Ê15 = aX28 + 2a9X12 + a13X4 = a(X7 +

2a8X3 + a12X) ◦X4. This polynomial is never planar over F3n when n is even. Since in

this case 4 | (q − 1), the cardinality of image set of f(X) on F∗q is at most (q − 1)/4 and

thus, by Lemma 2.7.1, f(X) is not planar. When n is odd, we consider the difference

function ∆f (X, Y ) = aXY (X2 + Y 2) h(X, Y ), where

h(X, Y ) = a12 +
12∑
i=0

(−1)iX24−2iY 2i +
3∑
i=1

(−1)ia8X8−2iY 2i.

Again, the Magma algebra package [7] shows that the polynomial h′(X, Y ) obtained from

h(X, Y ) by putting a = 1, is absolutely irreducible. Therefore, by Lemma 2.7.2, the

number Nh′ of solutions (u, v) ∈ Fq × Fq of h′(X, Y ) = 0 satisfies Nh′ ≥ q − 506
√
q − 25.

Also, h′(X, 0) = X24 + 1 and this has no root in odd degree extensions of F3. Similarly,

h′(0, Y ) = Y 24 + 1 has no root in odd degree extensions of F3. Therefore, there is no

solution to h′(X, Y ) = 0 corresponding to XY = 0. If q− 506
√
q− 25 > 0, then h′(X, Y )

has a root (u, v) ∈ F∗q×F∗q. This holds true for all n ≥ 12. Therefore, Ê15 is not planar over

F3n for n ≥ 12. In the case n = 1, the polynomial f(X) = Ê15 = aX2 (mod X3−X) which

is clearly a planar function. Computations show that for n = 5, 7, 9, 11, the cardinality of

the image set of Ê15 on F∗3n is strictly less than (3n − 1)/2, therefore, Ê15 is not planar in

these cases. In the case n = 3, Ê15 is planar for every choice of a ∈ F∗27.

Case 2. Let p = 5. The planarity of DO monomials D̂2 = 3X5α+1, D̂3 = 2aX5α+1,

Ê2 = 4X5α+1, Ê3 = 3aX5α+1, Ĝ2 = X5α+1, Ĥ2 = 2X5α+1, Ĥ3 = aX5α+1, and Ĥ4 = 3X5α+1

is well-known by [20, Theorem 3.3] and these monomials are planar over F5n whenever

n/(α, n) is odd. It is straightforward to see that X = a is a root of the DO binomial

Ê7 = 4a5X2 + aX6 and hence, it is not planar. Now we consider the planarity of the rest

of the DO polynomials one by one.

(i) For the DO binomial f(X) = Ĝ6 = 2a4X2 +X6, consider the difference function
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∆f (X, Y ) = XY B(X, Y ), where B(X, Y ) = X4 + Y 4 − a4. It is easy to see that Y − a |

Y 4− a4 and Y 4− a4 has no repeated roots. Therefore, by Eisenstein’s criterion, B(X, Y )

is absolutely irreducible. Thus, by Lemma 2.7.2, the number of solutions (u, v) ∈ Fq ×Fq
of B(X, Y ) = 0 satisfies NB ≥ q − 6

√
q − 5. Now, at most 8 roots of B(X, Y ) can be

obtained by putting either X = 0 or Y = 0. Therefore, if q − 6
√
q − 5 > 8, B(X, Y ) will

have a solution (u, v) ∈ F∗q × F∗q, which holds for all n ≥ 3. Therefore, Ĝ6 is not planar

over F5n for n ≥ 3. When n = 1, f(X) = 3X2(mod (X5 −X)) which is clearly a planar

function. For n = 2, the number of solutions of the equation X4 + Y 4 = a4 in F52 × F52

is 40, which is greater than 16. Therefore, Ĝ6 is not planar in this case.

(ii) In the case of the DO trinomial f(X) = Ĝ11 = −aX10 + a5X6 + 2a9X2, consider

the difference function ∆f (X, Y ) = XY h(X, Y ), where h(X, Y ) = 3aX4Y 4 + a5X4 +

a5Y 4 + 4a9. The Magma algebra package [7] shows that h(X, Y ) is absolute irreducible.

Therefore, by Lemma 2.7.2, the number Nh of solutions (u, v) ∈ Fq × Fq of h(X, Y ) = 0

satisfies Nh ≥ q − 42
√
q − 9. Now, h(X, 0) = X4 − a4 = 0 can have at most 4 solutions.

Similarly, h(0, Y ) = Y 4 − a4 = 0 can have at most 4 solutions. Therefore, at most 8

solutions can be obtained by putting either X = 0 or Y = 0. Now, if q − 42
√
q − 9 > 8,

i.e., q− 42
√
q− 17 > 0 then h(X, Y ) will have a solution (u, v) ∈ F∗q ×F∗q. This is true for

n ≥ 5, therefore, for n ≥ 5, Ĝ11 is not planar. For n = 1, Ĝ11 = 2aX2 is clearly a planar

function. For n = 2, 4, computations show that the cardinality of the image set of Ĝ11 on

F∗5n is strictly less than (5n− 1)/2. Therefore, Ĝ11 is not planar in these cases. For n = 3,

computations show that Ĝ11 is planar for every choice of a ∈ F∗125.

Case 3. Let p > 5. In this case, the only DO polynomials we are getting are the

monomials of the form bXpα+1 where b ∈ F∗q and by [20, Theorem 3.3], these monomials

are planar over Fpn whenever n/(α, n) is odd.

In view of the foregoing discussion, the following theorem gives the list of planar DO

polynomials arising from RDPs of arbitrary kind.

Theorem 8. Let D̂k,m =

b k
2
c∑

i=1

k −mi
k − i

(
k − i
i

)
(−Xd)iak−2i as defined in the Introduction.

Then the following are the only planar DO polynomials arising from D̂k,m.

(i) X2 over Fpn.

(ii) Xpα+1 over Fpn with n
(α,n)

odd.
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(iii) 2a9X12 + a13X4 + aX2 over F27 with a ∈ F∗27.

(iv) −aX10 + a5X6 + 2a9X2 over F125 with a ∈ F∗125.

2.8 The Complete List of DO Polynomials

Here, we present the complete list of DO polynomials obtained from polynomial D̂k,m

over a finite field of odd characteristic.

1. The case p = 3.

(a) When m ≡ 0 (mod 3)

i. k = 2 · 3`, X3t+`(3α+1) for nonnegative integers α, t and `.

ii. k = 4 · 3`, 2a2X2·3t+` + 2X4·3t+` for nonnegative integers t and `.

iii. k = 5 · 3`, a3X2·3t+` + 2aX4·3t+` for nonnegative integers t and `.

iv. k = 7 · 3`, 2a5X2·3t+` + 2a3X4·3t+` + 2aX2·3t+`+1
for nonnegative integers t

and `.

(b) When m ≡ 1 (mod 3)

i. k = 2, 2X3t(3α+1) for nonnegative integers α and t.

ii. k = 3, aX3t(3α+1) for nonnegative integers α and t.

iii. k = 4, X3t(3α+1) for nonnegative integers α and t.

iv. k = 5, 2a3X3t(3α+1) for nonnegative integers α and t.

v. k = 6, a4X3t(3α+1) + 2X3t+1(3α+1) for nonnegative integers α and t.

vi. k = 7, a3X4·3t + 2aX2·3t+1
for nonnegative integer t.

vii. k = 10, a6X4·3t + a4X2·3t+1
+ 2X10·3t for nonnegative integer t.

viii. k = 13, a9X4·3t + a3X10·3t + aX4·3t+1
for nonnegative integer t.

ix. k = 15, a13X4·3t + 2a9X4·3t+1
+ aX28·3t for nonnegative integer t.

x. k = 19, a15X4·3t +a13X2·3t+1
+2a9X10·3t +2aX2·3t+2

for nonnegative integer

t.

(c) When m ≡ 2 (mod 3)

i. k = 3, 2aX3t(3α+1) for nonnegative integers α and t.
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ii. k = 4, a2X3t(3α+1) for nonnegative integers α and t.

iii. k = 5, aX3t(3α+1) for nonnegative integers α and t.

iv. k = 6, 2a4X3t(3α+1) for nonnegative integers α and t.

v. k = 7, a5X3t(3α+1) + 2aX3t+1(3α+1) for nonnegative integers α and t.

vi. k = 8, a4X4·3t + 2a2X2·3t+1
for nonnegative integer t.

vii. k = 11 a7X4·3t + a5X2·3t+1
+ 2aX10·3t for nonnegative integer t.

viii. k = 14, a10X4·3t + a4X10·3t + a2X4·3t+1
for nonnegative integer t.

ix. k = 16, a14X4·3t + 2a10X4·3t+1
+ a2X28·3t for nonnegative integer t.

x. k = 20, a16X4·3t + a14X2·3t+1
+ 2a10X10·3t + 2a2X2·3t+2

for nonnegative

integer t.

2. The case p = 5.

(a) When m ≡ 0 (mod 5)

i. k = 2 · 5`, 3X5t+`(5α+1) for non negative integers α, t and `.

ii. k = 3 · 5`, 2aX5t+`(5α+1) for non negative integers α, t and `.

(b) When m ≡ 1 (mod 5)

i. k = 2, 4X5t(5α+1) for nonnegative integers α and t.

ii. k = 3, 3aX5t(5α+1) for nonnegative integers α and t.

iii. k = 7, 4a5X2·5t + aX6·5t for nonnegative integer t.

(c) When m ≡ 2 (mod 5)

i. k = 3, 4aX5t(5α+1) for nonnegative integers α and t.

ii. k = 4, 3a2X5t(5α+1) for nonnegative integer t.

iii. k = 8, 4a6X2·5t + a2X6·5t for nonnegative integer t.

(d) When m ≡ 3 (mod 5)

i. k = 2, 2X5t(5α+1) for nonnegative integers α and t.

ii. k = 6, 2a4X2·5t +X6·5t for nonnegative integer t.

iii. k = 11, 2a9X2·5t + a5X6·5t + 4aX2·5t+1
for nonnegative integer t.

(e) When m ≡ 4 (mod 5)

i. k = 2, 2X5t(5α+1) for nonnegative integers α and t.
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ii. k = 3, aX5t(5α+1) for nonnegative integer t.

iii. k = 4, 3X5t(5α+1) for nonnegative integer t.

3. The case p > 5.

In this case, we are getting DO polynomials of the form bXpα+1 where b ∈ F∗q.



Chapter 3

On the c-Differential Uniformity of

Certain Maps over Finite Fields

In this chapter, we shall consider the c-differential uniformity (cDU) of several classes

of functions over finite fields of odd characteristic. This chapter has been arranged as

follows. In Section 3.1, we establish a relation between the c-derivative of the power map

Xd and Dickson polynomial of the first kind over finite field of odd characteristic, for

c = −1. As a consequence, we shall show that X
p`+1

2 is PcN for c = −1 over Fpn if and

only if ` = 0 or
`

gcd (`, n)
is even. In Section 3.2, we give four classes of power maps

whose cDU for c = −1 is 2, 3, 6 and 7. In Section 3.3, we give all values of d for which

Xd is PcN over the finite fields F35 , F55 and F75 , respectively, for c = −1. Following the

pattern of the computational results, we propose a conjecture about the plausible values

of d for which Xd is PcN over Fp5 for c = −1. Similarly in Section 3.4, we give all values

of d for which Xd is PcN over the finite fields F37 , F57 and F77 , respectively, for c = −1.

Following the pattern of the computational results, we propose another conjecture about

the plausible values of d for which Xd is PcN over Fp7 for c = −1. In Section 3.5, for

c 6= 1, we give a necessary and sufficient condition for a linearized polynomial to be PcN.

We also find necessary and sufficient conditions for the sum f + γF to be PcN, where

γ ∈ Fpn , f is PcN and F is any Boolean function. We also show that in some instances

such perturbations do not produce PcN functions. We further discuss the affine, extended

affine and CCZ-equivalence as it relates to cDU.

37
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3.1 PcN Power Maps and Dickson Polynomials

Before we begin, we recall the definition of Walsh transform. The Walsh transform

Wf (a, b) of an (n,m)-function f at a ∈ Fpn , b ∈ Fpm is defined as

Wf (a, b) =
∑
X∈Fpn

ζTrm(bf(X))−Trn(aX)
p ,

where ζ = e
2πi
p is a pth root of unity and Tr : Fpn → Fp is the absolute trace function,

given by Tr(X) =
n−1∑
i=0

Xpi . We also say that α ∈ F∗pn is a β-linear structure for f , if

f(X + α)− f(X) = β, for all X ∈ Fpn .

Also, recall that for c = −1, a polynomial function f(X) is called PcN over Fpn if the

corresponding mapping X → f(X + a) + f(X) is a permutation of Fpn for each a ∈ Fpn .

Therefore, a power map Xd is PcN if and only if (X+a)d+Xd is a permutation of Fpn for

each a ∈ Fpn . Now, we present some lemmas that will be useful in the sequel. Throughout

this section, we shall assume that c = −1, whenever we refer to PcN functions.

Lemma 3.1.1. A monomial Xd is perfect (−1)-nonlinear in Fpn if and only if Xd and

(X + 1)d + (X − 1)d are permutations of Fpn.

Proof. Let f(X) = Xd; then, by definition, f is a PcN function if and only if (X+a)d+Xd

is a permutation of Fpn for all a ∈ Fpn . For a = 0, we have (X + a)d + Xd = 2Xd, and

2Xd is clearly a permutation of Fpn if and only if Xd is a permutation of Fpn . For a 6= 0,

we have

(X + a)d +Xd is a permutation of Fpn

⇐⇒ ad

[(
X

a
+ 1

)d
+

(
X

a

)d]
is a permutation of Fpn

⇐⇒
(
X

a
+ 1

)d
+

(
X

a

)d
is a permutation of Fpn

⇐⇒ (Y + 1)d + Y d is a permutation of Fpn ; where aY = X

⇐⇒
(

2Y + 1 + 1

2

)d
+

(
2Y + 1− 1

2

)d
is a permutation of Fpn

Z:=2Y+1⇐⇒
(

1

2

)d [
(Z + 1)d + (Z − 1)d

]
is a permutation of Fpn
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⇐⇒ (Z + 1)d + (Z − 1)d is a permutation of Fpn .

This completes the proof of the lemma.

In what follows, we shall adopt this definition of PcN function for power maps, when

c = −1. One of the motivations behind considering this definition is that we can establish

a connection between (X + 1)d + (X − 1)d and d-th Dickson polynomial of the first kind.

We recall the Dickson’s original approach of defining the Dickson polynomial Dd(X, a),

which was essentially based on the relationship between the sum of d-th powers and

elementary symmetric functions. In fact, the d-th Dickson polynomial of the first kind

Dd(X, a) ∈ Fq[X] admits the following representation

Ud
1 + Ud

2 =

b d
2
c∑

i=0

d

d− i

(
d− i
i

)
(−U1U2)

i(U1 + U2)
d−2i

= Dd(U1 + U2, U1U2),

(3.1)

where U1, U2 are indeterminates and Dd(X, a) =

b d
2
c∑

i=0

d

d− i

(
d− i
i

)
(−a)iXd−2i.

We will be using in some places Hilbert’s Theorem 90 (see [9]), which states that if

F ↪→ K is a cyclic Galois extension and σ is a generator of the Galois group Gal(K/F), then

the relative trace TrK/F(X) =

|Gal(K/F)|−1∑
i=0

σi(X) = 0, X ∈ K, if and only if X = σ(Y )− Y ,

for some Y ∈ K.

We now recall a result of Nöbauer [44], which we shall often use, regarding the per-

mutation behavior of Dickson polynomial of the first kind over the finite field Fpn .

Lemma 3.1.2. [44] Let a ∈ F∗pn. The d-th Dickson polynomial of the first kind Dd(X, a)

permutes the elements of finite field Fpn if and only if gcd (d, p2n − 1) = 1.

The following lemma will be used throughout.

Lemma 3.1.3. [28, Lemma 9] Let p be a prime number and `, n be positive integers such

that ` ≤ n. Then:

(1) If p is odd, then gcd(p` + 1, pn − 1) = 2 if
n

gcd(`, n)
is odd.

(2) If p is odd, then gcd(p` + 1, pn − 1) = pgcd(`,n) + 1 if
n

gcd(`, n)
is even.
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(3) If p = 2, then gcd(2` + 1, 2n − 1) =
2gcd(n,2`) − 1

2gcd(n,`) − 1
.

The following lemma gives a nice connection between the difference function of the

power map Xd and the Dickson polynomial for first kind over F3n , for c = −1.

Lemma 3.1.4. [60, Proposition 8] For a positive odd integer n with n ≥ 3, if d ≡ −1

(mod 3) and gcd (d, 32n − 1) = 1, then

(X + 1)d + (X − 1)d = 2Dd(X, 1) (3.2)

is a permutation of F3n, where Dd(X, 1) is the Dickson polynomial of the first kind.

As alluded to in Introduction, the sufficient conditions in the above lemma do not

hold, and the counterexamples can be found using easy computer searches. For instance,

when n = 5 and d = 17, d clearly satisfies the conditions of Lemma 3.1.4, but (X+ 1)17 +

(X − 1)17 6= 2Dd(X, 1). Bartoli and Timpanella [1, Theorem 6.1] provided the correct

conditions on d for which (3.2) holds over finite fields of odd characteristic. However, it

appears that there is a missing case (k = 0) in [1, Theorem 6.1], which we shall include

here. The following theorem provides a relationship between the difference function of

the power map Xd and the Dickson polynomial of first kind over Fpn , for c = −1.

Theorem 9. Let p be an odd prime, d be a positive integer such that d = a0 + a1p +

a2p
2 + · · · + akp

k for some k ≥ 0, where ai ∈ {0, 1, · · · , p − 1} and a0, ak 6= 0, then

(X + 1)d + (X − 1)d = 2Dd(X, ε) for some ε ∈ F∗p if and only if either

(1) d = 1, 2, 3; or

(2) a0 =
p+ 1

2
and aj =

p− 1

2
∀j ∈ {1, 2, . . . , k}

(
thus, d =

pk+1 + 1

2

)
.

Proof. The necessity of the theorem has already been proved in [1] for all k except for

the case k = 0. Here we shall prove the necessity for the case k = 0. In this case, we

have d = a0 ∈ {1, . . . , p − 1}. We now consider two cases, namely, p = 3 and p > 3. If

p = 3, the only possible values for d are 1 and 2 and we are done. If p > 3 (hence, we

can assume d ≥ 4, since the values d = 1, 2, 3 were already covered in Condition (1)), we

shall show that the only possible value of a0 is
p+ 1

2
. It is given that

(X + 1)d + (X − 1)d = 2Dd(X, ε)
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for some ε ∈ F∗p. By using binomial expansion on the left in the above equation, and by

comparing the coefficients on both sides, we have

(
d

2i

)
≡ d

d− i

(
d− i
i

)
(−ε)i (mod p),

for all i ∈
{

0, 1, . . . , bd
2
c
}

.

Surely, for i = 0, the previous claim is obviously true. For i = 1, we have

a0(a0 − 1)

2
≡ −ε · a0 (mod p),

which is true if and only if ε ≡ 1− a0
2

(mod p).

For i = 2, we have

a0(a0 − 1)(a0 − 2)(a0 − 3)

24
≡ a0(a0 − 1)2(a0 − 3)

8
(mod p). (3.3)

Now since a0 ∈ {4, . . . , p− 1}, the congruence (3.3) reduces to 2a0 ≡ 1 (mod p) which is

true if and only if a0 =
p+ 1

2
. Therefore for k = 0 and d ≥ 4,

p+ 1

2
is the only possible

value for a0. Hence, the necessity of the theorem for the case k = 0 is established. Next,

we shall proceed to prove the sufficiency of the theorem. When d = 1, then (X+1)d+(X−

1)d = 2X = 2Dd(X, ε) for any ε ∈ F∗p. When d = 2, then (X+1)d+(X−1)d = 2(X2+1) =

2Dd

(
X,−1

2

)
. When d = 3, then (X + 1)d + (X − 1)d = 2(X3 + 3X) = 2Dd(X,−1). For

d ≥ 4, we shall show that

(X + 1)d + (X − 1)d = 2Dd

(
X,

1

4

)
.

Since we evaluate Dickson’s polynomial over some extension of the involved prime field,

Fp, we assume that the variables take values in the extension Fq of Fp. Now, for α ∈ Fq,

we let U1 =
U

2
∈ Fq2 and U2 =

U−1

2
∈ Fq2 , where U,U−1 are the roots of the polynomial

Z2−2αZ+1 ∈ Fq[Z]. Then, the sum of the roots is 2α = U+U−1 ∈ Fq, and Equation (3.1)
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reduces to

Dd

(
U + U−1

2
,
1

4

)
=

(
U

2

)d
+

(
U−1

2

)d
Dd

(
α,

1

4

)
=

(
U

2

)d
+

(
U−1

2

)d
.

