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Abstract

Recently, thermal surveillance has gotten much attention due to its possible applications

in military and naval technologies. However, due to the developed technology and cheaper

price of thermal sensors, they are put forward for various applications: agriculture, food

industry, night surveillance, building inspection, gas detection, industrial safety, etc. The

thermal sensor captures heat radiated by the object and is independent of the natural

source of energy. Therefore, automatic surveillance can be performed using the thermal

camera on a 24-hour basis and at any environmental condition. However, the performance

of the thermal surveillance is challenging due to the distinct characteristics of the thermal

image: low resolution (or) missing information, low signal-to-noise ratio, lack of structure

such as shape and textural information, lack of color information, and low contrast, etc.

Thus, the visual contents of the thermal image are poorer and make it di�cult to detect

the moving object present in the thermal scene. Hence, there is a need for designing of

technologies to enhance the perceivable information and use the same to detect moving

objects.

The objective of the thesis is to investigate and analyze, both theoretically and em-

pirically, by developing some new algorithms to improve the visual contents and detect

the moving objects in the thermal video scene for surveillance systems.

To enhance the visual contents in the thermal image, we have proposed two-pixel level

(visual and thermal) image fusion techniques: fuzzy edge preserving intensity variation

approach and a weighted combination of maximum and minimum value selection strat-

egy. In the proposed fuzzy edge preserving intensity variation approach, we have explored

the maximum selection strategy and fuzzy edge preservation mechanism to generate the

high contrast fused image with significant edge details. Further, in the proposed weighted

combination of maximum and minimum value selection strategy, we have investigated the

maximum selection strategy, the minimum selection strategy, and the weighted combi-

nation mechanism among the source images to generate the fused image with essential

details and reduced artifacts. However, it is observed that the proposed pixel-level image

fusion schemes have introduced many isolated points in the fused image, which degraded

the quality of the fused images.

Further, we have proposed two feature level (visual and thermal) image fusion schemes:

integration of bi-dimensional empirical mode decomposition with two streams VGG-16
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and non-subsampled contourlet transform induced two streams ResNet-50 network. In the

proposed integration of bi-dimensional empirical mode decomposition with two streams

VGG-16 technique, the bi-dimensional empirical mode decomposition (BEMD) mecha-

nism integrated with VGG-16 architecture is proposed to preserve the deep features at var-

ious levels. The proposed deep multi-level fusion strategy produces the fused image with

complementary details. Again, in the non-subsampled contourlet transform induced two

streams ResNet-50 network technique, the non-subsampled contourlet transform (NSCT)

mechanism induced with the ResNet-50 network is exploited the deep directional features

at low-frequency and high-frequency bands. The proposed fusion strategy generates the

fused image with reduced artifacts. The fused image sequences are then used for object

detection.

In the next stage of the thesis, We have proposed a kernel induced possibilistic fuzzy

associate background subtraction technique for moving object detection. In the proposed

kernel induced possibilistic fuzzy associate background subtraction technique, the use of

the induced kernel function projects the low dimensional data into a higher dimensional

space and the use of the possibilistic function constructs a robust background model based

on the density of the data in the temporal domain avoiding the noisy and outlier points.

Further, it is observed that detecting the accurate shape of the moving object is quite

di�cult and again a thermal video contains high uncertainty due to low resolution and

high noise.

In this context, we have proposed two multi-scale deep learning architectures for mov-

ing object detection: modified ResNet-152 network with hybrid pyramidal pooling and

multi-scale contrast preserving deep learning for moving objects detection. In the pro-

posed modified ResNet-152 network with a hybrid pyramidal pooling technique, a mod-

ified ResNet-152 network is induced on the multi-scale features extraction (MFE) block

to enhance the feature learning capabilities that preserve sparse and dense deep features.

The proposed decoder network precisely projects the feature-level into pixel-level. Again,

in the proposed multi-scale contrast preserving deep learning architecture, the proposed

encoder network with multi-scale contrast preservation (MSCP) block can retain the con-

trast details of the in-depth features. The proposed decoder network accurately projects

the extracted features at di↵erent layers into pixel-level.

The e�ciency of the proposed techniques is corroborated by testing them on di↵er-



v

ent benchmark databases. The performances of the proposed methods are evaluated by

considering di↵erent competitive state-of-the-art techniques using relevant quantitative

measures.
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Chapter 1

Introduction and Scope of the Thesis

1.1 Introduction

In the past few decades, research and development in automatic vision-based surveillance

systems have been getting its popularity because of their massive real life applications.

It is a process of detecting moving objects followed by tracking of the same from a video

scene. For the surveillance system, the visual sensor is an essential component. The visual

sensor can capture the image in grey scale or RGB plane with detailed textural informa-

tion and better spatial resolution. However, these kinds of images are immensely a✏icted

by variations in illumination. Furthermore, the visual sensor is unable to provide a better

accuracy during night time due to low visibility. Therefore, to surpass the said limitations

thermal sensors are widely used for night time surveillance. Thermal sensors capture the

heat emitted by the object and are hence independent of the external sources. Based on

their capability to sense the radiated heat, thermal sensors are found to be used as two

varieties: active and passive thermal sensors. An active sensor emits infrared radiation

and captures the radiation reflected by an object. Generally, the active sensors capture

the radiation of both the near-infrared electromagnetic and the visible spectrum and less

reliant on illumination. However, passive thermal sensors are preferred in many applica-

tions as they captures heat radiated by the object, breaking the dependency on external

sources of energy. Thermal radiation is not a↵ected by adverse environmental conditions

but generally has ambiguous textural information and poor resolution. Therefore, most

of the time it is preferred to use both visible and thermal sensors simultaneously for the

1
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surveillance system instead of using either visible sensor or thermal sensor individually.

1.2 Visible Imaging

An image represents the real world scene in a 2D plane. A camera captures the light

energy reflected from objects on the camera’s view. The world we reside in is 3D, but

the camera focuses the rays falling on the screen to a 2D image plane. Mathematically,

an image can be represented as a two-dimensional function I(x, y), where (x, y) denotes

the spatial coordinates, and I indicates the intensity value at that point (x, y), generally

termed as pixel. A graphical illustration of the conventional image formation model is

shown in Figure 1.1. The images formation model has three main components: light

source, camera, and target object. The source generates a ray of photons if it is in the

visible spectrum. Sun is the natural source of light, and it acts as a source of illumination

for the natural photography. The light from the source incident on the target and reflected

light is allowed to fall on the lens of a camera based on the reflectance coe�cients of the

object. The light rays falls on the lens and projected to the imaging sensor generates

an image on the imaging plane. Sampling and quantization strategies are applied to

represent the image in the digital domain. In the digital image, the intensity value of

each pixel is represented by b bits binary digits. Generally, for a 8 bits system, the pixel

intensity values range from 0 to 255. Further, several image processing task can be made

to extract meaningful information from an image: image enhancement, image restoration,

image compression, image segmentation, and object recognition.

1.3 Thermal Imaging

Thermal imaging is an approach of converting thermal radiation information into visual

information representing the spatial distribution of temperature variation in a scene cap-

tured by a thermal camera. The infrared (IR) sensor captures the heat emitted by the

objects, and the infrared lens focuses the radiation information on the focal plane array.

The IR-sensitive detector coincides with the focal plane array using the photoelectric

e↵ects to generate the electrical signal and is processed by the image processor to gen-

erate the image. Here, the intensity level of the image is proportional to the object’s

temperature. The IR detector may be cooled, or uncooled based on the materials used
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Figure 1.1: Visible image formation model.

in the detector and the sensors use. The image formation model by the thermal sensor

is presented in Figure 1.2. The wavelength spectrum of infrared radiation lies between

Figure 1.2: Thermal image formation model.

the visible light range and the microwave range of the electromagnetic spectrum. The

infrared spectrum is divided into five categories: near-infrared (NIR), short-wavelength

infrared (SWIR), mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR),

and far-infrared (FIR) as represented in Figure 1.3. Generally, the MWIR and LWIR in-

frared spectrum are known as thermal infrared as the objects emits the thermal radiation

in this spectral range. Due to presence of various particles and gasses in the atmosphere

it can allow the certain range of thermal radiation spectrum and attenuate the others.