One may note that when d = a0 + a1p + a2p
2 + · · · + akp

k for some k ≥ 0 and a0 = p+1
2

and aj = p−1
2

, for all j ∈ {1, 2, . . . , k}, then

d =
p+ 1

2
+
p− 1

2

k∑
j=1

pj =
p+ 1

2
+
p− 1

2
p
pk − 1

p− 1
=
pk+1 + 1

2
.

Now, we have (with ` = k + 1)

(α + 1)
p`+1

2 + (α− 1)
p`+1

2 =

(
U + U−1

2
+ 1

) p`+1
2

+

(
U + U−1

2
− 1

) p`+1
2

=

(
1

2

) p`+1
2
(

(U + U−1 + 2)
p`+1

2 + (U + U−1 − 2)
p`+1

2

)

=

(
1

2U

) p`+1
2
(

(U2 + 2U + 1)
p`+1

2 + (U2 − 2U + 1)
p`+1

2

)

=

(
1

2U

) p`+1
2 (

(U + 1)p
`+1 + (U − 1)p

`+1
)

=

(
1

2U

) p`+1
2 (

2Up`+1 + 2
)

= 2

(
1

2

) p`+1
2
(
U

p`+1
2 + (U−1)

p`+1
2

)

= 2

(U
2

) p`+1
2

+

(
U−1

2

) p`+1
2


= 2D p`+1

2

(
U + U−1

2
,
1

4

)
= 2D p`+1

2

(
α,

1

4

)
.

Hence, the theorem is proved.

Remarks 3.1.5. Theorem 9 above completes Theorem 6.1 of [1]. Proposition 8 of [60]

is a particular case of the above theorem with p = 3. Also, the above theorem provides a
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simpler proof of [1, Proposition 4.1] in the particular case of ` = 2.

Our focus is now to study the perfect c-nonlinearity of the power map X
p`+1

2 over Fpn ,

where ` ≥ 0 and n > 1 (note that this has been also investigated in [48]). As alluded to

in Introduction, we shall consider the perfect c-nonlinearity of permutation polynomials

only. In view of this, we shall first examine the permutation behaviour of the power map

X
p`+1

2 . We may impose a restriction of ` < n, so as to ensure that the exponent p`+1
2

does

not exceed pn − 1. The following theorem gives the necessary and sufficient conditions

on ` and n for which the power map X
p`+1

2 is a permutation of Fpn . Surely, we can find

it as a particular case of existing permutation classes, but our proof is short enough to

warrant an inclusion here.

Theorem 10. The power map X
p`+1

2 is a permutation of Fpn if and only if any one of

the following conditions hold :

(1) ` = 0;

(2) ` is even and n is odd ;

(3) ` is even and n is even together with t2 ≥ t1, where n = 2t1u and ` = 2t2v such that

2 - u, v;

(4) ` is odd, n is odd and p ≡ 1 (mod 4).

Proof. The case ` = 0 is trivial. In the case of ` 6= 0, if the exponent
p` + 1

2
is even,

gcd

(
p` + 1

2
, pn − 1

)
≥ 2 and thus, the power map X

p`+1
2 is not a permutation of Fpn .

We shall, therefore, consider the case when
p` + 1

2
is odd. It is easy to see that

p` + 1

2

is odd if and only if ` is even or ` is odd and p ≡ 1 (mod 4). If we assume that
p` + 1

2

is odd, then a direct application of Lemma 3.1.3 shows that X
p`+1

2 is a permutation of

Fpn if and only if gcd

(
p` + 1

2
, pn − 1

)
= 1, that is, gcd

(
p` + 1, pn − 1

)
= 2, which

is equivalent to
n

gcd(`, n)
is odd. Further, under the assumption that

p` + 1

2
is odd, we

observe that
n

gcd(`, n)
is odd if and only if one of later three conditions of the statement

of the theorem holds and hence, the theorem is proved.
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Although the map X
p`+1

2 is a permutation of Fpn when both `, n are odd and p ≡ 1

(mod 4), the following theorem tells that it ceases to be perfect (−1)-nonlinear over Fpn

(compare with [48, Theorem 8]).

Theorem 11. If both `, n are odd and p ≡ 1 (mod 4), then the power map X
p`+1

2 is not

perfect (−1)-nonlinear over Fpn.

Proof. Since ` is odd and p ≡ 1 (mod 4),
p` + 1

2
is odd. Now, by a direct application

of Lemma 3.1.1, Theorem 9 and Lemma 3.1.2 at the appropriate places, we obtain the

following equivalence

X
p`+1

2 is PcN over Fpn

⇐⇒ (X + 1)
p`+1

2 + (X − 1)
p`+1

2 is a permutation of Fpn

⇐⇒ D p`+1
2

(
X,

1

4

)
is a permutation of Fpn ,∀ 1 ≤ ` < n

⇐⇒ gcd

(
p` + 1

2
, p2n − 1

)
= 1

⇐⇒ gcd
(
p` + 1, p2n − 1

)
= 2

⇐⇒ 2n

gcd (`, 2n)
is odd.

But since ` and n are odd,
2n

gcd (`, 2n)
is never odd and we are done.

In view of Theorem 11, it remains to check perfect (−1)-nonlinearity of the map

X
p`+1

2 only under the first three conditions of Theorem 10 which essentially make it a

permutation of Fpn . Notice that the first three conditions of Theorem 10 have a common

property that ` is even. Thus, it makes sense to assume that ` is even and prove the

following theorem that gives necessary and sufficient conditions on ` and n for which

the power map X
p`+1

2 is perfect (−1)-nonlinear over Fpn (compare with [48, Theorem 8],

which also investigates the map).

Theorem 12. The power map X
p`+1

2 is perfect (−1)-nonlinear over Fpn if and only if

any one of the following conditions holds :

(1) ` = 0;

(2) ` even and n odd ;
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(3) ` even and n even together with t2 ≥ t1 + 1, where n = 2t1u and ` = 2t2v such that

2 - u, v.

Proof. From Theorem 10 and Theorem 11, it is clear that we need to check the perfect

(−1)-nonlinearity of the map X
p`+1

2 only when ` is even. The case ` = 0 is trivial.

Suppose ` 6= 0. Since ` is even,
p` + 1

2
is odd. Now by the similar arguments as in the

proof of Theorem 11 based on Lemma 3.1.1, Theorem 9 and Lemma 3.1.2 , we arrive at

the following

X
p`+1

2 is PcN over Fpn if and only if
2n

gcd (`, 2n)
is odd.

It is easy to see that
2n

gcd (`, 2n)
is odd if and only if one of the latter two conditions of

the statement of the theorem is true and thus, we are done.

Remarks 3.1.6. Observe that Theorem 12 gives a simpler proof of [61, Theorem 5],

which, in turn, provides a simpler proof of a conjecture of Bartoli and Timpanella [1,

Conjecture 4.7], already settled in [61].

3.2 Power Maps with Low (−1)-Differential Unifor-

mity

Due to their wide range of applications in symmetric key cryptography, functions with

low differential uniformity are very important objects. In this section, we give some

classes of power maps (monomials) with low cDU for c = −1. We first recall a useful

lemma [40] related to the Dickson polynomial of the first kind, which is more general than

Lemma 3.1.2 (see [44]).

Lemma 3.2.1. [40, Proposition 41] Let a ∈ F∗pn, and let Dd(X, a) be the Dickson poly-

nomial of the first kind. Then Dd(X, a) is an m-to-1 function over Fpn if and only if

gcd
(
d, p2n − 1

)
= m.

Now, we shall prove the following theorem that gives (−1)-differential uniformity of

the map X
p`+1

2 over Fpn under certain restrictions. Riera et al. [48] found the (−1)-

uniformity of this map in its generality, but with much more effort, so we thought that
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the following simpler approach in the next theorem is worth including here, albeit the

result being weaker.

Theorem 13. Let X
p`+1

2 be a power map from Fpn to itself and gcd(`, 2n) = 1, p an

odd prime. If p ≡ 1 (mod 4), or p ≡ 3 (mod 8), then the (−1)-differential uniformity of

X
p`+1

2 over Fpn is
p+ 1

2
.

Proof. Since gcd(`, 2n) = 1, ` is odd. Thus, p ≡ 1 (mod 4) implies that p` + 1 ≡ 2

(mod 4), i.e,
p` + 1

2
is odd (we will only show the first claim as the second is rather

similar: we, however, use that if p ≡ 3 (mod 8) implies that p` + 1 ≡ 4 (mod 8), that is,
p` + 1

4
is odd). Now we will show that for all a, b ∈ Fpn , the following equation

(X + a)
p`+1

2 +X
p`+1

2 = b (3.4)

has at most
p+ 1

2
solutions in Fpn . We first consider the case when a = 0. In this case,

Equation (3.4) can have at most gcd
(
p`+1
2
, pn − 1

)
roots. By Lemma 3.1.3, if n is odd,

then gcd
(
p` + 1, pn − 1

)
= 2 and if n is even, then gcd

(
p` + 1, pn − 1

)
= p+1. Therefore,

gcd

(
p` + 1

2
, pn − 1

)
= 1 for n odd and gcd

(
p` + 1

2
, pn − 1

)
=
p+ 1

2
for n even. Thus,

for a = 0, Equation (3.4) can have at most
p+ 1

2
solutions. We can be more precise: for

a = 0, then Equation (3.4) has one solution for n odd and exactly p+1
2

solutions for n

even for some b, and we argue that below. Let α be a primitive root in Fpn and b
2

= αk,

for some k. With X = αY , Equation (3.4) becomes α
p`+1

2
Y = αk. We are reduced to the

equation
p` + 1

2
Y ≡ k (mod pn − 1). (3.5)

If gcd

(
p` + 1

2
, pn − 1

)
= m ∈

{
1,
p+ 1

2

}
, then Equation (3.5) has solutions if and only

if m | k, and under that assumption, using elementary number theory, there are exactly m

solutions Y for Equation (3.5), and they are Y0, Y0+ pn−1
m
, Y0+2p

n−1
m
, . . . , Y0+(m−1)p

n−1
m

,

where Y0 ≡ k
m

(
p`+1
2m

)−1
(mod pn−1

m
), thus inferring our claim (those b for which we have

the claim are of the form b = 2αk, with k ≡ 0 (mod m)).

In the case of a 6= 0, we can take a = 1 in (3.4). After relabelling, it is equivalent to
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find the maximum number of solutions of the equation

(X + 1)
p`+1

2 + (X − 1)
p`+1

2 = b′ (3.6)

in Fpn , where b′ ∈ Fpn . By Theorem 9, the above equation can be re-written as

D p`+1
2

(
X,

1

4

)
= b′. (3.7)

Now, by Lemma 3.1.3, we have gcd
(
p` + 1, p2n − 1

)
= p + 1 and therefore we have

gcd

(
p` + 1

2
, p2n − 1

)
=

p+ 1

2
. Therefore, by Lemma 3.2.1, Equation (3.7) can have

at most
p+ 1

2
roots, however, with the bound being attained, otherwise D p`+1

2

(
X, 1

4

)
would not be m-to-1. This completes the proof.

The following are immediate corollaries to Theorem 13.

Corollary 3.2.2. Let f̃(X) = X
5`+1

2 be a power function on F5n, g̃(X) = X
13`+1

2 on F13n,

and gcd (`, 2n) = 1. Then for c = −1, the c-differential uniformity of the function f̃ is 3

and the one of g̃ is 7.

Corollary 3.2.3. Let f̃(X) = X
3`+1

2 be a power function on F3n, g̃(X) = X
11`+1

2 on F11n,

and gcd (`, 2n) = 1. Then for c = −1, f̃ is an APcN function (see also [28, Thm. 10]),

and the (−1)-differential uniformity of g̃ is 6.

3.3 PcN Power Functions over Fp5 with c = −1

In this section, first we shall prove four propositions, which will be useful in the sequel.

Proposition 3.3.1. Let c ∈ F∗p then the cDU of the power functions Xd and Xdpj , j ∈

{0, 1, . . . , n− 1} over Fpn is the same.

Proof. For a, b ∈ Fpn , we have

(X + a)d − cXd = b ⇐⇒ Xpj ◦
(
(X + a)d − cXd

)
= Xpj(b)

⇐⇒ (X + a)dp
j − cXdpj = e, where Xpj(b) = e ∈ Fpn .

Since Xpj is a permutation, if b runs over Fpn then so does e. This completes the proof.
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Proposition 3.3.2. Let c = ±1 and gcd (d, pn − 1) = 1, then the cDU of the power

functions Xd and Xd−1
over Fpn is the same, where d−1 is the inverse of d modulo pn−1.

Proof. For any a, b ∈ Fpn , we have

(X + a)d − cXd = b ⇐⇒ (X + a)d = (cXd + b)

⇐⇒ X + a = (cXd + b)d
−1

⇐⇒ a = (cXd + b)d
−1 −X

⇐⇒ a = (Y + b)d
−1 − Y d−1

cd−1 , where Y = cXd

⇐⇒ a = (Y + b)d
−1 − cY d−1

Therefore, for c = ±1, the cDU of Xd and Xd−1
over Fpn is the same.

Proposition 3.3.3. Let p be an odd prime and d′ = p4 + (p− 2)p2 + (p− 1)p+ 1. Then

for c = −1, the map Xd′ is PcN over Fp5.

Proof. From Theorem 12, we know that for c = −1, X
p2+1

2 is PcN over Fp5 . Now since

gcd

(
p2 + 1

2
, p5 − 1

)
= 1, its multiplicative inverse modulo p5 − 1 exists and is equal to

p4 + (p− 2)p2 + (p− 1)p + 1. Therefore, by Proposition 3.3.2, Xd′ is a PcN over Fp5 for

c = −1.

In view of Proposition 3.3.1, Proposition 3.3.2 and Theorem 12, the following proposi-

tion immediately follows from the fact, stated in [61], that over F∗pn with n odd, p

(
pn + 1

p+ 1

)
is the inverse of

pn−1 + 1

2
.

Proposition 3.3.4. Let p be an odd prime and d =
p5 + 1

p+ 1
. Then for c = −1, Xd is PcN

over Fp5.

As an empirical support for these results, and in search of more PcN power functions

for c = −1, we performed an exhaustive search of all possible exponents d for which Xd

is PcN for c = −1 over the finite fields F35 , F55 , and F75 , respectively. The result of this

search was that d is of the form

pj
{

1,
p2 + 1

2
, p4 + (p− 2)p2 + (p− 1)p+ 1,

p4 + 1

2
,
p5 + 1

p+ 1

}
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for all 0 ≤ j ≤ 4, for p = 3, 5, 7, respectively.

Based on this empirical evidence, we propose the following conjecture.

Conjecture 3.3.5. Let p be an odd prime.Then, for c = −1, and for all 0 ≤ j ≤ 4,

pj
{

1,
p2 + 1

2
, p4 + (p− 2)p2 + (p− 1)p+ 1,

p4 + 1

2
,
p5 + 1

p+ 1

}

are the only values of d for which Xd is PcN on Fp5 .

3.4 PcN Power Functions over Fp7 with c = −1

Proposition 3.4.1. Let p be an odd prime and d1 = (p−1)p6+p5+(p−2)p3+(p−1)p2+p.

Then for c = −1, the map Xd1 is a PcN map over Fp7.

Proof. From Theorem 12, we know that for c = −1, X
p2+1

2 is PcN map over Fp7 . Now

since gcd

(
p2 + 1

2
, p7 − 1

)
= 1, its multiplicative inverse modulo p7 − 1 exists and is

equal to (p− 1)p6 + p5 + (p− 2)p3 + (p− 1)p2 + p. Thus, by Proposition 3.3.2, the map

Xd1 is PcN function over Fp7 for c = −1.

Proposition 3.4.2. Let p be an odd prime and d2 = (p− 2)p6 + (p− 2)p5 + (p− 1)p4 +

p3 + p2 + p. Then for c = −1, the map Xd2 is a PcN function over Fp7.

Proof. From Theorem 12, we know that for c = −1, the power function X
p4+1

2 is PcN

over Fp7 . Now since gcd

(
p4 + 1

2
, p7 − 1

)
= 1, its multiplicative inverse modulo p7 − 1

exists and is equal to (p − 2)p6 + (p − 2)p5 + (p − 1)p4 + p3 + p2 + p. Therefore. by

Proposition 3.3.2, the map Xd2 is PcN function over Fp7 for c = −1.

In view of Proposition 3.3.1, Proposition 3.3.2 and Theorem 12, the following propo-

sition is a direct consequence of the fact that over F∗pn with n odd, p

(
pn + 1

p+ 1

)
is the

inverse of
pn−1 + 1

2
.

Proposition 3.4.3. Let p be an odd prime and d3 = p7+1
p+1

. Then for c = −1, the power

function Xd3 is PcN over Fp7.

As an empirical support for these results, and in search of more PcN power functions

for c = −1, we performed an exhaustive search of all possible exponents d for which Xd
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is PcN for c = −1 over the finite fields F37 , F57 , and F77 , respectively. The result of this

search was that d is of the form

pj
{

1,
p2 + 1

2
, ((p− 1)p6 + p5 + (p− 2)p3 + (p− 1)p2 + p),

p4 + 1

2
,

p6 + 1

2
, (p− 2)p6 + (p− 2)p5 + (p− 1)p4 + p3 + p2 + p,

p7 + 1

p+ 1

}
for all 0 ≤ j ≤ 6, for p = 3, 5, 7, respectively.

Conjecture 3.4.4. Let p be an odd prime. Then for c = −1 and for all 0 ≤ j ≤ 6,

pj
{

1,
p2 + 1

2
, ((p− 1)p6 + p5 + (p− 2)p3 + (p− 1)p2 + p),

p4 + 1

2
,

p6 + 1

2
, (p− 2)p6 + (p− 2)p5 + (p− 1)p4 + p3 + p2 + p,

p7 + 1

p+ 1

}

are the only values of d for which Xd is PcN over Fp7 .

Remarks 3.4.5. The pattern in [1, Conjecture 5.3], Conjecture 4.19 and Conjecture 4.20

appears to suggest that over a finite field Fpn , where n is odd, the positive integers in the

following set {
pj
{

1,
p2 + 1

2
,
p4 + 1

2
, . . . ,

pn−1 + 1

2

}}
j=0,1,2,...,r−1

and their multiplicative inverse modulo (pn − 1) are the only possible exponents d for

which the power function Xd is PcN for c = −1. However, this is not true in general and

the smallest example is d = 29 over the finite field F39 . Therefore, the question about the

exponents d, for which the power functions Xd are PcN over finite field Fpn , where n is

odd, is not clear, even conjecturally.

3.5 Perturbations of PcN and Other Functions

After linear functions and power functions, linearized polynomials are another special

class containing permutation polynomials. The following proposition gives a necessary

and sufficient condition for a linearized polynomial to be PcN, similar to [20, Proposition

2.4].

Proposition 3.5.1. Let c 6= 1. A linearized polynomial L is PcN over Fpn if and only if

L is a permutation polynomial if and only if its only root in Fpn is zero.
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Proof. Recall that a linearized polynomial L(X) over finite field Fpn is a polynomial of

the form
∑n−1

i=0 aiX
pi . Now consider the difference function

cDL(X, a) = L(X + a)− cL(X)

=
n−1∑
i=0

ai(X + a)p
i − c ·

n−1∑
i=0

aiX
pi

= (1− c) ·
n−1∑
i=0

aiX
pi +

n−1∑
i=0

aia
pi .

Now, if the only root of L(X) in Fpn is zero, then L(X) is a permutation polynomial.

Now since c 6= 1, the difference function cDL being an affine linearized polynomial is also

a permutation polynomial and hence L(X) is PcN.

Corollary 3.5.2. Let c 6= 1. The binomial f(X) = Xpj − aXpi, 0 ≤ i < j, is a PcN

function over Fpn if and only if a is not a (pj−i − 1)-st power in Fpn and c 6= 1.

Proof. If a is not a (pj−i − 1)-th power in Fpn then the only root of f(X) in Fpn is

0 and hence f(X) is a linearized permutation polynomial and the result follows from

Proposition 3.5.1.

It is not a simple matter to characterize when a perturbation of a function with some

specific property is preserved. We can, however, characterize when the sum of a PcN and

an arbitrary p-ary function is also PcN (for 1 6= c ∈ Fp), thus extending in some direction

the previous corollary.

Theorem 14. Let 1 6= c ∈ Fp be fixed, p odd. Let f be a PcN function, and F be an

arbitrary p-ary function, both on Fpn. Then, f +γF is PcN if and only if for any λ ∈ Fpn

with Tr(γλ) = β ∈ F∗p, the following is true

WRa(−λ, β) =
∑
Y ∈Fpn

ζTr(βRa(Y )+λY ) = 0,

where ζ is a p-root of unity, Ra = Ha ◦G−1, cDF (X, a) = Tr(Ha(X)) (Ha is non-unique)

and G−1 is the compositional inverse of G = cDf (X, a).
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Proof. Certainly, f + γF is PcN if and only if

f(X + a) + γF (X + a)− cf(X)− cγF (X)

= f(X + a)− cf(X) + γ(F (X + a)− cF (X))

= cDf (X, a) + γ · cDF (X, a)

is a permutation polynomial.