Figure 1.4, demonstrate the atmospheric windows for thermal radiation transmission and

attenuate the thermal radiation because of the absorbing molecule in the atmosphere.

Radiation from an object at the temperature T can be determined by Planck’s radiation



CHAPTER 1. INTRODUCTION AND SCOPE OF THE THESIS 4

law and can be given as,

I(�r, T ) =
2⇡hc2l

�5r(e
hcl/�rkBT � 1)

, (1.1)

where �r denotes the wavelength of the radiation, h is the Planck’s constant, cl represents

the velocity of light, and kB is the the Boltzmann’s constant. Figure 1.5 depicts few real

life infrared images at various conditions.
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Figure 1.3: The electromagnetic spectrum with various division of infrared spectrum.

Figure 1.4: Transmitting and attenuated region of infrared radiation through atmosphere [1].
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Figure 1.5: Examples of real life infrared images [2].

1.3.1 Thermal Sensors

Generally, two types of detectors are used in the thermal sensing: photon detector or

thermal detector [3]. The photon detector transforms the infrared radiation into electric

energy by varying the free charge concentration in a semiconductor. This type of detector

generally works in the mid-wavelength infrared band and is highly sensitive to variation

in the scene temperature. The photon detector-based infrared sensor generates a higher

frame rate video. However, while capturing the image, the said sensor needs to be cooled

to reduce the sensor noise. This cooling mechanism can be attained using liquid nitrogen

or a cryocooler. Therefore, this system is not cost-e↵ective.

A thermal detector transforms infrared radiation into thermal energy, which causes

a rise in temperature at the detector. Then potential is developed across the sensor

corresponding to the temperature. The thermal detector is an uncooled device that uses

ferroelectric detectors or microbolometers. The ferroelectric detectors utilize the barium

strontium titanate (BST) material, where minor variations in the scene temperature cause

more apparent changes in electric polarization in the material. However, the images from

the BST detector has low resolution and produces a Halo e↵ect around the edges in the

image. Therefore, the thermal detector based on microbolometers is popular, utilizing

amorphous silicon and vanadium oxide materials. The thermal radiation of an object

changes the property (electrical resistance) of the material; thus, potential get developed

and further processed to generate an image. The thermal sensor based on microbolometers

generates an image with better spatial resolution and reduced thermal noise.

Generally, the thermal images are represented as greyscale images with a bit depth of
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8 or 16 bits. For better visibility of the thermal image, pseudo color is assigned during

the image representation. The spatial resolution for the standard thermal sensor typically

varies from 160⇥ 120 pixels to 1, 280⇥ 1, 024 pixels.

1.4 Automatic Surveillance System

In automatic surveillance, the system monitors people through cameras placed around

di↵erent geographical locations. The far most objective of any surveillance system is

to extract meaningful information from the video data captured from the surveillance

cameras by detecting, and tracking the moving objects, and analyzing their behaviors.

Surveillance may have di↵erent applications including: crime prevention, homeland se-

curity, tra�c behavior analysis, risk prediction, indoor monitoring of elder persons and

children, etc. Visual surveillance can be accomplished by using either a visible sensor or a

thermal sensor. In the past few decades, visible sensors play an import role for surveillance

system. However, such type of system fails in adversarial environmental condition, unable

to capture the image in darkness or low light condition like night time. Hence, to make

the surveillance system automated and facilitates continuously monitoring the objects on

a 24-hour basis, a thermal sensor is preferred these days. The graphical illustration of the

thermal surveillance system is shown in Figure 1.6. Thermal camera for surveillance is

one of the prime areas of focus for several military and naval applications. But, due to the

advanced technology and cheap availability of thermal sensors, they are put forward for

many other applications: night surveillance [4], agriculture and food industry [5], building

inspection [6], gas detection [7], industrial safety [8], etc.

TheUPal
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Figure 1.6: Block diagram of the thermal surveillance system.
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1.4.1 Needs of Visual Enhancement by Image Fusion

The thermal sensor has captured the infrared radiation information emitted by the objects

and is represented as bright pixels for hot objects [9]. Generally, the IR images provide

information based on thermal radiation from the objects, usually characterized by pixel

values where the targets are recognized but have insu�cient background information.

Also, the IR image has ambiguous textural information and poor resolution. Therefore,

it is required to increase the perceivable information in the IR image, known as the visual

enhancement. However, this will be more challenging as thermal images are low resolution

and have poor textural information. Hence, most of SOTA techniques have explored the

fusion of visible and thermal images for visual enhancement. Figure 1.7 (a) and (b) show

an IR image and a visible image pair. Figure 1.7 (c) is the fused image obtained by using

the image fusion technique that preserves complementary contents from the source images.

From Figure 1.7 (c), it may be found that the fused image contains more information and

is visually appealing. Therefore, in thermal video surveillance, visual enhancement is

an important step before object detection as well as tracking of the same. Hence, the

modified graphical illustration of the automatic video surveillance system is presented in

Figure 1.8.

(a) (b)

(c)

Figure 1.7: An example of image fusion (a) infrared image, (b) visible image, and (c) fused image .

1.4.2 State-of-the-Art Techniques for Image Fusion

Image fusion is a technique of combining information from di↵erent images of the same

scene into a single image [10]. The fused image may contain more important information
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Figure 1.8: Block diagram of the modified thermal surveillance system.

that can help ensue processing or help in decision making. The important requirements

for image fusion are extracting salient features from the di↵erent source images and using

them in combination to produce the fused one with reduced artifacts. Many techniques

have been proposed in the last few decades to extract the features from the sources and

construct the fused image [11]. These fusion approaches are successfully used in di↵erent

applications: military application, video surveillance, medical domains, etc, and found to

be achieving a better performance.

For the vision based system, we can use either a individual imaging type (visible

or IR) or both. The advantages of visible images usually have good spatial resolution

and detailed textural information; thus they are applicable for human visual intuition.

However, these kind of source images can be simply influenced by darkness and luminosity,

disturbed weather conditions such as rain, fog, smoke, snow, etc. In-order to overcome

these problems and to appropriately carry out object detection, several research articles

suggest that the use of IR image for fusion with the visible one. Actually, an IR sensor

captures the temperature emitted by target object. So it doesn’t get e↵ected by sudden

change in environmental conditions [12] and provides suitable information of the objects

at night time or at disturbed weather conditions. This typical capability of IR sensor

facilitates continuously monitoring objects on a 24-hour basis and can detect hot objects.

But the IR based system unable to handle information in a hot day as it provides a lot

of hot areas which emits heat including the objects. Also thermal radiation of objects

typically have poor texture and low resolution. Therefore, it is of great advantage to fuse

the IR and visible images for vision system instead of using single type of image (visible

or IR) for the surveillance system. By virtue, it is assumed that di↵erent source images

are registered pixel by pixel [13]. IR and visible image fusion has widely been used in the

domains of object tracking [14], object detection [15], object recognition [16], surveillance
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[17], remote sensing [18], military [19], etc.

Depending on the applications and information representation, the SOTA of image

fusion are categorized of three types: pixel level, feature level, and decision level [20].

1.4.2.1 Pixel-level Image Fusion Techniques

It is the process of directly combining the original information of the source images to

generate the fused image, which is more informative than the source images [21]. During

past decades, many techniques have been presented to report the fusion at pixel level.

The simplest approach to the fusion of images is pixel-by-pixel averaging of the images

from di↵erent sensors [22]. However, the main drawback of this technique is, the sources

have similar e↵ects in the fused image without considering their information contents. To

overcome this problem, the frequently used techniques are multi-scale transform (MST).