We now write cDF (X, a) = Tr(Ha(X)), for some (non-unique) function Ha on Fpn

(since c ∈ Fp, if F is p-ary, then cDF (X, a) is p-ary, and such Ha does exists). We then

use [18, Theorem 2], which states that if G is a permutation and H is arbitrary, then

G(X) + γTr(H(X)) is a permutation polynomial if and only if for any λ ∈ Fpn with

Tr(γλ) = β ∈ F∗p then
∑
Y ∈Fpn

ζTr(βR(Y )+λY ) = 0, where R = H ◦ G−1. Our theorem is

shown.

What can we say about a Boolean perturbation of a non-permutation? Let f = L+γF .

From [18, Proposition 3], we know that if f is a PP then the linearized polynomial L on

Fpn must be a permutation or a p-to-1 map (surely, in general a linearized polynomial can

have a kernel with dimension higher than 1, but the quoted result shows that if L is a ps-

to-1 (s > 1) function, then f cannot be a PP). We denote by Im(L) = {L(X) |X ∈ Fpn},

the image of the map L. If L is a permutation polynomial, then Theorem 14 applies, so

we consider the case of a p-to-1 linearized polynomial.

Theorem 15. Let 1 6= c ∈ Fp, L be a p-to-1 linearized polynomial on Fpn and F an

arbitrary p-ary function, and let f = L + γF be a permutation polynomial. Then f =

L+ γF is PcN if and only if both of the following conditions are satisfied for all a ∈ F∗pn:

(i) γ 6∈ Im(L);

(ii) cDF (X + ε, a)− cDF (X, a) 6= 0, for all X ∈ Fpn, ε ∈ Ker(L)∗.

Proof. Let a ∈ F∗pn and 1 6= c ∈ Fp. Notice that

cDL(X, a) = L(X + a)− cL(X)

= (1− c)L(X) + L(a)

= L((1− c)X + a).
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Therefore, Im(cDL) ⊆ Im(L). Further, as we know, f is PcN if and only if

cDf (X, a) = cDL(X, a) + γ cDF (X, a) = L((1− c)X + a) + γ(F (X + a)− cF (X))

is a permutation polynomial.

We now slightly modify the proof of [18, Theorem 4], since, as it is, it cannot be

applied directly for our case. Further, observe that

cDf (X, a) =

L((1− c)X + a) if F (X + a)− cF (X) = 0;

L((1− c)X + a) + γd if F (X + a)− cF (X) = d ∈ F∗p.

If γ ∈ Im(L), then γ = L(α), α ∈ Fpn , and for d ∈ F∗p, γd = dL(α) = L(dα). Therefore,

the image set of cDf (X, a) is contained in the image set of L. Consequently, cDf (X, a)

cannot be a permutation as L is a p-to-1 function. Thus, we can assume that γ 6∈ Im(L).

For any ε ∈ Ker(L)∗, we have

cDf (X + ε, a)− cDf (X, a)

= L((1− c)(X + ε) + a)− L((1− c)X + a) + γ(cDF (X + ε, a)− cDF (X, a))

= L((1− c)ε) + γ(cDF (X + ε, a)− cDF (X, a))

= γ(cDF (X + ε, a)− cDF (X, a))

Thus, if cDf is a permutation, then cDF (X + ε, a)− cDF (X, a) has to be non-zero for all

X ∈ Fpn and ε ∈ Ker(L)∗.

Conversely, we assume that (i) and (ii) hold. Let Y, Z ∈ Fpn such that cDf (Y, a) =

cDf (Z, a). Thus

cDf (Y, a)− cDf (Z, a) = 0

L((1− c)(Y − Z)) + γ(cDF (Y, a)− cDF (Z, a)) = 0.

Let Y − Z = ε, then the above equation reduces to

(1− c)L(ε) + γ (cDF (Z + ε, a)− cDF (Z, a)) = 0.
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If ε ∈ Ker(L), then by condition (ii), ε = 0, forcing Y = Z. If ε /∈ Ker(L), then

cDF (Y, a)− cDF (Z, a) = d̃ ∈ F∗p, so 0 = (1− c)L(Y −Z) + γd̃, contradicting the fact that

γ 6∈ Im(L).

We shall use below some results of [17, Theorem 3] and [18, Corollary 1].

Theorem 16. Let p be a prime number, β, γ ∈ Fpn and H ∈ Fpn [X]. Then the polynomial

f(X) = X + γTr(H(Xp − γp−1X) + βX)

is a permutation polynomial if and only if Tr(βγ) 6= −1.

(Surely, if p = 2, the trace condition is Tr(βγ) = 0.) We are now ready to show the

next result, where we construct a class of (linearized) polynomials that are PcN for every

c 6= 1, in all characteristics.

Proposition 3.5.3. Let p be a prime number, α, γ ∈ Fpn. Then f(X) = X + γTr(Xp −

αX) is PcN for all c 6= 1 if and only if Tr(γ(1− α)) 6= −1.

Proof. The c-differential of f at a is now

cDf (X, a) = f(X + a)− cf(X)

= X + a+ γTr (Xp + ap − αX − αa)− cX − γcTr(Xp − αX)

= (1− c)X + (1− c)γTr(Xp − αX) + a+ γTr(ap − αa).

Thus, f is PcN if and only if (1 − c)X + (1 − c)γTr(Xp − αX) + a + γTr(ap − αa)

is PP for all a, which is equivalent to (1 − c)X + (1 − c)γTr(Xp − αX) being a PP,

and further, X + γTr(Xp − αX) being a PP. Now, we re-write the previous function as

X + Tr (Xp − γp−1X + (γp−1 − α)X). Using Theorem 16 with β = γp−1 − α, we see that

the last claim will hold if and only if Tr (γ (γp−1 − α)) = Tr (γp)−Tr (γα) = Tr(γ(1−α)) 6=

−1.

We saw that some modifications of PcN functions preserve their perfect c-nonlinearity.

It surely makes sense to ask whether the cDU is preserved through affine, extended affine

or CCZ-equivalence [13]. Given a function f , we call the set {βf,c | c ∈ Fpn}, the differential
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spectrum of f . We ask here the question of whether that the c-differential uniformity spec-

tra is preserved under the A-equivalence, EA-equivalence, or CCZ-equivalence. Our guess

was that it is not preserved by EA, nor CCZ-equivalence, and an easy computation via

SageMath confirmed it: while X3 has c-differential spectrum [1, 2, 3], the EA-equivalent

function X3 +X4 has c-differential spectrum [1, 2, 3, 4], both on F24 .

It is not difficult to show that the differential spectrum is invariant under the (restricted

to input) affine-equivalence (A-equivalence) (recall that f, f ′ on Fpn are restricted to

input A-equivalent if f ′(X) = f ◦ L(X), where L is an affine permutation on Fpn), and

we provide the argument next. The equation f ′(X + a) − cf ′(X) = b is equivalent to

(f ◦ L)(X + a) − c(f ◦ L)(X) = b, that is f(L(X) + L(a)) − cf(L(X)) = b. Setting

L(X) = Y,L(a) = α, the previous equation becomes f(Y + α) − cf(Y ) = b. Surely,

any solution of f ′(X + a) − cf ′(X) = b is in one-to-one correspondence to a solution of

f(Y + α)− cf(Y ) = b, since L is invertible.

Since the CCZ-equivalence is more general than EA-equivalence, we shall concentrate

on it. Recall that two (n,m)-functions f, f ′ from Fpn to Fpm are CCZ-equivalent if and

only if their graphs Gf = {(X, f(X)) |X ∈ Fpn}, Gf ′ = {(X, f ′(X)) |X ∈ Fpn} are

affine equivalent, that is, there exists an affine permutation A on Fpn × Fpm such that

A(Gf ) = Gf ′ .

As in [13], we use the identification of the elements in Fpn with the elements in Fnp ,

and denote by X both an element in Fpn and the corresponding element in Fnp . We first

decompose the affine permutation A as an affine block-matrix, Au =

A11 A12

A21 A22

u +(
c

d

)
, for an input vector u, where A11,A21, A12,A22 are n×n matrices with entries in Fp,

and

(
c

d

)
is a column vector in Fp2n (just a reminder to the reader that EA-equivalence

means that A12 = 0 and (full-fledged) A-equivalence means that A12 = A21 = 0). Fix

c ∈ Fpn , and let the c-differential system be written as Y −X = a, f(Y )− cf(X) = b.

Applying the affine permutation A to
(
a
b

)
we get

A11 A12

A21 A22

(a
b

)
=

A11 A12

A21 A22

( Y −X
f(Y )− cf(X)

)
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=

A11 A12

A21 A22

( Y

f(Y )

)
−

A11 A12

A21 A22

( X

cf(X)

)

=

(
Y ′

f ′(Y ′)

)
−

A11 c · A12

A21 c · A22

( X

f(X)

)
.

We see that it is not obvious how the second term can be transformed into a pair
(

X′

c∗f ′(X′)

)
of the graph Gf ′ , unless f and f ′ are also CCZ-equivalent also via an affine transformation

whose linear part is a constant multiple of

A11 c · A12

A21 c · A22

.

We summarize this discussion in the next theorem.

Theorem 17. Let f, f ′ be CCZ-equivalent via an affine transformation A =

A11 A12

A21 A22


and also via

 1
c∗
· A11

c
c∗
· A12

1
c∗
· A21

c
c∗
· A22

. Then the c-differential uniformity of f is the same as

the c∗-differential uniformity of f ′.

With the above discussion, we see that the cDU may change under EA or CCZ-

equivalence. Keeping that in mind, we now switch directions a bit and ask whether we

can perturb some APcN functions, via a linear/linearized map, thereby obtaining a PcN

function. This is in line with the long standing open question on whether some of the

known PN or APN functions can be transformed into PN or APN permutation functions

by perturbing them via some linear mapping. We will only treat here the Gold case,

f(X) = Xpk+1. From [28] we know that f is PcN only for c = 1 (under n
gcd(n,k)

odd),

when p > 2, and it is never PcN for c 6= 1. The case of p = 2 was treated in [48].

Theorem 18. Let k ≥ 1, n ≥ 2 be integers, p prime, c 6= 1 in Fpn. The following are

true:

(i) If G1(X) = Xpk+1 + γTr(X) is PcN for γ ∈ F∗pn, then

γ 6∈

{
− ap

k+1

Tr
(

a
1−c

)
(1− c)2

,

∣∣∣∣ a ∈ F∗pn ,Tr

(
a

1− c

)
6= 0

}
.

(ii) The function G2(X) = Xpk+1+γXpk is never PcN, regardless of the value of γ ∈ F∗pn.
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Proof. (i) We first perturb f in the following way G1(X) = f(X) + γTr(X), γ 6= 0, and

attempt to find some condition on γ such that G1 can potentially be PcN. We look at the

c-differential equation of G1, namely

(1− c)Xpk+1 + aXpk + ap
k

X + ap
k+1 + γ(1− c)Tr(X) + γTr(a) = b,

that is,

Xpk+1 +
a

1− c
Xpk +

ap
k

1− c
X + γTr(X) =

b− γTr(a)− apk+1

1− c
.

By relabeling (since the free term is linear in b), it will be sufficient to investigate the

equation

Xpk+1 +
a

1− c
Xpk +

ap
k

1− c
X + γTr(X) = b.

We argue now that in many instances the equation has more than one solution. We let

b = 0. Surely, X = 0 is one such solution. We write (for a 6= 0)

Xpk
(
X +

a

1− c

)
+

ap
k

1− c

(
X +

γ(1− c)
apk

Tr(X)

)
= 0.

Now, X = − a
1−c 6= 0 is another solution if γ(1−c)

apk
Tr
(
− a

1−c

)
= a

1−c , or, equivalently,

Tr
(

a
1−c

)
= − ap

k+1

γ(1−c)2 . We obviously need ap
k+1

γ(1−c)2 ∈ F∗p, for some a, which is equivalent to

the first claim.

(ii) Next, we perturb f as G2(X) = f(X) + γ Xpk , γ 6= 0. As before, the c-differential

equation of G2 is then

(1− c)Xpk+1 + aXpk + ap
k

X + ap
k+1 + γ((1− c)Xpk + ap

k

) = b,

or, by relabeling b−apk+1−γapk

1−c 7→ b

Xpk+1 +
a+ γ(1− c)

1− c
Xpk +

ap
k

1− c
X = b.

If b = 0, then X = 0 is a solution. Assuming b = 0, X 6= 0, a 6= 0, factoring out X, and
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using Y = 1
X

, we get

Y pk +
a+ γ(1− c)

apk
Y +

1− c
apk

= 0.

It is easy to show that taking a = γ(c − 1), then Y =
(
c−1
apk

)p−k
(which always exists,

since gcd(pk, pn − 1) = 1) is a solution of the above equation, and hence X =
(
ap
k

c−1

)p−k
is a solution of the original equation in X. Hence cDG2(X, a) is not a permutation, and

therefore, G2 is not PcN, for c 6= 1.

Surely, the question is whether G1(X) = X2k+1 + γTr(X) is ever PcN over F2n . We

quickly took some small examples of F2n , 2 ≤ n ≤ 4, determined by the primitive

polynomials X2 + X + 1, X3 + X + 1, X4 + X + 1 over F2, all with some primitive

root α. We then checked that G1(X) = X2k+1 + γTr(X) is never PcN on F2n , for

2 ≤ k < n ≤ 4. If k = n, we can get PcN functions. For the considered cases, if

(k, n) = (2, 2), G1 is PcN when (c, γ) = (0, 1), (α, 1), (α2, 1); if (k, n) = (3, 3), G1 is PcN

when (c, γ) = (c, α), (c, α2), (c, α4), since the function G1 becomes a linearized polynomial

(via X2n+1 = X2 on F2n). We do not have other examples for small dimensions. The

computation was done via SageMath.



Chapter 4

The c-Differential Uniformity and

Boomerang Uniformity of Some

Permutation Polynomials

In this chapter, we consider the cDU and BU of two classes of PPs over finite fields of

even characteristic, introduced by Beierle and Leander [3], respectively, Tan et al. [55].

First, we shall recall some definitions and results, which will be used throughout this

chapter, in Section 4.1. In Section 4.2, we shall consider cDU of an involution over finite

field F2n , which has been used to construct a class of differentially 4-uniform function

in [3] and shall show that it is APcN for all c ∈ F2n , c 6= 0, 1. Moreover, we shall also

give the cDDT entries of this involution, for all c ∈ Fq, c 6= 0, 1, using the Weil sum

technique used in [54, 52]. In Section 4.3, we shall give a complete description of the BCT

entries of the involution and show that there are only two entries in the BCT. The cDU

of the differentially 4-uniform function studied by Tan et al. [55], has been considered in

Section 4.4. A bound for the BU of this function will be given in Section 4.5.

4.1 Preliminaries

In the study of finite fields, PPs are very important objects as they are used in variety of

theoretical and practical applications. Therefore, construction of infinite classes of PPs

over finite fields is an interesting problem and a lot of research has been done in this

59
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direction in recent years. A PP f(X) is called complete permutation polynomial (CPP)

if both f(X) and f(X) + X are permutations. In view of the definition of CPP, an

interesting problem is to add some simple functions in a given PP and to check for its

permutation behaviour.

Recently, Beierle and Leander [3] considered the perturbation of a linear function by a

trace function and showed that it is an involution. More precisely, authors showed that the

function G(X) = X+Tr(αX+X2k+1), where Tr(α) = 1 and gcd(k, n) = 1 is an involution

of finite field F2n , n ≥ 3 odd. Here, Tr is the absolute trace function. Recall that the power

function f(X) = X2k+1 over F2n , 0 ≤ k < n is the Gold function [31] and if gcd(k, n) =

gcd(2k, n), it is a permutation of F2n . Nyberg [45] showed that when gcd(k, n) = s, the

Gold function is differentially 2s-uniform. Thus, when gcd(k, n) = 1 and n odd, the Gold

function is an APN permutation. Beierle and Leander [3] considered the composition of

the involution G(X) with the monomial X`, where ` = (2k + 1)−1 (mod 2n − 1) with

gcd(k, n) = 1, and showed that it is a differentially 4-uniform permutation with trivial

nonlinearity 0. More precisely, authors proved the following result.

Lemma 4.1.1. [3, Proposition 1] Let n ≥ 3 is odd, α ∈ F2n with Tr(α) = 1 and ` =

(2k+1)−1 (mod 2n−1) with gcd(k, n) = 1. Then the function Gα,`(X) = X`+Tr(αX`+X)

is a differentially 4-uniform permutation with null nonlinearity over F2n.

We explicitly determine the cDDT entries of the involution G(X) for all c ∈ F2n in

Section 4.2. Moreover, we compute BCT entries of the involution G(X) in Section 4.3.

We shall now turn our focus towards another interesting function. A systematic study

of permutation behaviour of the functions of the form f(X) = g(X) + γTr(h(X)) has

been done by Charpin and Kyureghyan [18] where authors gave necessary conditions on

γ ∈ F2n , g, h ∈ F2n [X] for which g(X) + γTr(h(X)) is a permutation polynomial. More

precisely, authors gave the following two classes of permutation polynomials.

Lemma 4.1.2. [18, Corollary 1] For any β, γ ∈ F2n and h(X) ∈ F2n [X], the polynomials

(1) f1(X) = X + γTr(h(X2 + γX) + βX); and

(2) f2(X) = X + γTr(h(X) + h(X + γ) + βX)

are permutation polynomials if and only if Tr(βγ) = 0.
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From the above lemma, it is easy to see that if β = 0, γ = 1 and h(X) = X−1, the

function f ′1(X) = X + Tr
(

1
X2+X

)
is a permutation of F2n . Tan et al. [55] showed that

when n is even, the permutation polynomial H(X) = f ′1(X) ◦X−1 = X−1 + Tr
(

X2

X+1

)
is

differentially 4-uniform. Recall that when n is even, the inverse mapping X−1 is a differ-

entially 4-uniform permutation of F2n (see [45, Proposition 6]). Thus, the permutation

behaviour and DU remain the same even after adding the term Tr
(

X2

X+1

)
in the inverse

mapping X−1. The cDU of the inverse function has been studied by Ellingsen et al. [28].

In Section 4.4, we shall consider the cDU of the function H(X) = X−1 + Tr

(
X2

X + 1

)
over F2n for 1 6= c ∈ F2n , to see the effect of the addition of the trace term Tr

(
X2

X+1

)
on

cDU. We shall also consider the BU of the function H(X) in Section 4.5.

We shall later use the following result [28, Lemma 11].

Lemma 4.1.3. Let n be a positive integer. The equation X2 + aX + b = 0, with a, b ∈

F2n , a 6= 0, has two solutions in F2n if Tr
(
b
a2

)
= 0, and zero solutions otherwise.

With regard to inverses of elements in the finite field, we shall use the convention that

for any non-zero a ∈ F2n , a−1 := 1
a

and 0−1 := 0 in the rest of the paper.

4.2 The c-Differential Uniformity of a Class of Invo-

lutions

In this section, first we shall consider the cDU of the involution G(X) = X + Tr(αX +

X2k+1) over F2n , where n ≥ 3 is odd, α ∈ F2n with Tr(α) = 1 and gcd(k, n) = 1. Let

f(X) = Tr(X2k+1) be the trace of the Gold function. For c ∈ Fq, c 6= 0, 1, the following

theorem gives the cDDT entries of the involution G(X).

Theorem 19. Let n ≥ 3 be odd, α ∈ F2n with Tr(α) = 1 and let G(X) = X + Tr(αX +

X2k+1) with gcd(k, n) = 1. Then for any a, b, c ∈ F2n , c 6= 0, 1, the cDDT entry c∆G(a, b)

of G(X) at (a, b) is given by

c∆G(a, b) =



0 if Tr

(
(a+b)(a2

−k
+a2

k
)

1+c
+ αa+ a2

k+1

)
= 1 and Tr

(
a2
−k

+a2
k

1+c

)
= 1

1 if Tr
(
a2
−k

+a2
k

1+c

)
= 0

2 if Tr

(
(a+b)(a2

−k
+a2

k
)

1+c
+ αa+ a2

k+1

)
= 0 and Tr

(
a2
−k

+a2
k

1+c

)
= 1.
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Proof. Recall that the cDDT entry c∆G(a, b) at the point (a, b) of the function G(X) is

given by the number of solutions of the following equation

b = G(X + a) + cG(X)

= X + a+ Tr
(
α(X + a) + (X + a)2

k+1
)

+ c
(
X + Tr(αX +X2k+1)

)
= (1 + c)

(
X + Tr(αX +X2k+1)

)
+ a+ Tr(αa+ a2

k+1) + Tr(X2ka+Xa2
k

),

which can be further written as

(1 + c)G(X) + Tr(X2ka+Xa2
k

) +G(a) + b = 0. (4.1)

It is straightforward to observe that the number of solutions of the above Equation (4.1)

is given by

c∆G(a, b) =
1

2n

∑
β∈F2n

∑
X∈F2n

(−1)
Tr
(
β
(
(1+c)G(X)+Tr(X2ka+Xa2

k
)+G(a)+b

))

=
1

2n

∑
β∈F2n

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)
Tr
(
β(1+c)G(X)+βTr(X2ka+Xa2

k
)
)

=
1

2n

∑
β∈F2n

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)Tr(β(1+c)G(X))+Tr(β)Tr(X2ka+Xa2
k
)

=
1

2n
(M0 +M1),

where M0 and M1 are the sums corresponding to Tr(β) = 0 and Tr(β) = 1, respectively.