The MST depended techniques encompass the subsequent steps [20]. Initially, the images

obtained by the various sensors are decomposed into several layers with di↵erent salient

features. Then, by utilizing appropriate fusion rules di↵erent layers are fused. At the

end, by utilizing the relating inverse MST on the fused layers, the final fused images

are reconstructed. The most frequently used multi-scale transform-based techniques for

fusion of images include: Laplacian pyramid (LP) [23], ratio of low-pass pyramid (RP)

[24], contrast pyramid (CP) [25], filter-subtract-decimate pyramid (FSD) [26], gradient

pyramid (GP) [26], and morphological pyramid (MP) [26], discrete wavelet transform

(DWT) [27], shift-invariant discrete wavelet transform (SI-DWT) [27] curvelet transform

(CVT) [28], and nonsubsampled contourlet transform (NSCT) [29]. However, the multi-

scale transform-based techniques are trying to retain similar important information from

both sources, which is not appropriate for IR and visible image fusion.

Li et al. [30] put forward a guided filter-based image fusion technique, where an average

filter is used for two-scale decomposition. Then, a weighted average is used for the fusion

of the base and the detailed parts. However, such methods are not able to retain the edges

while smoothing images according to their scales, which provides a greater advantage to

the fusion scheme. Bavirisetti and Dhuli [31] proposed an IR and visible image fusion

technique based on a two-scale decomposition and saliency detection, where the mean and

the median filters are used to obtain the base and the detailed components. Next, weight

maps are obtained from the visual saliency. By combining the base, the detailed, and
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the weight map components, the fused image is constructed. However, such an approach

gives Halo e↵ects around the edges in the fused images.

1.4.2.2 Feature-level Image Fusion Techniques

It is the process of incorporating the feature sets extracted from the source image to

produce the fused image, which may contain more essential information than the source

images [32]. During past decades, many techniques have been presented to report the

fusion at the feature level. Zong et al. [33] proposed SR technique-based fusion method

where the classification of image segments and learning numerous sub-dictionaries has

been done using Histogram of Oriented Gradient (HOG) features. The resultant image is

obtained using the l1-norm and the maximum selection strategy. Being highly sensitive

to mis-registration and having a limited capability to preserve the details are the major

setbacks of these SR-based fusion techniques. In [34], the authors proposed a convolutional

sparse representation (CSR) for fusing images, where the CSR-based method obtains

deep features that are used for the fusion. However, this technique provides fused images

containing ringing artifacts around the salient features. Liu et al. [35] proposed an image

fusion approach of morphological component analysis based on convolutional sparsity

(CS-MCA). By integrating morphological component analysis (MCA) and convolutional

sparse representation (CSR) into a unified optimization network, this method achieves

multi-component and global SRs of the source images. Here, the CSRs and texture

components are generated by the CS-MCA model [35] using pre-learned dictionaries.

The fused image is obtained by using the CSRs and the texture components of the source

images. However, this fusion scheme is suited to the fusion of multi-focus images.

For the last few years, deep learning has been a lucrative tool for the extraction of

deep features from source images, which are also used for the fusion of images at feature

level. An IR and visible fusion of images with a convolutional neural network (CNN)

is proposed in [36]. In this technique, the Laplacian pyramid decomposition is used for

the source images. Again, a convolutional network is applied to obtain the weight maps

from the source images and the Gaussian pyramid decomposition for the weight maps.

Finally, inverse Laplacian transform and coe�cient fusion are used to construct the fused

image. However, the said technique cannot take full advantage of extracted features. A

CNN-based image fusion scheme is presented in [37]. The authors have used a patch-wise
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training strategy that contains di↵erent blurred versions of input images to acquire the

decision maps. By using the decision maps and the source images, the fused image is

constructed. The major disadvantage of this approach is that it can only be used for the

fusion of multi-focused images.

An e�cient CNN-based image fusion technique is given by Prabhakar et al. [38], where

the encoding network is used to get two feature map sequences, and a fused feature map

is obtained by using the addition strategy. Herein, the resulting fused image is generated

by utilizing a decoding network that comprises three CNN layers. Here, the deep network

information may not have been explored completely. A densefuse network proposed by

Li et al. [39] where the network contains a fusion layer, encoder, and decoder to get

the fused images. However, this network is not able to obtain deep features. Li et al.