We shall now compute M0 and M1, separately. The first sum M0 is given by

M0 =
∑

Tr(β)=0

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)Tr(β(1+c)G(X))+Tr(β)Tr(X2ka+Xa2
k
)

=
∑

Tr(β)=0

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)Tr(β(1+c)G(X))

= 2n +
∑
β∈F∗q

Tr(β)=0

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)Tr(β(1+c)G(X))

= 2n,

where the last equality holds because β(1 + c) 6= 0 and G(X) is a permutation of F2n ,
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which makes the inner sum zero. Similarly, we can compute the second sum M1 which is

given by

M1 =
∑

Tr(β)=1

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)Tr(β(1+c)G(X))+Tr(β)Tr(X2ka+Xa2
k
)

=
∑

Tr(β)=1

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)Tr(β(1+c)X+β(1+c)Tr(αX+X2k+1))+Tr(X(a2
−k

+a2
k
))

=
∑

Tr(β)=1

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)Tr(β(1+c)X)+Tr(β(1+c))Tr(αX+X2k+1)+Tr(X(a2
−k

+a2
k
))

=
∑

Tr(β)=1

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)Tr(β(1+c))Tr(αX+X2k+1)+Tr(X(a2
−k

+a2
k
+β(1+c))).

Now we shall consider two cases, namely, Tr(β(1 + c)) = 0 and Tr(β(1 + c)) = 1, respec-

tively. Equivalently, Tr(βc) = 1 and Tr(βc) = 0, respectively. We shall denote the sums

corresponding to Tr(βc) = 1 and Tr(βc) = 0 by M1,1 and M1,0, respectively.

Case 1. Let Tr(βc) = 1. In this case,

M1,1 =
∑

Tr(β)=1
Tr(βc)=1

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)Tr(X(a2
−k

+a2
k
+β(1+c)))

=
∑

Tr(β)=1
Tr(βc)=1

(−1)Tr((a+b)β+βTr(αa+a
2k+1))

∑
X∈F2n

(−1)Tr(X(a2
−k

+a2
k
+β(1+c)))

=
∑

Tr(β)=1
Tr(βc)=1

(−1)Tr((a+b)β)+Tr(β)Tr(αa+a2
k+1)

∑
X∈F2n

(−1)Tr(X(a2
−k

+a2
k
+β(1+c)))

=
∑

Tr(β)=1
Tr(βc)=1

(−1)Tr((a+b)β+αa+a
2k+1)

∑
X∈F2n

(−1)Tr(X(a2
−k

+a2
k
+β(1+c))).

Notice that the inner sum will have a contribution if and only if β(1 + c) = a2
−k

+ a2
k
.

Therefore, we have

M1,1 =


0 if Tr

(
a2
−k

+a2
k

1+c

)
= 0

2n · (−1)
Tr

(
(a+b)(a2

−k
+a2

k
)

1+c
+αa+a2

k+1

)
if Tr

(
a2
−k

+a2
k

1+c

)
= 1.
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Case 2. Let Tr(βc) = 0. In this case,

M1,0 =
∑

Tr(β)=1
Tr(βc)=0

(−1)Tr(β(G(a)+b))
∑
X∈F2n

(−1)
Tr
(
X2k+1+X(a2

−k
+a2

k
+β(1+c)+α)

)

=
∑

Tr(β)=1
Tr(βc)=0

(−1)Tr(β(G(a)+b))Wf (u),

where u = a2
−k

+a2
k

+β(1+ c)+α. We now apply an old result of Gold [31] (see also [34,

Theorem 4]) which states that when n is odd and gcd(k, n) = 1, the Walsh coefficient of

the Gold function f is given by

Wf (u) =

0 if Tr(u) = 0

(−1)Tr(γ
2k+1)Wf (1) if Tr(u) = 1,

where γ is the unique element in F2n of trace 0 such that u = γ2
k

+ γ2
−k

+ 1, completed

with one of Dillon and Dobbertin’s results [26] (see also [34, Theorem 5]), which gives the

Walsh-Hadamard coefficient

Wf (1) =

+2
n+1
2 if n ≡ ±1 (mod 8)

−2
n+1
2 if n ≡ ±3 (mod 8).

It is easy to see that Tr(u) = Tr(a2
−k

+ a2
k

+ β(1 + c) +α) = 0. Therefore M1,0 = 0. This

completes the proof.

The case c = 0 is considered in the following remark.

Remarks 4.2.1. Let n ≥ 3 be odd, α ∈ F2n with Tr(α) = 1. Then for c = 0, the function

G(X) = X + Tr(αX +X2k+1), where gcd(k, n) = 1, is PcN.

The following theorem gives the DU (the case c = 1) of the function G(X).

Theorem 20. Let n ≥ 3 be odd, α ∈ F2n with Tr(α) = 1. Then the DDT entries

∆G(a, b) at point (a, b) ∈ F∗2n × F2n of the function G(X) = X + Tr(αX +X2k+1), where
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gcd(k, n) = 1, is given by

∆G(a, b) =


2n if (a, b) = (1, 1)

2n−1 if (a, b) 6= (1, 1) and G(a) = b or b+ 1

0 otherwise.

Proof. Recall that the DDT entry ∆G(a, b) at the point (a, b) ∈ F∗2n ×F2n of the function

G(X) = X+Tr(αX+X2k+1) is given by the number of solutions of the following equation

G(X + a) +G(X) = b

⇐⇒ X + a+ Tr
(
α(X + a) + (X + a)2

k+1
)

+X + Tr(αX +X2k+1) = b

⇐⇒ a+ Tr(αa+ a2
k+1) + Tr(X2ka+Xa2

k

) = b

⇐⇒ Tr(X2ka+Xa2
k

) = G(a) + b

⇐⇒ Tr(X(a2
−k

+ a2
k

)) = G(a) + b

Notice that when a = 1, then G(a) = 1 and in this case the above equation has 2n

solutions if b = 1 and no solution otherwise. For a 6= 1, a2
−k

+ a2
k 6= 0 as gcd(k, n) = 1

and n is odd. In this case the above equation has 2n−1 solutions if either G(a) = b or

G(a) = b+ 1 and has no solution, otherwise.

4.3 The Boomerang Uniformity of a Class of Involu-

tions

In this section, we shall consider the BU of the involution G(X). The following theorem

gives the BCT entries of the involution G(X) over finite field F2n .

Theorem 21. Let n ≥ 3 be odd and α ∈ F2n with Tr(α) = 1. Then the BCT entry

BG(a, b) at point (a, b) ∈ F∗2n × F∗2n of the function G(X) = X + Tr(αX + X2k+1), where

gcd(k, n) = 1, is given by

BG(a, b) =

2n if Tr((ak + a−k)b) = 0

0 if Tr((ak + a−k)b) = 1.
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Proof. Recall that the BCT entry of G(X) at point (a, b) ∈ F∗2n × F∗2n is the number of

solutions in F2n × F2n of the following systemG(X) +G(Y ) = b

G(X + a) +G(Y + a) = b,

that is, X + Y + Tr(α(X + Y )) + Tr(X2k+1 + Y 2k+1) = b

X + Y + Tr(α(X + Y )) + Tr((X + a)2
k+1 + (Y + a)2

k+1) = b.

(4.2)

Now adding both the equations in the above system (4.2), we have

0 = Tr
(

(X + a)2
k+1 +X2k+1 + (Y + a)2

k+1 + Y 2k+1
)

= Tr
(
X2ka+Xa2

k

+ Y 2ka+ Y a2
k
)

= Tr
(

(X + Y )2
k

a+ (X + Y )a2
k
)
.

Therefore, the system (4.2) is equivalent to the following system

X + Y + Tr
(
α(X + Y ) +X2k+1 + Y 2k+1

)
= b

Tr
(

(X + Y )2
k
a+ (X + Y )a2

k
)

= 0,

and so,X + Y + Tr
(
α(X + Y ) + (X + Y )2

k+1
)

+ Tr
(
X2kY +XY 2k

)
= b

Tr
(

(X + Y )2
k
a+ (X + Y )a2

k
)

= 0.

(4.3)

Taking Y = X + Z, the above system (4.3) becomes

Z + Tr
(
αZ + Z2k+1

)
+ Tr

(
X2kZ +XZ2k

)
= b

Tr
(
Z2ka+ Za2

k
)

= 0,



CHAPTER 4. THE cDU AND BU OF SOME PERMUTATION POLYNOMIALS 67

which can be written as G(Z) + Tr
(
X(Z2−k + Z2k)

)
= b

Tr
(
a(Z2−k + Z2k)

)
= 0.

(4.4)

Our aim is to compute the number of solutions of the above system (4.4). We shall now

use the techniques given in [52] to find this number, i.e., to compute the BCT entries of

G(X). Recall that the number of solutions of the above system (4.4), denoted as BG(a, b),

is given by

BG(a, b) =
1

22n

∑
X,Z∈F2n

∑
β∈F2n

(−1)Tr(β(G(Z)+Tr(X(Z2−k+Z2k ))+b))
∑
γ∈F2n

(−1)Tr(γTr(a(Z
2−k+Z2k )))

=
1

22n

∑
X,Z∈F2n

∑
β∈F2n

(−1)Tr(β(G(Z)+b))+Tr(β)Tr(X(Z2−k+Z2k )) (4.5)

·
∑
γ∈F2n

(−1)Tr(γ)Tr(a(Z
2−k+Z2k ))

=
1

22n

∑
β,γ∈F2n

(−1)Tr(βb)
∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k+Z2k ))

·
∑
X∈F2n

(−1)Tr(β)Tr(X(Z2−k+Z2k ))

=
1

22n
(S0 + S1),

where S0 and S1 are the sums corresponding to Tr(β) = 0 and Tr(β) = 1, respectively.

We shall now compute S0 and S1 separately. We first consider the sum S0 given by

S0 =
∑

Tr(β)=0

(−1)Tr(βb)
∑
γ∈F2n

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k+Z2k ))

·
∑
X∈F2n

(−1)Tr(β)Tr(X(Z2−k+Z2k ))

= 2n
∑

Tr(β)=0

(−1)Tr(βb)
∑
γ∈F2n

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k+Z2k ))

= 2n
∑

Tr(β)=0

(−1)Tr(βb)(S0,0 + S0,1), (4.6)

where S0,0 and S0,1 are the sums corresponding to Tr(γ) = 0 and Tr(γ) = 1, respectively.
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We shall now compute S0,0 and S0,1, separately. Consider

S0,0 =
∑

Tr(γ)=0

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k+Z2k ))

=
∑

Tr(γ)=0

∑
Z∈F2n

(−1)Tr(βG(Z))

= 2n−1
∑
Z∈F2n

(−1)Tr(βG(Z)).

Similarly,

S0,1 =
∑

Tr(γ)=1

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k+Z2k ))

=
∑

Tr(γ)=1

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(a(Z2−k+Z2k ))

= 2n−1
∑
Z∈F2n

(−1)Tr(βZ+βTr(αZ+Z
2k+1))+Tr(a(Z2−k+Z2k ))

= 2n−1
∑
Z∈F2n

(−1)Tr(βZ)+Tr(β)Tr(αZ+Z2k+1)+Tr(a(Z2−k+Z2k ))

= 2n−1
∑
Z∈F2n

(−1)Tr(βZ)+Tr(Z(a2
−k

+a2
k
))

= 2n−1
∑
Z∈F2n

(−1)Tr(Z(a
2−k+a2

k
+β)).

Now putting the values of S0,0 and S0,1 into Equation (4.6), we have

S0 = 22n−1
∑

Tr(β)=0

(−1)Tr(βb)

( ∑
Z∈F2n

(−1)Tr(βG(Z)) +
∑
Z∈F2n

(−1)Tr(Z(a
2−k+a2

k
+β))

)

= 22n−1

2n +
∑

Tr(β)=0
β 6=0

(−1)Tr(βb)
∑
Z∈F2n

(−1)Tr(βG(Z))

+
∑

Tr(β)=0

(−1)Tr(βb)
∑
Z∈F2n

(−1)Tr(Z(a
2−k+a2

k
+β))


= 23n−1 + 22n−1

 ∑
Tr(β)=0

(−1)Tr(βb)
∑
Z∈F2n

(−1)Tr(Z(a
2−k+a2

k
+β))


= 23n−1 + 23n−1 · (−1)Tr(b(a

2−k+a2
k
)),
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where the second last equality holds because G(Z) is permutation of F2n . The last equality

holds as the inner sum will contribute if and only if β = a2
−k

+ a2
k
.

Now, we shall calculate S1 which is given by

S1 =
∑

Tr(β)=1

(−1)Tr(βb)
∑
γ∈F2n

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k+Z2k ))

·
∑
X∈F2n

(−1)Tr(β)Tr(X(Z2−k+Z2k ))

=
∑

Tr(β)=1

(−1)Tr(βb)
∑
γ∈F2n

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k+Z2k ))

·
∑
X∈F2n

(−1)Tr(X(Z2−k+Z2k ))

=
∑

Tr(β)=1

(−1)Tr(βb)(S1,0 + S1,1),

(4.7)

where S1,0 and S1,1 are the sum corresponding to Tr(γ) = 0 and Tr(γ) = 1, respectively.

We shall now compute S1,0 and S1,1 separately. Consider

S1,0 =
∑

Tr(γ)=0

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k+Z2k ))
∑
X∈F2n

(−1)Tr(X(Z2−k+Z2k ))

=
∑

Tr(γ)=0

∑
Z∈F2n

(−1)Tr(βG(Z))
∑
X∈F2n

(−1)Tr(X(Z2−k+Z2k ))

= 2n−1
∑
Z∈F2n

(−1)Tr(βG(Z))
∑
X∈F2n

(−1)Tr(X(Z2−k+Z2k ))

= 2n−1

 ∑
Z∈F2n

Z 6=0,1

(−1)Tr(βG(Z))
∑
X∈F2n

(−1)Tr(X(Z2−k+Z2k ))

+ 22n−1 + 22n−1 · (−1)Tr(βG(1))

= 22n−1 + 22n−1 · (−1)Tr(β(1+Tr(α+1))

= 22n−1 + 22n−1 · (−1)Tr(β),

where the second identity holds because Z2−k + Z2k = 0, or equivalently, Z22k + Z = 0 if

and only if Z = 0, 1. For Z ∈ F2n\{0, 1}, Z2−k +Z2k 6= 0 and as a consequence, the inner

sum will be equal to zero. The last equality holds because Tr(α) = 1. Similarly,

S1,1 =
∑

Tr(γ)=1

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k+Z2k ))
∑
X∈F2n

(−1)Tr(X(Z2−k+Z2k ))
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=
∑

Tr(γ)=1

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(a(Z2−k+Z2k ))
∑
X∈F2n

(−1)Tr(X(Z2−k+Z2k ))

=2n−1
∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(a(Z2−k+Z2k ))
∑
X∈F2n

(−1)Tr(X(Z2−k+Z2k ))

=22n−1 + 22n−1 · (−1)Tr(βG(1))

+ 2n−1
∑
Z∈F2n

Z 6=0,1

(−1)Tr(βG(Z))+Tr(a(Z2−k+Z2k ))
∑
X∈F2n

(−1)Tr(X(Z2−k+Z2k ))

=22n−1 + 22n−1 · (−1)Tr(β+βTr(α+1))

=22n−1 + 22n−1 · (−1)Tr(β).

Now putting the values of S1,0 and S1,1 in the Equation (4.7), we have

S1 =
∑

Tr(β)=1

(−1)Tr(βb)(22n + 22n · (−1)Tr(β)) = 0.

Now putting the values of S0 and S1 into Equation (4.5), we have

BG(a, b) = 2n−1 + 2n−1 · (−1)Tr(b(a
2−k+a2

k
)).

This completes the proof.

4.4 The c-Differential Uniformity of a Perturbed In-

verse Function

In this section, we shall consider the cDU of the function H(X) = X−1 + Tr

(
X2

X + 1

)
over F2n , for all positive integers n and 1 6= c ∈ Fq. We shall first recall the following

lemma (we have slightly modified the statement as per our requirements), which gives the

cDU of the inverse mapping.

Lemma 4.4.1. [28, Theorem 12] Let n be a positive integer and c ∈ F2n\{0, 1}. For any

a, b ∈ F2n, the number of solutions of the equation (X + a)−1 + cX−1 = b are given as
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follows. 

{ ac
1+c
} if b = 0;

{0} if ab = 1 and Tr(1/c) = 1

{0, two more solutions} if ab = 1 and Tr(1/c) = 0

{a} if ab = c and Tr(c) = 1

{a, two more solutions} if ab = c and Tr(c) = 0

{
(
ac
b

)2n−1

} if ab = 1 + c

{two solutions} if ab 6= 1, c, 1 + c and Tr
(

abc
(ab)2+c2+1

)
= 0

no solution otherwise.

The following theorem gives bound for the cDU of the function H(X) over F2n , for all

positive integers n and 1 6= c ∈ Fq.

Theorem 22. Let 1 6= c ∈ F2n and H : F2n → F2n is defined by H(X) = X−1 +

Tr

(
X2

X + 1

)
. We have:

(i) If c = 0, then H(X) is PcN;

(ii) If Tr(c) = 1 = Tr(1/c), then c∆H ≤ 8;

(iii) Otherwise, c∆H ≤ 9.

Proof. For any fixed 1 6= c ∈ F2n , the cDU of the function H(X) = X−1 + Tr

(
X2

X + 1

)
equals the maximum number of solutions of the following equation

(X + a)−1 + Tr

(
X2 + a2

X + a+ 1

)
+ cX−1 + cTr

(
X2

X + 1

)
= b, (4.8)

where a, b ∈ F2n . Notice that when c = 0, the above Equation (4.8) reduces to

(X + a)−1 + Tr

(
X2 + a2

X + a+ 1

)
= b,

which has exactly one solution for each pair (a, b) ∈ F2n × F2n as the left hand side is a
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PP. Let c 6= 0, 1. For any fixed c 6= 0, 1, if a = 0, Equation (4.8) reduces to

X−1 + Tr

(
X2

X + 1

)
= b(1 + c)−1,

which has exactly one solution for each b ∈ F2n as the left hand side is a PP. Now for any

(a, b) ∈ F∗2n × F2n , to find the solutions of Equation (4.8) we shall split the analysis into

four cases.

Case 1. Let Tr

(
X2 + a2

X + a+ 1

)
= 0 = Tr

(
X2

X + 1

)
. In this case, Equation (4.8) reduces

to

(X + a)−1 + cX−1 = b. (4.9)

Notice that if 0 is a solution of Equation (4.8) then either ab = 1 and Tr
(

a2

a+1

)
= 0 or

a(b + 1) = 1 and Tr
(

a2

a+1

)
= 1. Similarly, if a is a solution of Equation (4.8) then either

ab = c and Tr
(

a2

a+1

)
= 0 or a(b + c) = c and Tr

(
a2

a+1

)
= 1. From Lemma 4.4.1, we

know that if ab = 1 and Tr(1/c) = 0, then the Equation (4.9) has three solutions and one

among them is zero. Similarly, if ab = c and Tr(c) = 0, then the Equation (4.9) has three

solutions and one among them is a. In rest of the cases Equation (4.9) can have atmost

two solutions. From here we conclude that for any fixed c ∈ F2n\{0, 1}, Equation (4.8)

can have at most three solutions if either Tr(1/c) = 0, Tr
(

a2

a+1

)
= 0 and ab = 1, or

Tr(c) = 0, Tr
(

a2

a+1

)
= 0 and ab = c. Otherwise, there can be at most two solutions of

Equation (4.8) from this case.