[40] developed an approach to obtain the deep multi-level features which are used to fuse

images. This fusion technique uses the middle layer information for the fusion scheme,

where significant information is lost during the extraction of features. An end-to-end

residual fusion architecture is proposed by Li et al. [41] where an encoder network is used

to obtain the deep features from the sources at a multi-scale, and the decoder network is

developed to construct the fused images. However, such an approach is unable to transfer

su�cient details from the sources into the fused images. Also, an image fusion technique

dependent on ResNet-152 in an NSCT domain is proposed by Gao et al. [42] where

images from various sensors are decomposed into di↵erent frequency sub-bands. The

ResNet-152 deep neural network is used to extract features in-depth for low-pass sub-

bands and carry out the fusion for the same. The band-pass sub-bands are fused using

the modulus maximum selection strategy. The resultant image is obtained by applying

inverse NSCT on fused low-pass and band-pass sub-bands. However, this fusion scheme

cannot preserve the structural information and textural details in the fused images as it

uses only low-frequency sub-bands to extract deep features.

1.4.2.3 Decision-level Image Fusion Techniques

It is the process of combining the information extracted from the source images based on

some decision rules to generate the fused image, which has enhanced visual contents [32].

Many techniques have been presented to report the fusion at the decision level during past

decades. Rashidi et al. [43] proposed a multi-modal image fusion technique at the decision
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level where two measures: plausibility and correctness, are jointly used to enhance the

classification performance. Neagoe et al. [44] proposed a face recognition system based

on image fusion at the decision level, which incorporates the recognition scores produced

from visible channels with a thermal neural classifier. Zhao et al. [45] proposed a decision

level image fusion technique for face recognition. The linear discriminant analysis and

principal component analysis are used to obtain the face features, and the decision-level

fusion rule is implemented with the source images recognition results and their confidence

measures. Wang et al. [46] proposed a decision level image fusion technique based on

the fuzzy theory where fuzzy C-means clustering is used to classify each source image

and maximum membership rule is utilized to generate the fused image. However, these

said techniques are unable to handle the high uncertainty in the source images. In this

regard, Wang et al. [47] proposed a decision level image fusion technique based on the

evidence theory where variance contrast, variance o↵set, and entropy are used as evidence.

The evidence theory framework combines the evidence, and the fused image is produced

according to a final decision. However, the performance of the said technique is degraded

due to poorer classification results. In this regard, Vagale et al. [48] proposed a data

fusion technique for target identification at the decision level where classification belief

weights and sensor belief weights are used.

1.4.2.4 Benchmark Database for Image Fusion

In this thesis, we have considered the benchmark TNO dataset [2] for evaluation of the

proposed scheme. The TNO dataset contains various challenging scenes: illumination

variation, smoke, occluded objects, non-uniform lighting conditions, etc.

TNO Dataset

The TNO dataset consists of 63 image pairs with visual (390–700nm ), near-infrared

(700–100nm), and long-wave infrared (8-12µm) nighttime imagery of di↵erent surveillance

and military relevant scenarios. It contains image pairs with people that are walking,

running, stationary or carrying di↵erent objects, vehicles, buildings, foliage, or other

artificial structures. Various sensors are used to capture the images: Athena, DHV, FEL,

and TRICLOBS. These images have been registered and geometrically warped so that

related image pairs have pixel-wise correspondence. Images are captured in the night-
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time during various outdoor field in rural as well as urban areas.

1.4.2.5 Quantitative Measures used for Image Fusion

Although humans are the best evaluator of any vision system, it is not possible for the

human being to evaluate the performance in a quantitative manner. Hence, it is neces-

sary to evaluate methods in an objective way. Evaluation of the performance of fusion

techniques is di�cult as the ground truths are not always available for most challenging

scenes. It is observed that in most of the SOTA techniques cited, the uses of di↵erent

objective evaluation measures: Entropy (EN) [49], mutual information (MI) [49], mutual

information for the discrete cosine features (FMIdct) [50], mutual information for the

wavelet features (FMIw) [50], amount of artifacts added during the fusion process (Nabf )

[51], average structural similarity index (SSIMa) [52] and average edge preservation index

(EPIa) [53]. The performance of any fusion algorithm is better if the EN, MI, FMIdct,

SSIMa, and EPIa values are higher with lower Nabf value. The evaluation measures are

described as follows:

Entropy The entropy measure can be described as

EN = �
L�1X

l=0

Pl log2 Pl . (1.2)

where L represents the number of grey levels and Pl is the normalized histogram of the

corresponding grey level in the fused image.