Case 2. Let Tr

(
X2 + a2

X + a+ 1

)
= 1 = Tr

(
X2

X + 1

)
. In this case, Equation (4.8) reduces

to

(X + a)−1 + cX−1 = b+ c+ 1. (4.10)

Again, by Lemma 4.4.1, if a(b+ c+ 1) = 1 and Tr(1/c) = 0, then the Equation (4.10) has

three solutions and one among them is zero. It is easy to see that whenX = 0, Tr
(

X2

X+1

)
=

0. Therefore 0 can not be a solution of Equation (4.8). Similarly, if a(b+ c+ 1) = c and

Tr(c) = 0, then Equation (4.10) has three solutions and one among them is a. Notice

that, when X = a, Tr
(
X2+a2

X+a+1

)
= 0. Therefore a can not be a solution of Equation (4.8).

Thus, we can get at most two solutions of Equation (4.8) from this case.

Case 3. Let Tr

(
X2 + a2

X + a+ 1

)
= 0 and Tr

(
X2

X + 1

)
= 1. Then Equation (4.8) reduces
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to

(X + a)−1 + cX−1 = b+ c. (4.11)

From Lemma 4.4.1, we know that if a(b+ c) = 1 and Tr(1/c) = 0, then the Equation (4.11)

has three solutions and one among them is 0. As we are in the case Tr
(

X2

X+1

)
= 1, the

solution X = 0 of Equation (4.11) will not be a solution of Equation (4.8). Similarly,

if a(b+ c) = c and Tr(c) = 0, then the Equation (4.11) has three solutions and one

among them is a. It is easy to see that the solution X = a of (4.11) will be a solution

of Equation (4.8) if and only if Tr
(

a2

a+1

)
= 1. Thus, for any fixed c ∈ F2n\{0, 1}, if

Tr(c) = 0, Tr
(

a2

a+1

)
= 1 and a(b + c) = c, then there can be at most 3 solutions of

Equation (4.8) from this case, otherwise there can be at most 2 solutions.

Case 4. Let Tr

(
X2 + a2

X + a+ 1

)
= 1 and Tr

(
X2

X + 1

)
= 0. Then Equation (4.8) reduces

to

(X + a)−1 + cX−1 = b+ 1. (4.12)

Again, by Lemma 4.4.1, if a(b+1) = 1 and Tr(1/c) = 0, then the Equation (4.12) has three

solutions and one among them is 0. Notice that the solution X = 0 of Equation (4.12) will

be a solution of Equation (4.8) if and only if Tr
(

a2

a+1

)
= 1. Similarly, if a(b+ 1) = c and

Tr(c) = 0, then the Equation (4.12) has three solutions and one among them is a. Notice

that solution X = a of (4.12) will not be a solution of Equation (4.8) as Tr
(
X2+a2

X+a+1

)
6= 1.

Thus, for any fixed c ∈ F2n\{0, 1}, if Tr(1/c) = 0, Tr
(

a2

a+1

)
= 1 and a(b + 1) = 1 then

there can be at most 3 solutions of Equation (4.8) from this case, otherwise there can be

at most 2 solutions. This completes the proof.

The following Table 4.1 gives the maximum possible value of c∆H , where c 6= 0, 1, of

the function H(X) over F2n for some small values of n.

4.5 The Boomerang Uniformity of a Perturbed In-

verse Function

Boura and Canteaut [8] studied the BCT entries of the inverse mapping and proved the

following lemma. We are also including the proof here (however, our technique is slightly

different from the one given in [8]), for the convenience of the reader.
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n when Tr(c) = 0 = Tr(1
c
) or Tr(c) + Tr(1

c
) = 1 when Tr(c) = 1 = Tr(1

c
)

2 1 1

3 3 1

4 5 4

5 6 6

6 7 6

7 7 6

8 8 7

Table 4.1: Maximum value of c∆H over finite field F2n .

Lemma 4.5.1. [8, Proposition 6] Let f(X) = X−1 be a map from F2n to itself with n

even. Then for any (a, b) ∈ F∗2n × F∗2n, the boomerang system

X
−1 + Y −1 = b

(X + a)−1 + (Y + a)−1 = b.

(4.13)

has the following solutions if n ≡ 2 (mod 4)



{(0, a), (a, 0), (aω, aω2), (aω2, aω)} if ab = 1

{(0, aω2), (aω2, 0), (a, aω), (aω, a)} if ab = ω

{(0, aω), (aω, 0), (a, aω2), (aω2, a)} if ab = ω2

{(X1, X1 + a), (X1 + a,X1)}, X2
1 + aX1 + a

b
= 0 if Tr( 1

ab
) = 0, and ab 6= 1, ω, ω2

no solution otherwise.

When n ≡ 0 (mod 4), then there are the following additional solutions

{(X2, X2 + a), (X2 + a,X2)}, X2
2 + aX2 + a2ω2 = 0 if ab = ω

{(X3, X3 + a), (X3 + a,X3)}, X2
3 + aX3 + a2ω = 0 if ab = ω2.

Proof. It is easy to see that (0, 0) and (a, a) can not be a solution of the Equation (4.13)

as b 6= 0. Now we shall divide our discussion into the following different cases.
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Case 1. Let X = 0. In this case, the system (4.13) reduces to

Y = b−1

(b−1 + a)−1 = b+ a−1.

(4.14)

It is easy to see that if ab = 1 then (0, a) is the solution of above system (4.14). If ab 6= 1

then the system (4.14) reduces to

0 = (b−1 + a)(b+ a−1) + 1

= 1 + a−1b−1 + ab

= (ab)2 + ab+ 1.

Thus ab 6= 1 is a root of ω3 + 1 = 0, hence a primitive root of F22 , say ω, ω2. When

ab = ω, Equation (4.14) has exactly one solution (0, aω2). Similarly, when ab = ω2,

Equation (4.14) has exactly one solution (0, aω). If ab 6= 1, ω, ω2, then system (4.14) has

no solution.

Case 2. Let X = a. In this case, the system (4.13) reduces to

Y = (b+ a−1)−1

((b+ a−1)−1 + a)−1 = b.

(4.15)

It is easy to see that if ab = 1 then (a, 0) is the solution of above system (4.15). Also

notice that if ab 6= 1 then (b+a−1)−1 +a 6= 0 as b 6= 0. Thus, for ab 6= 1 the system (4.15)

reduces to

(b+ a−1)−1 = a+ b−1

(a+ b−1)(a−1 + b) = 1

(ab)2 + ab+ 1 = 0.

Thus ab 6= 1 is a root of ω3 + 1 = 0, hence a primitive root of F22 . When ab = ω,

Equation (4.15) has exactly one solution (a, aω). Similarly, when ab = ω2, Equation (4.15)

has exactly one solution (a, aω2). If ab 6= 1, ω, ω2, then system (4.15) has no solution.
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Case 3. Let Y = 0. Since the system (4.13) is symmetric in the variables X and Y , this

case directly follows from the Case 1. Thus, the system (4.13) has exactly one solution

(a, 0), (aω2, 0) and (aω, 0) when ab = 1, ω and ω2, respectively. If ab 6= 1, ω, ω2, then

system (4.13) has no solution with Y = 0.

Case 4. Let Y = a. Since the system (4.13) is symmetric in the variables X and Y , this

case directly follows from the Case 2. Thus, the system (4.13) has exactly one solution

(0, a), (aω, a) and (aω2, a) when ab = 1, ω and ω2, respectively. If ab 6= 1, ω, ω2, then

system (4.13) has no solution with Y = a.

Case 5. Let X 6= 0, a and Y 6= 0, a. Now, the system (4.13) becomes

X + Y = bXY

X + Y = b(XY + aX + aY + a2),

(4.16)

which is equivalent to X + a = Y

X2 + aX + a
b

= 0.

(4.17)

Now if ab = 1, then the second equation of (4.17) reduces to X2 + aX + a2 = 0, which

is equivalent to X(X3 + a3) = 0, which has only two solutions aω, aω2 (since X 6= 0, a).

Thus, Equation (4.16) has two solutions, namely (aω, aω2) and (aω2, aω). If ab = ω, then

the second equation of (4.17) becomes X2 + aX + a2ω2 = 0, which has two solutions

if and only if Tr(ω2) = Tr(ω) = 0. Here, one may note that Tr(ω) = 0 if and only if

n ≡ 0 (mod 4). Similarly, if ab = ω2, the second equation of the system (4.17) becomes

X2 + aX + a2ω = 0, which has two solutions if and only if Tr(ω) = 0. Again, Tr(ω) = 0

if and only if n ≡ 0 (mod 4). When X, Y 6= 0, a and ab 6= 1, ω, ω2, then Equation (4.17)

has two solutions if and only if Tr
(

1
ab

)
= 0.

The following is an immediate corollary to Lemma 4.5.1.

Corollary 4.5.2. Let f(X) = X−1 be a map from F2n to itself with n even. Then the

boomerang uniformity of f is given by

Bf =

4 if n ≡ 2 (mod 4)

6 if n ≡ 0 (mod 4).
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Now we shall consider the boomerang uniformity of the differentially 4-uniform per-

mutation H(X) = X−1 + Tr

(
X2

X + 1

)
over F2n with n even in the following theorem.

Theorem 23. Let n be even and H(X) = X−1 + Tr

(
X2

X + 1

)
be a map from F2n to

itself. Then the boomerang uniformity of H is less or equal to 12.

Proof. For any a, b ∈ F∗2n , the BCT entry BH(a, b) of H at point (a, b) is the number of

solutions of the following system
X−1 + Y −1 + Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= b;

(X + a)−1 + (Y + a)−1 + Tr

(
X2 + a2

X + a+ 1
+

Y 2 + a2

Y + a+ 1

)
= b.

(4.18)

We shall split the analysis of solutions of the above system into the following four cases.

Case 1. Let Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= 0 = Tr

(
X2 + a2

X + a+ 1
+

Y 2 + a2

Y + a+ 1

)
. In this case,

the system (4.18) reduces to

X
−1 + Y −1 = b

(X + a)−1 + (Y + a)−1 = b.

(4.19)

From Lemma 4.5.1, we know that the above system (4.19) has four solutions if ab = 1;

four solutions if ab = ω, ω2 and n ≡ 2 (mod 4); six solutions if ab = ω, ω2 and n ≡ 0

(mod 4); two solutions if Tr( 1
ab

) = 0 and ab 6= 1, ω, ω2; and no solutions, otherwise.

Case 2. Let Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= 1 = Tr

(
X2 + a2

X + a+ 1
+

Y 2 + a2

Y + a+ 1

)
. In this case,

the system (4.18) reduces to

X
−1 + Y −1 = b+ 1

(X + a)−1 + (Y + a)−1 = b+ 1.

(4.20)

Again, from Lemma 4.5.1, we know that the above system (4.20) has four solutions if

a(b + 1) = 1; four solutions if a(b + 1) = ω, ω2 and n ≡ 2 (mod 4); six solutions if

a(b+1) = ω, ω2 and n ≡ 0 (mod 4); two solutions if Tr( 1
a(b+1)

) = 0 and a(b+1) 6= 1, ω, ω2

and no solutions, otherwise.

We shall now compute maximum number of solutions of Equation (4.18) that can be
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obtained from Case 1 and Case 2.

(i) Let ab = 1. In this subcase, if ab + a = 1, a = 0 which is not possible as a 6= 0.

If ab + a = ω, we have (a, b) = (ω2, ω). For (a, b) = (ω2, ω), four solutions of the

system (4.19) are {(0, ω2), (ω2, 0), (1, ω), (ω, 1)}. It is easy to verify that all these four

solutions are solutions of system (4.18). For (a, b) = (ω2, ω), the system (4.20) has

four solutions {(0, ω), (ω, 0), (1, ω2), (ω2, 1)} when n ≡ 2 (mod 4) and there will be two

additional solutions when n ≡ 0 (mod 4). A simple calculation shows that none of

these four solutions satisfy system (4.18). If ab + a = ω2, we have (a, b) = (ω, ω2).

For (a, b) = (ω, ω2), four solutions of the system (4.19) are {(0, ω), (ω, 0), (1, ω2), (ω2, 1)}

and one can easily verify that these four solutions are solutions of system (4.18). For

(a, b) = (ω, ω2), we have four solutions of (4.20), when n ≡ 2 (mod 4), which are given

by {(0, ω2), (ω2, 0), (1, ω), (ω, 1)} and there will be two additional solutions when n ≡ 0

(mod 4). A routine calculation shows that none of these four solutions are solutions of

system (4.18) as in all these cases Tr
(

X2

X+1
+ Y 2

Y+1

)
6= 1. If ab+a 6= 1, ω, ω2, system (4.20)

has two solutions if Tr
(

1
1+a

)
= 0 and no solution, otherwise.

(ii) Let ab = ω. In this subcase, if ab+ a = 1 then (a, b) = (ω2, ω2). For (a, b) = (ω2, ω2),

the system (4.19) has four solutions {(0, ω), (ω, 0), (1, ω2), (ω2, 1)} if n ≡ 2 (mod 4) and

there are two additional solutions if n ≡ 2 (mod 4). A simple calculation shows that

all these four solutions are also a solution of equation (4.18). For (a, b) = (ω2, ω2), four

solutions of the system (4.20) are {(0, ω2), (ω2, 0), (1, ω), (ω, 1)}. A simple calculation

shows that none of these four solutions satisfy system (4.18). If ab + a = ω then a = 0

which is not possible as a 6= 0. Now if ab + a = ω2, (a, b) = (1, ω). For (a, b) = (1, ω),

system (4.19) has four solutions {(0, ω2), (ω2, 0), (1, ω), (ω, 1)} if n ≡ 2 (mod 4) and there

will be two additional solutions if n ≡ 0 (mod 4). A simple calculation yields that all

these four solutions are solutions of system (4.18). For (a, b) = (1, ω), four solutions

of (4.20), when n ≡ 2 (mod 4), are {(0, ω), (ω, 0), (1, ω2), (ω2, 1)} and there will be two

additional solutions when n ≡ 0 (mod 4). It is easy to verify that none of these four

solutions are solutions of system (4.18). If ab + a 6= 1, ω, ω2, the system (4.20) has two

solutions if Tr
(

1
a+ω

)
= 0 and no solution, otherwise.

(iii) Let ab = ω2. In this subcase, if ab + a = 1, (a, b) = (ω, ω). For (a, b) = (ω, ω),

system (4.19) has four solutions {(0, ω2), (ω2, 0), (ω, 1), (1, ω)} if n ≡ 2 (mod 4) and there
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are two additional solutions if n ≡ 0 (mod 4). It can be easily shown that all these

four solutions are solutions of system (4.18). For (a, b) = (ω, ω), four solutions of the

system (4.20) are {(0, ω), (ω, 0), (1, ω2), (ω2, 1)} and a routine calculation shows that none

of these four solutions satisfy system (4.18). If ab + a = ω, (a, b) = (1, ω2). Now for

(a, b) = (1, ω2), system (4.19) has four solutions {(0, ω), (ω, 0), (1, ω2), (ω2, 1)} if n ≡ 2

(mod 4) and there are two additional solutions if n ≡ 0 (mod 4). It is easy to verify that

all these four solutions are solutions of system (4.18). For (1, ω2), four solutions of (4.20),

when n ≡ 2 (mod 4), are {(0, ω2), (ω2, 0), (1, ω), (ω, 1)} and there will be two additional

solutions when n ≡ 0 (mod 4). One can easily verify that none of these four solutions are

solutions of the system (4.18). If ab+ a = ω2, a = 0 which is not possible as a 6= 0. Now,

if ab+ a 6= 1, ω, ω2, the system (4.20) has two solutions if Tr
(

1
a+ω2

)
= 0 and no solution,

otherwise.

From the above discussion, we infer the following:

� If ab = 1, a + 1, we can get at most 6 solutions of system (4.18) from Case 1 and

Case 2.

� If ab = ω, ω2, a + ω, a + ω2, we can get at most 6 (respectively 8) solutions of

system (4.18) from Case 1 and Case 2, if n 6≡ 2 (mod 4) (respectively n ≡ 0

(mod 4)).

� If ab 6= 1, ω, ω2, a+ 1, a+ ω, a+ ω2, we can get at most 4 solutions of system (4.18)

from Case 1 and Case 2.

Case 3. Let Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= 0 and Tr

(
X2 + a2

X + a+ 1
+

Y 2 + a2

Y + a+ 1

)
= 1. In this

case, the system (4.18) reduces to

X
−1 + Y −1 = b

(X + a)−1 + (Y + a)−1 = b+ 1.

(4.21)

It is easy to see that when b = 1, the system (4.21) is inconsistent, as in this case, second

equation of the system (4.21) would imply X = Y and first equation of the system (4.21)

cannot have solutions of this type as b 6= 0. Now, we shall calculate the number of

solutions of the above system (4.21) in following cases.
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Subcase 3.1. Let X = 0. In this case the system (4.21) reduces to

Y = b−1

(Y + a)−1 = a−1 + b+ 1.

(4.22)

Solving the above equations in system (4.22), we have

(b−1 + a)−1 = a−1 + b+ 1

Notice that if ab = 1 or a(b+ 1) = 1 then the equation above is inconsistent. If ab 6= 1, a

then (0, b−1) will be a solution of system (4.21) if and only if a2b2 + a2b+ ab+ a+ 1 = 0.

Subcase 3.2. Let X = a. In this case the system (4.21) reduces to

Y = (a−1 + b)−1;

(Y + a)−1 = b+ 1.

(4.23)

Solving the above equations in system (4.23), we have

((a−1 + b)−1 + a)−1 = a−1 + b+ 1

Notice that if ab = 1 then the equation above is inconsistent. If ab 6= 1 then (a, (a−1+b)−1)

will be a solution of system (4.21) if and only if a2b2 + a2b+ ab+ 1 = 0.

Subcase 3.3. Let Y = 0. As the system (4.21) is symmetric in the variables X

and Y , this subcase directly follow from the Subcase 3.1. Therefore system (4.21) has

no solution if ab = 1 or a(b + 1) = 1 and if ab 6= 1, a then (b−1, 0) is a solution of the

system (4.21) if and only if a2b2 + a2b+ ab+ a+ 1 = 0.

Subcase 3.4. Let Y = a. This subcase directly follows from the Subcase 3.2. There-

fore system (4.21) has no solution if ab = 1 and if ab 6= 1 then (b−1, 0) is a solution of the

system (4.21) if and only if a2b2 + a2b+ ab+ 1 = 0.

Subcase 3.5. Let X 6= 0, a and Y 6= 0, a. In this case, the system (4.21) reduces to

X + Y = bXY

X + Y = (b+ 1)(X + a)(Y + a).

(4.24)
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Now adding the first and the second equation of the above system, we have

XY + (ab+ a)(X + Y + a) = 0

bXY + (ab2 + ab)(X + Y + a) = 0

(ab2 + ab+ 1)(X + Y ) + a2b2 + a2b = 0,

when ab2 + ab + 1 = 0, then the above equation will be inconsistent, as a2b2 + a2b 6= 0

(since b 6= 0, 1). When ab2 + ab+ 1 6= 0, we let X + Y = t, where t =
a2b2 + a2b

ab2 + ab+ 1
. Now

putting Y = X + t, the first equation of the system (4.24) transforms into

X2 + tX +
t

b
= 0. (4.25)

The above equation has two solutions if and only if Tr
(
1
tb

)
= 0, namely (X1, X1 + t) and

(X1 + t,X1), where X1 is a root of Equation (4.25).

Case 4. Let Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= 1 and Tr

(
X2 + a2

X + a+ 1
+

Y 2 + a2

Y + a+ 1

)
= 0. In this

case, the system (4.18) reduces to

X
−1 + Y −1 = b+ 1

(X + a)−1 + (Y + a)−1 = b,

(4.26)

It is obvious that if (X, Y ) is a solution of the system (4.21) then (X + a, Y + a) will

be a solution of the system (4.26). Also it is easy to observe that if solution (X, Y ) of

system (4.21) is a solution of system (4.18) then solution (X + a, Y + a) of system (4.26)

will also be a solution of system (4.18).

We shall now investigate, for any fixed a, b ∈ F∗2n , the overlap between the solutions

from the Case 3 and Case 4, and the solutions of Equation (4.18). We shall divide our

discussion in the following cases.

(i) When ab = 1, then there will be no solution from Subcase 3.1 3.2, 3.3 and 3.4 as

a2b2 + a2b + ab + a + 1 = 0 implies 1 = 0, a contradiction, and a2b2 + a2b + ab + 1 = 0

implies a = 1, also a contradiction. Now in the Subcase 3.5, we get two solutions of

Equation (4.21), if and only if Tr
(

1
a+1

)
= 0. Thus, there can be at most four solutions of

Equation (4.18) from Case 3 and Case 4.
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(ii) When ab = ω, again we get two solutions of Equation (4.21), if and only if

Tr
(

ω2

a+ω

)
= 0. Thus, there can be at most four solutions of Equation (4.18) from Case 3

and Case 4.

(iii) When ab = ω2, then we get two solutions of Equation (4.21) if and only if

Tr
(

ω
a+ω2

)
= 0. Thus, there can be at most four solutions of Equation (4.18) from Case 3

and Case 4.