Mutual Information The mutual information measure can be defined as

MI = MII1 ,F +MII2 ,F , (1.3)

where I1 and I2 are the source images and F is the fused image.

The MI between source and fused images can be calculated as follows:

MI =
X

i,f

PI,F (i, f) log
PI,F (i, f)

PI(i)PF (f)
. (1.4)

where PI(i) and PF (f) represents the marginal probability of source image Is and fused
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image F . The joint probability of I and F represented by PI,F (i, f).

Mutual Information for the Discrete Cosine and Wavelet Features The FMI

measure can be described as

FMIF =
MI(I1;F ) +MI(I2;F )

2
. (1.5)

where I1 and I2 denote the source images. TheMI(Is;F ) indicates the mutual information

among the source and fused images.

Amount of Artifacts Added During the Fusion Process The quantity of artifacts

(Nabf ) introduced in the fused image can be determined by considering a = I1 and b = I2;

Nabf =

P
x

P
y AMx,y[(1� Q̄I1F

x,y )w̄
I1
x,y + (1� Q̄I2F

x,y )w̄
I2
x,y]P

8x
P

8y(w̄
I1
x,y + w̄I2

x,y)
. (1.6)

where AMx,y =

8
><

>:

1 if eFx,y > eI1x,y and eFx,y > eI2x,y

0 otherwise
. It signifies the artifacts introduced

during the fusion process where the gradients of a fused image have greater strength than

the input. eI1x,y, e
I2
x,y and eFx,y represents the edge strength of the visible, IR and fused

images. Q̄I1F
x,y and Q̄I2F

x,y are the quantity of data that propagates from the source to fused

image. The perceptual weights of the source images are interpreted by w̄I1
x,y and w̄I2

x,y.

Structure Similarity Index (SSIM) The SSIM measure can be obtained as:

SSIM =
X

i,f

2µ̄iµ̄f + C1

µ̄2

i + µ̄2

f + C1

· 2�i�f + C2

�2

i + �2

f + C2

· �if + C3

�i�f + C3

. (1.7)

where the SSIM indicates the structural similarity among the source and fused im-

ages. The standard deviation of the source and the fused images are denoted by �i, and

�f , respectively. �if represents the covariance, and µ̄i and µ̄f signifies the mean values

of the source and the fused image patches. The constants C1, C2, and C3 are utilized to

achieve the algorithm’s stability. The average structural similarity index SSIMa can be
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estimated as:

SSIMa =
SSIM(F, I1) + SSIM(F, I2)

2
. (1.8)

Edge Preservation Index The EPI quantitative metric can be obtained as:

EPI =
�(rf �rf ,crs � crs)q

�(rf �rf ,rf �rf ) · �(crs� crs, crs� crs)

, (1.9)

�(F, I) =
X

(x,y)2ROI

F (x, y) · Is(x, y), (1.10)

where the high-pass filtered variant of the region of interest (ROI) acquired by 3 ⇥ 3

Laplacian operator in the fused and source image is indicated by rf and crs. The mean

of Laplacian ROI in the fused and source image is denoted by rf and crs, respectively.

The EPIa is the average edge preservation index and can be calculated as:

EPIa =
EPI(F, I1) + EPI(F, I2)

2
. (1.11)

1.4.3 State-of-the-Art Techniques for Moving Object Detection

by Background Subtraction

Thermal sensors are capable of apprehending the long-wave infrared radiation reflected

or emitted by the objects in the scene, which are not easy to be analyzed or detectable

by a normal human vision [54]. The conventional ferroelectric barium strontium titanate