(iv) When ab = a + 1, then we get two solutions of Equation (4.21) if and only if

Tr
(

1
a+1

)
= 0. Thus there can be at most four solutions of Equation (4.18) from Case 3

and Case 4.

(v) When ab = a + ω, then we get two solutions of Equation (4.21) if and only if

Tr
(
ω(a+1)
a2+ω2

)
= 0. Thus there can be at most four solutions of Equation (4.18) from Case 3

and Case 4.

(vi) When ab = a + ω2, then we get two solutions of Equation (4.21) if and only if

Tr
(
ω2(a+1)
a2+ω

)
= 0. Thus there can be at most four solutions of Equation (4.18) from Case 3

and Case 4.

(vii) It is easy to see that for any fixed a, b ∈ F∗2n with ab 6= 1, ω, ω2, 1+a, a+ω, a+ω2,

there can be at most two solutions of Equation (4.21) from Subcase 3.1, 3.2, 3.3 and 3.4

as a2b2 + a2b + ab + a + 1 = a2b2 + a2b + ab + 1 implies a = 0, a contradiction. As we

have seen earlier that Subcase 3.5 can contribute atmost two solutions. Thus, we can get

at most 8 solutions of Equation (4.18) from Case 3 and Case 4.

From the above discussion, we infer the following:

� When ab = 1, ω, ω2, a + 1, a + ω, a + ω2, there can be at most four solutions of

Equation (4.18) from Case 3 and Case 4.

� When ab 6= 1, ω, ω2, 1 + a, a + ω, a + ω2, there can be at most eight solutions of

Equation (4.18) from Case 3 and Case 4.

This completes the proof.



Chapter 5

Boomerang Uniformity of a Class of

Power Maps

In this chapter, we consider the BU of an infinite class of power function f(X) = X2m−1

over the finite field F2n , where n = 2m with m > 1. In Section 5.1, we recall some

results concerning the DU of f . Section 5.2 will be devoted on the BU of this power map

and we shall show that the power map f is boomerang 2-uniform when n ≡ 0 (mod 4)

(i.e. when m is even) and boomerang 4-uniform when n ≡ 2 (mod 4) (i.e. when m is

odd), respectively. Cid et al. [19] (see also [42, Theorem 1]) showed that for permutation

functions f , ∆f ≤ Bf . We show that for non-permutations, this is not necessarily true.

5.1 Differential Uniformity of X2m−1

The differential properties of the power maps of the form X2t−1 over F2n , 1 < t < n, have

been considered in [5] where authors computed DDT entries ∆f (1, b) by determining roots

of linearized polynomials of the form X2t + bX2 + (b + 1)X = 0. In fact, in [5] authors

introduced a new type of functions, called locally-APN functions, defined as follows.

Definition 24. Let f be a power map from F2n to itself. Then the function f is said to

be locally-APN if

∆f (1, b) ≤ 2, for all b ∈ F2n\F2.

In [5] authors gave an infinite class of locally-APN functions by showing that the power

map X2m−1 over F22m is locally-APN.
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The following lemma concerning the DDT entries of the power map X2m−1 over F22m

has already been proved in [5, Theorem 7]. However, we reproduce its proof here for the

sake of convenience of the readers, as it will be used in computing the BCT entries in

Section 5.2.

Lemma 5.1.1. Let f(X) = X2m−1 be a power map defined on the finite field F22m. Then

∆f (1, 0) = 2m − 2, ∆f (1, b) ≤ 2 for all b ∈ F22m\F2 and

∆f (1, 1) =

2 if m is even,

4 if m is odd.

Proof. For any b ∈ F22m , consider the DDT entry at point (1, b), which is given by the

number of solutions in F22m of the following equation

(X + 1)2
m−1 +X2m−1 = b. (5.1)

We shall now split the analysis to find the number of solutions of the above equation in

the following cases.

Case 1. Let b = 0. It is easy to observe that X = 0, 1 are not solutions of the above

Equation (5.1). For X 6= 0, 1, Equation (5.1) reduces to

(
X + 1

X

)2m−1

= 1.

If we let Y = 1 + X−1, then the above equation reduces to Y 2m−1 = 1. Since gcd(2m −

1, 22m − 1) = 2m − 1, this equation has exactly 2m − 2 solutions in F22m\F2 and hence

∆f (1, 0) = 2m − 2.

Case 2. Let b = 1. Notice that in this case, X = 0 and X = 1 are solutions of

Equation (5.1). For X 6= 0, 1, Equation (5.1) is equivalent to

X2m + 1

X + 1
+
X2m

X
= 1 ⇐⇒ X2m +X2 = 0.

With X2 = Y , the above equation becomes

Y (Y 2m−1−1 + 1) = 0. (5.2)
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Notice that when m > 1 is odd then gcd(m−1, 2m) = 2 and the above equation (5.2) can

have at most 4 solutions, namely 0, 1, ω, ω2, where ω is a primitive cubic root of unity.

Hence ∆f (1, 1) = 4. When m > 1 is even then gcd(m − 1, 2m) = 1, thus 0, 1 are only

solutions of the Equation (5.2). Hence in this case ∆f (1, 1) = 2.

Case 3. Let b ∈ F22m\F2. It is easy to see that in this case X = 0 and X = 1 are not

solutions of Equation (5.1). Therefore, the DDT entry at (1, b) is the number of solutions

in F22m\F2 of the following equivalent equation

X2m + bX2 + (b+ 1)X = 0. (5.3)

Now, raising the above equation to the power 2m, we have

X22m + b2
m

X2m+1

+ (b2
m

+ 1)X2m = 0. (5.4)

Combining (5.3) and (5.4), we have

b2
m+2X4 + (b2

m+2 + b2
m+1 + b2

m

+ b)X2 + (b2
m+1 + b2

m

+ b)X = 0.

We note that the above equation can have at most 4 solutions in F22m , two of which are 0

and 1 and thus it can have at most two solutions in F22m\F2. Therefore for b ∈ F22m\F2,

∆f (1, b) ≤ 2. This completes the proof.

5.2 Boomerang Uniformity of X2m−1

In this section, we shall discuss the BU of the locally-APN functions given in the previous

section. The BU of the power maps of the type X2t−1 over F2n has been considered

in [62], where the authors give bounds on the BU in terms of the DU under the condition

gcd(n, t) = 1 and also show that the power permutation X7 has BU 10 over F2n , where

n ≥ 8 is even and gcd(3, n) = 1. The following theorem gives the BU of the power

map f(X) = X2m−1 over F22m where m > 1 is odd.

Theorem 25. Let f(X) = X2m−1, m > 1 odd, be a power map from the finite field F22m

to itself. Then, the BU of f is 4.
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Proof. Recall that for any b ∈ F∗q, q = 22m, the BCT entry Bf (1, b) at point (1, b) of f , is

given by the number of solutions in Fq × Fq of the following system of equations

X
2m−1 + Y 2m−1 = b,

(X + 1)2
m−1 + (Y + 1)2

m−1 = b.

(5.5)

Notice that the above system (5.5) cannot have solutions of the form (X1, Y1) withX1 = Y1

as b 6= 0. Also it is easy to observe that if (X1, Y1) is a solution of the above system (5.5),

then so are (Y1, X1), (X1 + 1, Y1 + 1) and (Y1 + 1, X1 + 1). We shall split the analysis of

the solutions of the system (5.5) in the following five cases.

Case 1. Let X = 0. In this case, the system (5.5) reduces to

Y
2m−1 = b,

(Y + 1)2
m−1 + Y 2m−1 = 1.

(5.6)

From Lemma 5.1.1, we know that the second equation of the above system has four

solutions, namely Y = 0, 1, ω and ω2. Also, since m is odd, we have 2m− 1 ≡ 1 (mod 3).

Since b 6= 0, Y = 0 cannot be a solution of the system (5.6) and Y = 1, ω and ω2 will

be a solution of the system (5.6) when b = 1, ω and ω2, respectively. Equivalently, when

b = 1, ω, ω2 then (0, 1), (0, ω), (0, ω2) are solutions of the system (5.5), respectively. When

b ∈ Fq\F22 then there is no solution of the system (5.5) of the form (0, Y ).

Case 2. Let X = 1. In this case, the system (5.5) reduces to

Y
2m−1 = b+ 1,

(Y + 1)2
m−1 + Y 2m−1 = 1.

(5.7)

Similar to the previous case, the second equation of the above system (5.7) has four

solutions, namely Y = 0, 1, ω and ω2. Since b 6= 0, Y = 1 cannot be a solution of (5.7)

and Y = 0, ω and ω2 will be a solution of (5.7), when b = 1, ω2 and ω, respectively.

Equivalently, when b = 1, ω, ω2 then (1, 0), (1, ω2), (1, ω) are solutions of the system (5.5),

respectively. When b ∈ Fq\F22 then there is no solution of the system (5.5) of the form

(1, Y ).

Case 3. Let Y = 0. Since the system (5.5) is symmetric in the variables X and Y ,
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this case directly follows from Case 1. That is, when b = 1, ω, ω2 then (1, 0), (ω, 0), (ω2, 0)

are solutions of the system (5.5), respectively. When b ∈ Fq\F22 then there is no solution

for (5.5) of the form (X, 0).

Case 4. Let Y = 1. This case directly follows from Case 2. That is, when b = 1, ω, ω2

then (0, 1), (ω2, 1), (ω, 1) are solutions of the system (5.5), respectively. When b ∈ Fq\F22

then there is no solution for (5.5) of the form (X, 1).

Case 5. Let X, Y 6= 0, 1. In this case, the system (5.5) reduces to

X
2mY +XY 2m = bXY,

(X + Y )2
m

+ (b+ 1)(X + Y ) + b = 0.

(5.8)

Let Y = X + Z. Then, the above system becomesX
2mZ +XZ2m = bX(X + Z),

Z2m + (b+ 1)Z + b = 0.

(5.9)

Now, raising the second equation of the above system to the power 2m, we have

(b2
m

+ 1)Z2m + Z + b2
m

= 0. (5.10)

Combining the second equation of (5.9) and Equation (5.10), we obtain

((b+ 1)2
m+1 + 1)(Z + 1) = 0. (5.11)

Therefore, the system (5.9) reduces to

X
2mZ +XZ2m = bX(X + Z),

((b+ 1)2
m+1 + 1)(Z + 1) = 0.

(5.12)

Now, we shall consider following two cases

Subcase 5.1. Let (b+ 1)2
m+1 6= 1. In this case, the first equation of (5.12) reduces to

X2m + bX2 + (b+ 1)X = 0,
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which is equivalent to

b2
m+2X4 + (b2

m+2 + b2
m+1 + b2

m

+ b)X2 + (b2
m+1 + b2

m

+ b)X = 0. (5.13)

When b = 1, the above equation becomes X4 + X = 0, which has four solutions X =

0, 1, ω, ω2. Since we assumed X, Y 6= 0, 1, the only solutions we consider are X = ω and

ω2. Thus for b = 1, (ω, ω2) and (ω2, ω) are solutions of the system (5.9). When b ∈ Fq\F2

with (b+ 1)2
m+1 6= 1, by Lemma 5.1.1, Equation (5.13) can have at most two solutions.

Subcase 5.2. Let (b + 1)2
m+1 = 1. It is more convenient, now, to work with (5.8).

We then raise the first equation of the system (5.8) to the 2m-th power obtaining

X22mY 2m + Y 22mX2m = b2
m

X2mY 2m ,

which is equivalent to

XY 2m + Y X2m = b2
m

X2mY 2m .

Combining this with the first equation of (5.8), we get

b2
m

X2mY 2m = bXY,

and so, bXY = α ∈ F∗2m . Using Y = α
bX

in the first equation of (5.8), we obtain

X2m−11

b
+X1−2m 1

b2m
= 1. (5.14)

Label T = X2m−1. Then the above equation reduces to

T

b
+
T−1

b2m
= 1

⇐⇒ T 2

b
+

1

b2m
= T

⇐⇒ T 2b2
m

+ b = Tb2
m+1.

Since, (b+ 1)2
m+1 = 1, by expansion, we get b2

m+1 + b2
m

+ b = 0, and so, b2
m+1 = b2

m
+ b.

The previous equation becomes

T 2b2
m

+ b = Tb2
m

+ Tb ⇐⇒ (Tb2
m

+ b)(T + 1) = 0.
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If T = 1, then X ∈ F2m and so, bY ∈ F2m . Taking this back into (5.8), we then obtain

Y
2m + (b+ 1)Y = 0,

Y 2m + (b+ 1)Y = (X + 1)b

which is inconsistent with X 6= 1 and b ∈ F∗q. If Tb2
m

+ b = 0, then we have

Tb2
m

+ b = 0

⇐⇒ Tb2
m−1 + 1 = 0

⇐⇒ (bX)2
m−1 = 1.

Therefore bX ∈ F2m and hence α
bX

= Y ∈ F2m . Taking this back into (5.8), we then

obtain X
2m + (b+ 1)X = 0,

X2m + (b+ 1)X = (Y + 1)b

which is inconsistent with Y 6= 1 and b ∈ F∗q. This completes the proof.

Example 5.2.1. As an example, we checked by SageMath that the DU of the non-

permutation power map X7 over F26 is 6, whereas its BU is 4.

The following theorem gives the BU of the power map f(X) = X2m−1 over F22m ,

where m > 1 is even.

Theorem 26. Let f(X) = X2m−1, m > 1 even, be a power map from the finite field F22m

to itself. Then, the BU of f is 2.

Proof. Following similar arguments as in the proof of Theorem 25, it is straightforward

to see that when b = 1, (0, 1) and (1, 0) are the only solutions of the system (5.5) with

either of the coordinates X, Y being 0 or 1. On the other hand, when b ∈ F22m\F2, there

is no solution of the system (5.5) with either of the coordinates X, Y ∈ {0, 1}.

We now consider the case when X, Y 6= 0, 1. In this case, the system (5.5) reduces to

X
2mY +XY 2m = bXY,

(X + Y )2
m

+ (1 + b)(X + Y ) + b = 0.

(5.15)
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Let Y = X + Z. Now, raising the second equation of the above system to the power 2m

and adding it to the second equation of the above system, we haveX
2mZ +XZ2m = bX(X + Z),

((b+ 1)2
m+1 + 1)(Z + 1) = 0.

(5.16)

Now, we shall consider the following two cases.

Case 1. Let (b+ 1)2
m+1 6= 1. In this case, the system (5.16) reduces to

X2m + bX2 + (b+ 1)X = 0,

which is equivalent to

b2
m+2X4 + (b2

m+2 + b2
m+1 + b2

m

+ b)X2 + (b2
m+1 + b2

m

+ b)X = 0. (5.17)

When b = 1, the above equation becomes X4+X = 0, which has two solutions X = 0, 1, as

m is even. Since we assumed X, Y 6= 0, 1, we do not get any solution of the system (5.17)

in this case. When b ∈ F22m\F2 with (b + 1)2
m+1 6= 1, by Lemma 5.1.1, Equation (5.17)

can have at most two solutions.

Case 2. Let (b + 1)2
m+1 = 1, the argument is similar to Subcase 5.2 of Theorem 25

and in this case the system (5.5) will have no solution.

Example 5.2.2. The DU of the non-permutation power map X15 over F28 is 14, whereas

its BU is 2.



Chapter 6

The Binary Gold Function and its

c-Boomerang Connectivity Table

In this chapter, we give a complete description of the cBCT entries for the Gold function

over finite fields of even characteristic, by using double Weil sums. The chapter is struc-

tured as follows. Section 6.1 contains some preliminary results that will be used across

the sections. Section 6.2 contains the characterization of cBCT entries in terms of double

Weil sums. For c = 1, we further simplify this expression in Section 6.3. In fact, Theo-

rem 28 generalizes previously known results of Boura and Canteaut [8]. In Section 6.4,

we consider the case when c ∈ F2e\F2, where e = gcd(k, n). In Section 6.5, we discuss the

general case.

6.1 Preliminaries

First, we shall state a theorem which gives a nice connection between cBCT and cDDT

entries of the power map Xd over F2n and is a “binary” analogue of [52, Theorem 1].

Theorem 27. Let f(X) = Xd be a power function on Fq, q = 2n and c ∈ F∗q. Then, for

fixed b ∈ F∗q, the cBCT entry cBf (1, b) at (1, b) is given by

1

q

∑
w∈Fq

(c∆f (w, b) + c−1∆f (w, b))

− 1 +
1

q2

∑
α,β∈Fq ,αβ 6=0

χ1(b(α+ β))Sα,β Sαc,βc−1 ,
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with

Sα,β =
∑
X∈Fq

χ1

(
αXd

)
χ1

(
β(X + 1)d

)
=

1

(q − 1)2

q−2∑
j,k=0

G(ψ̄j, χ1)G(ψ̄k, χ1)
∑
X∈Fq

ψ1

(
(αXd)j(β(X + 1)d)k

)
.

We shall now state some lemmas that will be used in the sequel. The following lemma

is well-known and has been used in various contexts.

Lemma 6.1.1. Let e = gcd(k, n). Then

gcd(2k + 1, 2n − 1) =

1 if n/e is odd,

2e + 1 if n/e is even.

We shall also use the following lemma, which appeared in [21], describing the number

of roots in F2n of a linearized polynomial u2
k
X22k + uX, where u ∈ F∗2n .

Lemma 6.1.2. [21, Theorem 3.1] Let g be a primitive element of F2n and let e =

gcd(n, k). For any u ∈ F∗2n, consider the linearized polynomial Lu(X) = u2
k
X22k + uX

over F2n . Then for the equation Lu(X) = 0, the following are true:

(1) If n/e is odd, then there are 2e solutions to this equation for any choice of u ∈ F∗2n;

(2) If n/e is even and u = gt(2
e+1) for some t, then there are 22e solutions to the equation;

(3) If n/e is even and u 6= gt(2
e+1) for any t, then X = 0 is the only solution.

The explicit expression for the Weil sum of the form
∑

X∈F2n
χ1(uX

2k+1 + vX), where

u, v ∈ F2n , is obtained in [21]. In what follows, we shall denote, by S(u, v), the Weil sum∑
X∈Fq χ(uX2k+1 + vX). The following lemma gives the explicit expression for S(u, 0).

Lemma 6.1.3. [21] Let χ be any nontrivial additive character of Fq and g be the primitive

element of the cyclic group F∗q. The following hold:

(1) If n/e is odd, then ∑
X∈Fq

χ(uX2k+1) =

q if u = 0,

0 otherwise.
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(2) Let n/e be even so that n = 2m for some integer m. Then

∑
X∈Fq

χ(uX2k+1) =

(−1)m/e2m if u 6= gt(2
e+1) for any integer t,

(−1)
m
e
+12m+e if u = gt(2

e+1) for some integer t.

From Lemma 6.1.1, it is easy to see that when n/e is odd, the power map X2k+1

permutes F2n . Therefore if u 6= 0, there exists a unique element γ ∈ F∗q such that

γ2
k+1 = u and hence

S(u, v) =
∑
X∈Fq

χ(uX2k+1 + vX)

=
∑
X∈Fq

χ(X2k+1 + vγ−1X)

= S(1, vγ−1).

The following lemma gives the expression for the Weil sum S(1, v) for v 6= 0 and n/e odd.

Lemma 6.1.4. [21, Theorem 4.2] Let v 6= 0 and n/e is odd. Then

S(1, v) =


0 if Tre(v) 6= 1,(

2

n/e

)e
2
n+e
2 if Tre(v) = 1,

where

(
2

n/e

)
is the Jacobi symbol.

In the case when u, v 6= 0 and n/e is even, the Weil sum S(u, v) depends on whether

or not the linearized polynomial Lu(X) = u2
k
X22k + uX is a permutation of F2n . The

following lemma gives the expression for Weil sum S(u, v) for u, v 6= 0 and n/e even.

Lemma 6.1.5. [21, Theorem 5.3] Let u, v ∈ F∗q and n/e is even so n = 2m for some

integer m. Then

(1) If u 6= gt(2
e+1) for any integer t then Lu is a PP. Let Xu ∈ Fq be the unique solution

of the equation Lu(X) = v2
k
. Then

S(u, v) = (−1)m/e2mχ1(uXu
2k+1).
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(2) If u = gt(2
e+1) for some integer t, then S(u, v) = 0 unless the equation Lu(X) = v2

k

is solvable. If the equation Lu(X) = v2
k

is solvable with some solution, say Xu, then

S(u, v) =

(−1)m/e2mχ1(uXu
2k+1) if Tre(u) 6= 0,

(−1)
m
e
+12m+eχ1(uXu

2k+1) if Tre(u) = 0.

6.2 The Binary Gold Function

In this section, we shall give the explicit expression for the cBCT entries of the Gold

function X2k+1 over F2n , for all c 6= 0. Recall that the cBU of a power function f(X) = Xd

over F2n is given by max
b∈F∗2n

cBf (1, b), where cBf (1, b) is the number of solutions in Fq × Fq,

q = 2n of the following systemX
d + cY d = b

(X + 1)d + c−1(Y + 1)d = b.

(6.1)

As done in [52], for b 6= 0 and fixed c 6= 0, the number of solutions (X, Y ) ∈ F2
q of the

system (6.1) is given by

cBf (1, b) =
1

q2

∑
X,Y ∈Fq

∑
α∈Fq

χ1

(
α
(
Xd + cY d + b

))∑
β∈Fq

χ1

(
β
(
(X + 1)d + c−1(Y + 1)d + b

))
=

1

q2

∑
α,β∈Fq

χ1 (b (α + β))
∑
X∈Fq

χ1

(
αXd + β(X + 1)d

)
∑
Y ∈Fq

χ1

(
cαY d + c−1β(Y + 1)d

)
=

1

q2

∑
α,β∈Fq

χ1 (b (α + β))Sα,βScα,c−1β,

where Sα,β =
∑

X∈Fq χ1

(
αXd + β(X + 1)d

)
. Therefore, the problem of computing the

cBCT entry cBf (1, b) is reduced to the computation of the product of the Weil sums Sα,β

and Scα,c−1β. Now, in the particular case when d = 2k + 1, i.e., for the Gold case, we shall

further simplify the expression for Sα,β as follows:

Sα,β =
∑
X∈Fq

χ1

(
αX2k+1 + β(X + 1)2

k+1
)
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= χ1(β)
∑
X∈Fq

χ1((α + β)X2k+1) χ1(βX
2k + βX)

= χ1(β)
∑
X∈Fq

χ1((α + β)X2k+1) χ1((β
2n−kX)2

k

+ βX)

= χ1(β)
∑
X∈Fq

χ1((α + β)X2k+1) χ1((β
2n−k + β)X)

= χ1(β)
∑
X∈Fq

χ1((α + β)X2k+1 + (β2n−k + β)X)

= χ1(β)
∑
X∈Fq

χ1(AX
2k+1 +BX),

where A = α+β and B = β2n−k +β. Here, one may note that A = 0 if and only if α = β.

Also, B = 0 if and only if β ∈ F2e , since

B = 0⇔ β2n−k = β

⇔ β2n−k−1 = 1

⇔ β2gcd(n−k,n)−1 = 1

⇔ β2e−1 = 1, (as gcd(n− k, n) = e)

⇔ β ∈ F2e .

Now we shall calculate Sα,β in two cases, namely, n/e odd and n/e even, respectively.

Case 1: n/e is odd.

In this case, if α = β and β ∈ F2e , then Sα,β = qχ1(β). If α = β and β ∈ F2n\F2e then

Sα,β = 0. In the event of α 6= β and β ∈ F2e , again we have Sα,β = 0. Finally, if α 6= β

and β ∈ F2n\F2e , by Lemma 6.1.4 we have,

Sα,β =

0 if Tre(Bγ
−1) 6= 1,(

2
n/e

)e
2
n+e
2 χ1(β) if Tre(Bγ

−1) = 1,

where γ ∈ Fq is the unique element such that γ2
k+1 = A.

Case 2: n/e is even.

Let n = 2m, for some positive integer m and g be a primitive element of the finite field

Fq. When α = β and β ∈ F2e then Sα,β = qχ1(β). If α = β and β ∈ F2n\F2e then again
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Sα,β = 0. In the event of α 6= β and β ∈ F2e , by Lemma 6.1.3 we have

Sα,β =

(−1)m/e2mχ1(β) if A 6= gt(2
e+1) for any integer t,

(−1)
m
e
+12m+eχ1(β) if A = gt(2

e+1) for some integer t.

Finally, when α 6= β and β ∈ F2n\F2e , we shall consider two cases depending on whether or

not the linearized polynomial LA(X) = A2kX22k+AX is a permutation polynomial. From

Lemma 6.1.2, LA is a permutation polynomial if and only if n/e is even and A 6= gt(2
e+1)

for any integer t. Therefore, when n/e is even and A 6= gt(2
e+1) for any integer t, the

equation LA(X) = B2k will have a unique solution, say XA. Therefore, by Lemma 6.1.5,

we have

Sα,β = (−1)m/e2mχ1(β)χ1(AX
2k+1
A ).

Now if the linearized polynomial LA is not permutation, i.e, n/e is even and A = gt(2
e+1)

for some integer t, we again have two cases depending on whether or not the equation

LA(X) = B2k is solvable. In the case when equation LA(X) = B2k is solvable, let XA be

one of its solution. Therefore, by Lemma 6.1.5 we have,

Sα,β =

(−1)
m
e
+12m+eχ1(β)χ1

(
AX2k+1

A

)
if Tre(A) = 0,

(−1)
m
e 2mχ1(β)χ1

(
AX2k+1

A

)
if Tre(A) 6= 0.

If LA(X) = B2k is not solvable, again, by Lemma 6.1.5, Sα,β = 0.

Thus, we have computed Sα,β in all possible cases. Similarly, we can find Scα,c−1β by

putting cα and c−1β in place of α and β, respectively. We shall now explicitly compute

the cBCT entry cBf (1, b) for c = 1, c ∈ F2e\F2 and c ∈ F2n\F2e in the forthcoming

sections.

6.3 The Case c = 1

When c = 1, Sα,β and Scα,c−1β coincide, therefore for any fixed b 6= 0, the cBCT entry is

given by,

1Bf (1, b) =
1

q2

∑
α,β∈Fq

χ1 (b (α + β))S2
α,β.
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Let us denote Tb = S2
α,β. Now we shall consider two cases, namely, n/e odd and n/e even,

respectively.

Case 1: n/e is odd. We consider the following subcases.

1. If α = β and β ∈ F2e , then

T
[1]
b = q2 χ1(β)2 = q2.

2. If α = β and β ∈ F2n\F2e , then

T
[2]
b = 0.

3. If α 6= β and β ∈ F2e , then

T
[3]
b = 0.

4. If α 6= β and β ∈ F2n\F2e then

T
[4]
b =

0 if Tre(Bγ
−1) 6= 1,

2n+e if Tre(Bγ
−1) = 1.

Nyberg [45, Proposition 3] showed that the DU of the Gold function X 7→ X2k+1 over

F2n is 2e, where e = gcd(k, n). Also, from [19], we know that the BU of the APN function

equals 2. Boura and Canteaut [8, Proposition 8] proved that when n/e is odd and n ≡ 2

(mod 4), then the DU as well as the BU of the Gold function X 7→ X2k+1 is 4. Our first

theorem in this section generalizes the two previously mentioned results, and gives the

BU of the Gold function for any parameters, when n
e

is odd.

Theorem 28. Let f(X) = X2k+1, 1 ≤ k < n, be a function on Fq, q = 2n, n ≥ 2. Let

c = 1 and n/e be odd, where e = gcd(k, n). Then the cBCT entry 1Bf (1, b) of f at (1, b)

is

1Bf (1, b) = 0, or, 2e,

if Tre

(
b

1
2

)
= 0, respectively, Tre

(
b

1
2

)
6= 0.
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Proof. For every α, β, let A = α + β,B = β2−k + β, and γ ∈ Fq be the unique element

such that γ2
k+1 = A. Further, let

A = {(α, β) ∈ F2
q | α = β ∈ F2e},

B = {(α, β) ∈ F2
q | α = β ∈ Fq\F2e},

C = {(α, β) ∈ F2
q | α 6= β and β ∈ F2e},

D = {(α, β) ∈ F2
q | α 6= β and β ∈ Fq\F2e},

E = {(α, β) ∈ D | Tre(Bγ
−1) 6= 1},

F = {(α, β) ∈ D | Tre(Bγ
−1) = 1}.

Then,

1Bf (1, b) =
1

q2

 ∑
(α,β)∈A

χ1(b(α + β))T
[1]
b +

∑
(α,β)∈B

χ1(b(α + β))T
[2]
b +

∑
(α,β)∈C

χ1(b(α + β))T
[3]
b

+
∑

(α,β)∈E

χ1(b(α + β))T
[4]
b +

∑
α,β∈F

χ1(b(α + β))T
[4]
b


=

1

q2

 ∑
(α,β)∈A

q2 +
∑

(α,β)∈F

χ1(b(α + β))2n+e


=2e +

2e

2n

∑
(α,β)∈F

χ1(b(α + β)).

As customary, t−1 = t2
n−2, rendering 0−1 = 0. For each β ∈ F2n \ F2e , we let (if

β ∈ F2e , Yβ = F2n)

Yβ =
{
γ−1 ∈ F2n : Tre

(
(β2−k + β)γ−1

)
= 1
}
,

and

Tβ =
{
d ∈ F2n : Tre((β

2−k + β)d) = 0
}

= 〈β2−k + β〉⊥e .

We shall use below that when n
e

is odd, then Tre(1) = 1. We label by 〈S〉e the F2e-linear

subspace in F2n generate by S and we write S⊥e , for the trace orthogonal (via the relative

trace Tre) of the subspace 〈S〉e (if e = 1, we drop the subscripts). Since Tre(1) = 1, then,
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(β2−k + β)−1 ∈ Yβ. If γ−11 , γ−12 ∈ Yβ, then γ−11 + γ−12 ∈ Tβ, of cardinality |Tβ| = 2n−1.

Reciprocally, if γ−1 ∈ Yβ and d ∈ Tβ, it is easy to see that γ−1 + d ∈ Yβ. Therefore, Yβ is

the affine subspace Yβ = γβ + Tβ, where γβ = (β2−k + β)−1.

Next, we observe that the kernel of φ : β 7→ β2−k + β, say ker(φ), is an F2-linear space

of dimension e (in fact, it is exactly F2e) and the image of φ, say Im(φ), is an F2-linear

space of dimension n− e. Further, we show that Im(φ)⊥e = ker(φ). We use below the

fact that Tre(X
2e) = Tre(X) and e | k. Let u ∈ Im(φ)⊥e , that is, for all β ∈ F2n ,

0 = Tre(u(β2−k + β)) = Tre(uβ
2−k) + Tre(uβ) = Tre(u

2kβ) + Tre(uβ) = Tre((u+ u2
k

)β),

and so, u2
k
+u = 0, which shows the claim. For easy referral, if we speak of the dimension

of an F2e-linear space S, we shall be using the notation dime S (no subscript if e = 1).

We will be using below the Poisson summation formula (see [15, Corollary 8.9] and [23,

Theorem 2.15]), which states that if f : F2n → R and S is a subspace of F2n of dimension

dimS, ∑
u∈α+S

Wf (u)(−1)Tr(βu) = 2dimS(−1)Tr(αβ)
∑

u∈β+S⊥
f(u)(−1)Tr(αu),

and in particular, ∑
u∈S

Wf (u) = 2dimS
∑
u∈S⊥

f(u).

Now, we are able to compute our sum (labelling α = β + γ2
k+1, and writing φ−1(t) =

{β : φ(β) = t}; we also note that when n
e

is odd, gcd(2k+1, 2n−1) = 1, and so γ 7→ γ2
k+1

is a permutation)

1Bf (1, b) = 2e +
2e

2n

∑
β∈F2n\F2e ,γ∈F2n

Tre
(
(β2−k+β)γ−1

)
=1

χ1

(
bγ2

k+1
)

= 2e +
2e

2n

∑
β∈F2n\F2e

∑
γ−1∈Yβ

χ1

(
bγ2

k+1
)

= 2e +
2e

2n

∑
β∈F2n

∑
X∈(β2−k+β)−1+〈β2−k+β〉⊥e

χ1

(
bX−2

k−1
)

(we used here that Yβ = (β2
−k

+ β)−1 + Tβ; we also added

β ∈ F2e , as it contributes 0 to the inner sum)
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= 2e +
2e

2n

∑
β∈F2n

2− dimS
∑

u∈(〈β2−k+β〉⊥e)
⊥

Wgβ(u)(−1)
Tr
(
u(β2−k+β)−1

)

(by Poisson summation with S⊥ = 〈β2−k + β〉⊥e , and gβ(X) = χ1

(
bX−2

k−1)).
We now analyze the F2-linear space

(
〈β2−k + β〉⊥e

)⊥
= {X ∈ F2n : Tr(dX) = 0,∀d with Tre(d(β2−k + β)) = 0}.

Further, F2n has dimension n/e as an F2e-linear space and so, dime〈β2−k + β〉⊥e =

n
e
− 1 as an F2e-linear space, and since F2e has dimension e as an F2-linear space, then

dim〈β2−k+β〉⊥e = n−e as an F2-linear space. Thus, dim
(
〈β2−k + β〉⊥e

)⊥
= e. Moreover,

Tre(β
2−k + β) = 0 and if u ∈ F2e then Tre(u(β2−k + β) = uTre(β

2−k + β) = 0, and

consequently (since the dimensions match and (β2−k + β)F2e ⊆ S)

S =
(
〈β2−k + β〉⊥e

)⊥
= (β2−k + β)F2e .

We are now ready to continue the computation, thus,

1Bf (1, b) = 2e +
2e

2n
2−e

∑
β∈F2n

∑
u∈(β2−k+β)F2e

Wgβ(u)(−1)
Tr
(
u(β2−k+β)−1

)

= 2e +
2e

2n
2−e

∑
β∈F2n

∑
d′∈F2e

Wgβ(d′(β2−k + β))(−1)Tr(d
′)

= 2e +
2e

2n
2−e

∑
β∈F2n

∑
d′∈F2e

∑
X∈F2n

χ1

(
bX−2

k−1 + d′X(β2−k + β) + d′
)

= 2e +
2e

2n
2−e

∑
d′∈F2e

∑
X∈F2n

χ1

(
bX−2

k−1 + d′
) ∑
β∈F2n

χ1

(
d′X(β2−k + β)

)
= 2e +

2e

2n
2−e

∑
d′∈F2e

∑
X∈F2n

χ1

(
bX−2

k−1 + d′
) ∑
β∈F2n

χ1

((
(d′X)2

k

+ d′X
)
β
)

(since Tr
(
d′X(β2

−k
+ β)

)
= Tr

(
((d′X)2

k
+ d′X)β

)
= Tr(d′(X2k +X)β))

= 2e +
2e

2n
2n−e

∑
d′∈F2e ,X∈F2n

d′(X2k+X)=0

χ1

(
bX−2

k−1 + d′
)

= 2e +
2e

2n
2n−e

∑
d′∈F∗2e ,X∈F2e

χ1(bX
−2 + d′) +

∑
X∈F2n

χ1(bX
−2k−1)
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= 2e +
2e

2n
2n−e

∑
d′∈F∗2e ,X∈F2e

χ1(bX
−2 + d′)

= 2e − 2eδ0

(
Tre

(
b

1
2

))
,

where δ0 is the Dirac symbol, defined by δ0(c) = 1, if c = 0, and 0, otherwise. Thus,

1Bf (1, b) ∈ {0, 2e}, and the claim of our theorem is shown.

Case 2: n/e is even.

1. If α = β and β ∈ F2e , then

T
[1]
b = q2 χ1(β)2 = q2.

2. If α = β and β ∈ F2n\F2e , then

T
[2]
b = 0.

3. If α 6= β and β ∈ F2e , then

T
[3]
b =

2n if A 6= gt(2
e+1) for any integer t,

2n+2e if A = gt(2
e+1) for some integer t.

4. If α 6= β and β ∈ F2n\F2e , then

(a) If A 6= gt(2
e+1) for any integer t, then

T
[4(a)]
b = 2n.

(b) If A = gt(2
e+1) for some integer t, then

i. If the equation LA(X) = B2k is not solvable, where LA(X) = A2kX22k +

AX, then

T
[4(b)(i)]
b = 0.
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ii. If the equation LA(X) = B2k is solvable, then

T
[4(b)(ii)]
b =

2n if Tre(A) 6= 0,

2n+2e if Tre(A) = 0.

Now we shall summarize the above discussion in the following theorem.

Theorem 29. Let f(X) = X2k+1, 1 ≤ k < n be a function on F2n, n ≥ 2. Let c = 1 and

n/e be even, where e = gcd(k, n). Then the cBCT entry 1Bf (1, b) of f at (1, b) is given

by

2e +
1

2n

∑
(α,β)∈G∪I∪K

χ1(b(α + β)) +
22e

2n

∑
(α,β)∈H∪L

χ1(b(α + β)),

with A = α + β, B = β2n−k + β, LA(X) = A2kX22k + AX, and

G ={(α, β) ∈ C | A 6= gt(2
e+1) for any integer t},

H ={(α, β) ∈ C | A = gt(2
e+1) for some integer t},

I ={(α, β) ∈ D | A 6= gt(2
e+1) for any integer t},

K ={(α, β) ∈ D | A = gt(2
e+1) for some integer t, Tre(A) 6= 0, LA(X) = B2k is solvable},

L ={(α, β) ∈ D | A = gt(2
e+1) for some integer t, Tre(A) = 0, LA(X) = B2k is solvable}.

Proof. For the proof, we need to define

J = {(α, β) ∈ D | A = gt(2
e+1) for an integer t, LA(X) = B2k is not solvable}.
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Then

1Bf (1, b) =
1

q2

 ∑
(α,β)∈A

χ1(b(α + β))T
[1]
b +

∑
(α,β)∈B

χ1(b(α + β))T
[2]
b

+
∑

(α,β)∈G

χ1(b(α + β))T
[3]
b +

∑
(α,β)∈H

χ1(b(α + β))T
[3]
b

+
∑

(α,β)∈I

χ1(b(α + β))T
[4(a)
b +

∑
(α,β)∈J

χ1(b(α + β))T
[4(b)(i)]
b

+
∑

(α,β)∈K

χ1(b(α + β))T
[4(b)(ii)]
b +

∑
(α,β)∈L

χ1(b(α + β))T
[4(b)(ii)]
b


=

1

q2

 ∑
(α,β)∈A

q2 + 2n
∑

(α,β)∈G∪I∪K

χ1(b(α + β)) + 2n+2e
∑

(α,β)∈H∪L

χ1(b(α + β))


= 2e +

1

2n

∑
(α,β)∈G∪I∪K

χ1(b(α + β)) +
22e

2n

∑
(α,β)∈H∪L

χ1(b(α + β)).

This completes the proof.

Corollary 6.3.1. Let f(X) = X2k+1, 1 ≤ k < n, be a function on Fq, n ≥ 2. Let c = 1

and n/e be even, where e = gcd(k, n). With the notations of the previous theorem, the

cBU of f satisfies

cBf ≤ 2e + 2−n|G ∪ I ∪ K|+ 22e−n|H ∪ L|.

6.4 The Case c ∈ F2e\F2.

Since the case c = 1 has already been considered in the previous section, throughout this

section we assume that c 6= 1. Notice that when c ∈ F∗2e , β ∈ F2e ⇔ βc−1 ∈ F2e . Recall

that for any fixed b 6= 0, the cBCT entry is given by,

cBf (1, b) =
1

q2

∑
α,β∈Fq

χ1 (b (α + β))Sα,βScα,c−1β.

Let us denote Tb = Sα,βScα,c−1β (we will use superscripts to point out the case we are in,

for its value). Recall that A = α + β and B = β2n−k + β. Let us denote γ = A
1

2k+1 ,

A′ = cα + c−1β and B′ = (c−1β)2
n−k

+ c−1β. It is easy to observe that the conditions

B = 0 and B′ = 0 are equivalent. Now we shall consider two cases namely, n
e

odd and n
e
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even, respectively.

Case 1: n
e

is odd.

1. Let A = 0, B = 0.

(a) If A′ = 0, B′ = 0, then

T
[1(a)]
b = q2χ1((1 + c−1)β).

(b) If A′ 6= 0, B′ = 0, then Scα,c−1β = 0 and hence

T
[1(b)]
b = 0.

2. Let A = 0, B 6= 0. In this case Sα,β = 0 and hence

T
[2]
b = 0.

3. Let A 6= 0, B = 0. Again Sα,β = 0 and hence

T
[3]
b = 0

4. Let A 6= 0, B 6= 0.

(a) Assume A′ = 0, B′ 6= 0, then Scα,c−1β = 0 and hence

T
[4(a)]
b = 0.

(b) Assume A′ 6= 0, B′ 6= 0. In this case, recall that γ2
k+1 = A and let γ′ ∈ Fq such

that (γ′)2
k+1 = A′.

i. If Tre(Bγ
−1) 6= 1, then Sα,β = 0 and hence

T
[4(b)(i)]
b = 0.
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ii. If Tre(Bγ
−1) = 1 and Tre(B

′(γ′)−1) 6= 1, then Scα,c−1β = 0 and hence

T
[4(b)(ii)]
b = 0.

iii. If Tre(Bγ
−1) = 1 and Tre(B

′(γ′)−1) = 1, then

T
[4(b)(iii)]
b = 2n+eχ1((1 + c−1)β).

We now use the above discussion in the following theorem.

Theorem 30. Let f(X) = X2k+1, 1 ≤ k < n be a function on F2n, n ≥ 2. Let c ∈ F2e\F2

and n/e be odd, where e = gcd(k, n). Then the cBCT entry cBf (1, b) of f at (1, b) is given

by

1 +
2e

2n

∑
(α,β)∈F∩F ′

χ1(bα + (1 + c−1 + b)β)),

where

F = {(α, β) ∈ F2
q | A,B 6= 0 and Tre(Bγ

−1) = 1},

F ′ = {(α, β) ∈ F2
q | A′, B′ 6= 0 and Tre(B

′(γ′)−1) = 1},

and A = α + β, B = β2n−k + β, A′ = cα + c−1β and B′ = (c−1β)2
n−k

+ c−1β, γ = A
1

2k+1 ,

γ′ = A′
1

2k+1 .

Proof. Let

A′ = {(α, β) ∈ F2
q | cα = c−1β and c−1β ∈ F2e},

B′ = {(α, β) ∈ F2
q | cα = c−1β and c−1β ∈ Fq\F2e},

C ′ = {(α, β) ∈ F2
q | cα 6= c−1β and c−1β ∈ F2e},

D′ = {(α, β) ∈ F2
q | cα 6= c−1β and c−1β ∈ Fq\F2e},

E ′ = {(α, β) ∈ D′ | Tre(B
′(γ′)−1) 6= 1}.
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Then,

cBf (1, b) =
1

q2

 ∑
(α,β)∈A∩A′

χ1(b(α + β))T
[1(a)]
b +

∑
(α,β)∈A∩C′

χ1(b(α + β))T
[1(b)]
b

+
∑

(α,β)∈B

χ1(b(α + β))T
[2]
b +

∑
(α,β)∈C

χ1(b(α + β))T
[3]
b

+
∑

(α,β)∈D∩B′
χ1(b(α + β))T

[4(a)]
b +

∑
(α,β)∈E

χ1(b(α + β))T
[4(b)(i)]
b

+
∑

(α,β)∈F∩E ′
χ1(b(α + β))T

[4(b)(ii)]
b +

∑
(α,β)∈F∩F ′

χ1(b(α + β))T
[4(b)(iii)]
b


=

∑
(α,β)∈A∩A′

χ1(bα + (1 + c−1 + b)β))

+
2e

2n

∑
(α,β)∈F∩F ′

χ1(bα + (1 + c−1 + b)β))

= 1 +
2e

2n

∑
(α,β)∈F∩F ′

χ1(bα + (1 + c−1 + b)β)).

This completes the proof.

Corollary 6.4.1. Let f(X) = X2k+1, 1 ≤ k < n, be a function on Fq, n ≥ 2. Let

c ∈ F2e \ F2 and n/e be odd, where e = gcd(k, n). With the notations of the previous

theorem, the cBU of f satisfies

cBf ≤ 1 + 2e−n|F ∩ F ′|.

Case 2: n/e is even.

1. Let A = 0, B = 0.

(a) If A′ = 0, B′ = 0, then

T
[1(a)]
b = χ1((1 + c−1)β) q2.

(b) If A′ 6= 0, B′ = 0, let

G ′ = {(α, β) ∈ C ′ | A′ 6= gt(2
e+1) for any integer t},
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H′ = {(α, β) ∈ C ′ | A′ = gt(2
e+1) for some integer t}.

Then,

T
[1(b)]
b =

(−1)
m
e 2m+nχ1((1 + c−1)β) if (α, β) ∈ A ∩ G ′,

(−1)
m
e
+12m+n+eχ1((1 + c−1)β) if (α, β) ∈ A ∩H′.

2. Let A = 0, B 6= 0.

In this case Sα,β = 0 and hence

T
[2]
b = 0.

3. Let A 6= 0, B = 0.

(a) If A′ = 0, B′ = 0, then T
[3(a)]
b is given by

(−1)
m
e 2m+nχ1((1 + c−1)β) if (α, β) ∈ A′ ∩ G,

(−1)
m
e
+12m+n+eχ1((1 + c−1)β) if (α, β) ∈ A′ ∩H.

(b) If A′ 6= 0, B′ = 0, then

T
[3(b)]
b =



2nχ1((1 + c−1)β) if (α, β) ∈ G ∩ G ′,

−2n+eχ1((1 + c−1)β) if (α, β) ∈ G ∩H′,

−2n+eχ1((1 + c−1)β) if (α, β) ∈ H ∩ G ′,

2n+2eχ1((1 + c−1)β) if (α, β) ∈ H ∩H′.

4. Let A 6= 0, B 6= 0.

(a) If A′ = 0, B′ 6= 0, then Scα,c−1β = 0 and hence

T
[4(a)]
b = 0.

(b) If A′ 6= 0, B′ 6= 0, let

I ′ ={(α, β) ∈ D′ | A′ 6= gt(2
e+1) for any integer t},
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J ′ ={(α, β) ∈ D′ | A′ = gt(2
e+1) for some integer t,

LA′(X) = (B′)2
k

is not solvable},

K′ ={(α, β) ∈ D′ | A′ = gt(2
e+1) for some integer t,

Tre(A
′) 6= 0, LA′(X) = (B′)2

k

is solvable},

L′ ={(α, β) ∈ D′ | A′ = gt(2
e+1) for some integer t,

Tre(A
′) = 0, LA′(X) = (B′)2

k

is solvable}.

Then,

T
[4(b)]
b =



2n ·M if (α, β) ∈ (I ∪ K) ∩ (I ′ ∪ K′),

0 if (α, β) ∈ (I ∪ K ∪ L) ∩ J ′,

−2n+e ·M if (α, β) ∈ (I ∪ K) ∩ L′,

0 if (α, β) ∈ J ∩ (I ′ ∪ J ′ ∪ K′ ∪ L′),

−2n+e ·M if (α, β) ∈ L ∩ (I ′ ∪ K′),

2n+2e ·M if (α, β) ∈ L ∩ L′,

where M = χ1((1 + c−1)β)χ1

(
AA′X2k+1

A X2k+1
A′

)
and XA, XA′ are the solutions

of the equations LA(X) = B2k and LA′(X) = (B′)2
k
, respectively.

We now summarize the above discussion in the following theorem.

Theorem 31. Let f(X) = X2k+1, 1 ≤ k < n be a function on F2n, n ≥ 2. Let c ∈ F2e\F2

and n/e be even, where e = gcd(k, n). With the previous notations, the cBCT entry

cBf (1, b) of f at (1, b) is given by

1

q2

 ∑
(α,β)∈A∩A′

χ1(b(α + β))T
[1(a)]
b +

∑
(α,β)∈A∩G′

χ1(b(α + β))T
[1(b)]
b

+
∑

(α,β)∈A∩H′
χ1(b(α + β))T

[1(b)]
b +

∑
(α,β)∈A′∩G

χ1(b(α + β))T
[3(a)]
b

+
∑

(α,β)∈A′∩H

χ1(b(α + β))T
[3(a)]
b +

∑
(α,β)∈G∩G′

χ1(b(α + β))T
[3(b)]
b

+
∑

(α,β)∈G∩H′
χ1(b(α + β))T

[3(b)]
b +

∑
(α,β)∈H∩G′

χ1(b(α + β))T
[3(b)]
b
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+
∑

(α,β)∈H∩H′
χ1(b(α + β))T

[3(b)]
b + +

∑
(α,β)∈(I∪K)∩(I′∪K′)

χ1(b(α + β))T
[4(b)]
b

+
∑

(α,β)∈(I∪K)∩L′
χ1(b(α + β))T

[4(b)]
b +

∑
(α,β)∈L∩(I′∪K′)

χ1(b(α + β))T
[4(b)]
b

+
∑

(α,β)∈L∩L′
χ1(b(α + β))T

[4(b)]
b

 .

6.5 The General Case

Since the case c ∈ F2e has already been considered in previous sections, throughout this

section we assume that c ∈ F2n\F2e . Recall that for any fixed b 6= 0, the cBCT entry is

given by,

cBf (1, b) =
1

q2

∑
α,β∈Fq

χ1 (b (α + β))Sα,βScα,c−1β.

Let us denote Tb = Sα,βScα,c−1β. Recall that A = α + β, B = β2n−k + β, A′ = cα + c−1β

and B′ = (c−1β)2
n−k

+ c−1β. Notice that, when c ∈ F2n\F2e then β ∈ F∗2e , and so,

βc−1 ∈ F2n\F2e , otherwise c ∈ F2e . Thus B = 0 = B′ if and only if β = 0. Also, observe

that the conditions A = 0 = A′ if and only if α = 0 = β. Now we shall consider two cases

namely, n
e

is odd and n
e

is even, respectively.

Case 1: n
e

is odd.

1. Let A = 0, B = 0.

Notice that the cases A′ = 0, B′ 6= 0, and A′ 6= 0, B′ = 0 would not arise, therefore,

we shall calculate Tb in remaining two cases only.

(a) If A′ = 0, B′ = 0, then

T
[1(a)]
b = χ1((1 + c−1)β) q2.

(b) If A′ 6= 0, B′ 6= 0, then

T
[1(b)]
b =

0 if Tre(B
′(γ′)−1) 6= 1,(

2
n/e

)e
2

3n+e
2 χ1((1 + c−1)β) if Tre(B

′(γ′)−1) = 1.
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2. Let A = 0, B 6= 0. In this case Sα,β = 0 and hence

T
[2]
b = 0.

3. Let A 6= 0, B = 0. Again, Sα,β = 0 and hence

T
[3]
b = 0.

4. Let A 6= 0, B 6= 0.

(a) If A′ = 0, B′ = 0, then

T
[4(a)]
b =

0 if Tre(Bγ
−1) 6= 1,(

2
n/e

)e
2

3n+e
2 χ1((1 + c−1)β) if Tre(Bγ

−1) = 1.

(b) If A′ = 0, B′ 6= 0, then Scα,c−1β = 0 and hence

T
[4(b)]
b = 0.

(c) If A′ 6= 0, B′ = 0, then again Scα,c−1β = 0 and hence

T
[4(c)]
b = 0.

(d) If A′ 6= 0, B′ 6= 0, then the only relevant case is and

T
[4(d)]
b =

2n+eχ1((1 + c−1)β) if (α, β) ∈ F ∩ F ′,

0 otherwise.

We now summarize the above discussion in the following theorem.

Theorem 32. Let f(X) = X2k+1, 1 ≤ k < n be a function on F2n, n ≥ 2. Let c ∈ F2n\F2e

and n/e be odd, where e = gcd(k, n). Then the cBCT entry cBf (1, b) of f at (1, b) is given

by

1 +
2
e
2

2n

∑
(α,β)∈(A∩F ′)∪(A′∩F)

χ1(bα + (1 + c−1 + b)β)) +
2e

2n

∑
(α,β)∈F∩F ′

χ1(bα + (1 + c−1 + b)β)).
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Proof.

cBf (1, b) =
1

q2

 ∑
(α,β)∈A∩A′

χ1(b(α + β))T
[1(a)]
b +

∑
(α,β)∈A∩F ′

χ1(b(α + β))T
[1(b)]
b

+
∑

(α,β)∈F∩A′
χ1(b(α + β))T

[4(a)]
b +

∑
(α,β)∈F∩F ′

χ1(b(α + β))T
[4(d)]
b


= 1+

(
2

n/e

)e
· 2

e−n
2

∑
(α,β)∈(A∩F ′)∪(A′∩F)

χ1(bα + (1 + c−1 + b)β))

+ 2e−n
∑

(α,β)∈F∩F ′
χ1(bα + (1 + c−1 + b)β)).

Corollary 6.5.1. Let f(X) = X2k+1, 1 ≤ k < n, be a function on Fq, n ≥ 2. Let

c ∈ F2n\F2e and n/e be odd, where e = gcd(k, n). With the notations of the previous

theorem, the cBU of f satisfies

cBf ≤ 1 +

(
2

n/e

)e
· 2

e−n
2 |(A ∩ F ′) ∪ (A′ ∩ F)|+ 2e−n|F ∩ F ′|.

Case 2: n/e is even.

1. Let A = 0, B = 0. Notice that the cases A′ = 0, B′ 6= 0, and A′ 6= 0, B′ = 0 would

not arise, therefore, we shall calculate Tb in remaining two cases only.

(a) If A′ = 0, B′ = 0, then

T
[1(a)]
b = χ1((1 + c−1)β) q2.

(b) If A′ 6= 0, B′ 6= 0, then

T
[1(b)]
b =


(−1)

m
e 2m+nM ′ if (α, β) ∈ A ∩ (I ′ ∪ K′),

0 if (α, β) ∈ A ∩ J ′,

(−1)
m
e
+12m+n+eM ′ if (α, β) ∈ A ∩ L′,

where M ′ = χ1((1 + c−1)β)χ1(A
′X2k+1

A′ ).
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2. Let A = 0, B 6= 0. In this case Sα,β = 0 and hence

T
[2]
b = 0

3. Let A 6= 0, B = 0. Notice that the case A′ = 0, B′ = 0 would not arise. Now we

shall calculate Tb in the remaining cases.

(a) If A′ = 0, B′ 6= 0, then Scα,c−1β = 0 and hence

T
[3(a)]
b = 0.

(b) If A′ 6= 0, B′ = 0, then

T
[3(b)]
b =



2nχ1((1 + c−1)β) if (α, β) ∈ G ∩ G ′,

−2n+eχ1((1 + c−1)β) if (α, β) ∈ G ∩H′,

−2n+eχ1((1 + c−1)β) if (α, β) ∈ H ∩ G ′,

2n+2eχ1((1 + c−1)β) if (α, β) ∈ H ∩H′.

(c) If A′ 6= 0, B′ 6= 0, then

T
[3(c)]
b =



2nM ′ if (α, β) ∈ G ∩ (I ′ ∪ K′),

0 if (α, β) ∈ (G ∪ H) ∩ J ′,

−2n+eM ′ if (α, β) ∈ G ∩ L′,

−2n+eM ′ if (α, β) ∈ H ∩ (I ′ ∪ K′),

2n+2eM ′ if (α, β) ∈ H ∩ L′).

4. Let A 6= 0, B 6= 0.
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(a) If A′ = 0, B′ = 0, then

T
[4(a)]
b =


(−1)

m
e 2m+nM ′′ if (α, β) ∈ A′ ∩ (I ∪ K),

0 if (α, β) ∈ A′ ∩ J ,

(−1)
m
e
+12m+n+eM ′′ if (α, β) ∈ A′ ∩ L,

where M ′′ = χ1((1 + c−1)β)χ1(AX
2k+1
A ).

(b) If A′ = 0, B′ 6= 0, then Scα,c−1β = 0 and hence

T
[4(b)]
b = 0.

(c) If A′ 6= 0, B′ = 0, then

T
[4(c)]
b =



2nM ′′ if (α, β) ∈ G ′ ∩ (I ∪ K),

0 if (α, β) ∈ (G ′ ∪H′) ∩ J ,

−2n+eM ′′ if (α, β) ∈ G ′ ∩ L,

−2n+eM ′′ if (α, β) ∈ H′ ∩ (I ∪ K),

2n+2eM ′′ if (α, β) ∈ H′ ∩ L.

(d) If A′ 6= 0, B′ 6= 0, then

T
[4(d)]
b =



2nM ′′′ if (α, β) ∈ (I ∪ K) ∩ (I ′ ∪ K′),

0 if (α, β) ∈ (I ∪ K ∪ L) ∩ J ′,

−2n+eM ′′′ if (α, β) ∈ (I ∪ K) ∩ L′,

0 if (α, β) ∈ J ∩ (I ′ ∪ J ′ ∪ K′ ∪ L′),

−2n+eM ′′′ if (α, β) ∈ L ∩ (I ′ ∪ K′),

2n+2eM ′′′ if (α, β) ∈ L ∩ L′,

where M ′′′ = χ1((1 + c−1)β)χ1(AX
2k+1
A + A′X2k+1

A′ ).

We now summarize the above discussion in the form of following theorem.
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Theorem 33. Let f(X) = X2k+1, 1 ≤ k < n be a function on F2n, n ≥ 2. Let c ∈ F2n\F2e

and n/e be even, where e = gcd(k, n). With the prior notations, the cBCT entry cBf (1, b)

of f at (1, b) is given by

1

q2

 ∑
(α,β)∈A∩A′

χ1(b(α + β))T
[1(a)]
b +

∑
(α,β)∈A∩(I′∪K′)

χ1(b(α + β))T
[1(b)]
b

+
∑

(α,β)∈A∩L′
χ1(b(α + β))T

[1(b)]
b +

∑
(α,β)∈G∩G′

χ1(b(α + β))T
[3(b)]
b

+
∑

(α,β)∈G∩H′
χ1(b(α + β))T

[3(b)]
b +

∑
(α,β)∈H∩G′

χ1(b(α + β))T
[3(b)]
b

+
∑

(α,β)∈H∩H′
χ1(b(α + β))T

[3(b)]
b +

∑
(α,β)∈G∩(I′∪K′)

χ1(b(α + β))T
[3(c)]
b

+
∑

(α,β)∈G∩L′
χ1(b(α + β))T

[3(c)]
b +

∑
(α,β)∈H∩(I′∪K′)

χ1(b(α + β))T
[3(c)]
b

+
∑

(α,β)∈H∩L′
χ1(b(α + β))T

[3(c)]
b +

∑
(α,β)∈A′∩(I∪K)

χ1(b(α + β))T
[4(a)]
b

+
∑

(α,β)∈A′∩L

χ1(b(α + β))T
[4(a)]
b +

∑
(α,β)∈G′∩(I∪K)

χ1(b(α + β))T
[4(c)]
b

+
∑

(α,β)∈G′∩L

χ1(b(α + β))T
[4(c)
b +

∑
(α,β)∈H′∩(I∪K)

χ1(b(α + β))T
[4(c)]
b

+
∑

(α,β)∈H′∩L

χ1(b(α + β))T
[4(c)]
b +

∑
(α,β)∈(I∪K)∩(I′∪K′)

χ1(b(α + β))T
[4(d)]
b

+
∑

(α,β)∈(I∪K)∩L′
χ1(b(α + β))T

[4(d)]
b +

∑
(α,β)∈(I′∪K′)∩L

χ1(b(α + β))T
[4(d)]
b

+
∑

(α,β)∈L′∩L

χ1(b(α + β))T
[4(d)]
b

 .



Chapter 7

Conclusion

In this chapter, we shall give a brief summary of the problems considered in this thesis

and give some future directions related to the these problems.

In Chapter 2, we classified planar DO polynomials from the composition of the re-

versed Dickson polynomials of arbitrary kind and monomials Xd, where d is a positive

integer, over finite fields of odd characteristic. The permutation behaviour of reversed

Dickson polynomials is also an interesting problem. The classification of permutation

polynomials from reversed Dickson polynomials is not known even for the prime fields Fp,

p odd. Therefore, it is an interesting problem to classify permutation polynomials from

the reversed Dickson polynomials.

In Chapter 3, we used Dickson polynomials techniques to compute the cDU of certain

power maps over finite fields of odd characteristic. We also found that recently published

necessary conditions, which give a relationship between the difference function of a mono-

mial and the Dickson polynomial of first kind, are also sufficient. Next, for c = −1, we

gave several classes of PcN functions and functions with low cDU, and we proposed two

conjectures based upon some computational data. We also obtained a class of polynomi-

als that are PcN for all c 6= 1, in every characteristic. Further, we discussed the affine,

extended affine and CCZ-equivalence as it relates to cDU. We then concentrated on per-

turbation of a PcN function to also be PcN and gave necessary and sufficient conditions

in some cases. We also showed that in some instances such perturbations do not produce

PcN functions. It would be very interesting to find other perturbations, linear or not,

that may decrease the cDU.
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In Chapter 4, we considered the cDDT entries, as well as, the BCT entries for an invo-

lution which has been used to construct a class of differentially 4-uniform permutations,

by Beierle and Leander [3]. We also considered the cDU and BU of another differentially

4-uniform function given by Tan et al. [55] and gave bounds for its cDU and BU. The

cDU concept, introduced barely a year ago, has proven quite interesting and attractive,

mathematically. It would be interesting to construct more function with low cDU over

finite fields.

In Chapter 5, we computed the BU of the power map X2m−1 over F22m . As an im-

mediate consequence, we found that the DU is not necessarily smaller than the BU (for

non-permutations), as it was previously shown for permutations and assumed to hold for

non-permutations, as well. It would be interesting to construct more functions for which

DU is strictly greater than BU.

In Chapter 6, we computed the cBCT entries for the Gold functions over finite fields

of even characteristic, for all c ∈ F∗2n , using product of Weil sums. In the process, we

generalised a result of Boura and Canteaut [8]. It would be interesting to construct more

function with low cBU over finite fields.
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[49] L. Rónyai, T. Szönyi, Planar functions over finite fields, Combinatorica, Vol.

9 (1989), 315–320.
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