(BST) thermal sensors are used in many surveillance cameras and have a good signal to

noise ration (SNR) value. Thermal camera for surveillance is one of the prime areas of

focus for several military and naval research. Thermal-based surveillance systems are used

for two major military tasks: long-range detection of enemy vehicles and automatic target

recognition (ATR). However, in recent years, the easy and cheap availability of thermal

sensors and the advancement of surveillance technologies have opened up several other

applications in di↵erent areas: agriculture and food industry [5], building inspection [6],

gas detection [7], industrial safety [8], night surveillance [4], etc. In computer vision, the

automatic surveillance from the thermal camera videos needs the background subtraction
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(BGS) technique as one of the basic tools for moving object detection. For background

subtraction, a sequence of image frames are initially used for modeling the background

of a particular video scene. Further the target frame is compared with the constructed

background model to detect the moving objects in the video. BGS techniques are greatly

a↵ected by the dynamic background condition, uncertainty in the noise level, and the

multi-level brightness of the nearby pixels. Over the decades, many researchers have tried

in developing robust background subtraction techniques which came a long way from the

traditional approaches that used a background model specific to the video scenes. In this

thesis, we have categorized the state-of-the-art techniques for the background subtraction

into five di↵erent categories: parametric based [55], non-parametric based [56], sparse

matrix based [57], fuzzy based [58], and deep-learning based [59].

1.4.3.1 Parametric based Background Subtraction

In parametric based techniques di↵erent set of parameters are used to establish the back-

ground model and are statistically estimated from the video frames. A mixture of Gaus-

sian (MoG) based background modeling technique is proposed by Stau↵er and Grimson

[55], where the multi-valued background of a video are modeled with MoG probability

density function (pdf). The parameters of the MoGs characterize the multi-valued back-

ground and are compared against the test frame’s pixel value to detect the locations of

the moving objects. Bhanu and Han [60] proposed an automatic human motion analysis

technique for infrared image sequences. The authors have considered a modified least

squares fit to estimate the 3D human walking parameters. Although the motion of the

objects are analyzed but the said approach is limited by the complexity in parameter

estimation. In this regard, a novel thermal video surveillance technique is studied by Xu

et al. [61], where the objects in the thermal videos are detected using a support vector

machine (SVM) followed by the normalization process and Kalman filter with mean shift

is used for target tracking. Elguebaly and Bouguila [62] proposed a BGS technique for

detecting the moving objects from thermal infrared videos where the finite mixtures of

multidimensional asymmetric generalized Gaussian distributions are used to model the

video data, and expectation–maximization (EM) algorithm is used for the parameter es-

timation. Subudhi et al. [63] proposed a robust BGS scheme where the spatio-temporal

modes arising over a sequence of frames are fitted with a Gaussian pdf in the Wronskian
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framework. A modification of the said BGS is proposed by Rout et al. [64], where the

temporal modes are modeled with MoG and spatial modes are modeled with Wronskian

function. Maddalena and Petrosino [65] proposed a local change detection technique where

a self-organizing map is used to learn the background model. Further, considering the

importance of parameter estimation complexity, Makantasis et al. [66] proposed a BGS

technique where thermal responses at each pixel location are modeled using a mixture of

Gaussian, and the authors have adhered to use of the Bayesian approach to estimate the

parameters of the mixture structure. However, it is also true that the above-mentioned

techniques are too much parameter-dependent.

1.4.3.2 Non-Parametric based Background Subtraction

The non-parametric BGS scheme is adhered to the uses of kernel or histograms-based

techniques for estimating the parameters of the distribution, and hence it is found to be

less complex and e↵ective. Elgammal et al. [56] proposed a background subtraction tech-

nique where the parameters of the Gaussian mixture model (GMM) are estimated through

kernel function. Kim et al. [67] proposed a background subtraction scheme where the

concept of the codebook is introduced for background modeling. Even the above said

approach is found to be e↵ective in case of the non-static background, producing several

misclassification results. Heikkila and Pietikainen [68] proposed the BGS scheme where

the texture in image frames is modeled using local binary pattern histograms to construct

the background. A contour-based BGS technique is proposed by David and Sharma [69]

for foreground extraction in thermal images. The statistical BGS is used to identify the

local regions-of-interest. Later on in each region, the input and background gradient in-

formation are combined to form a Contour Saliency Map, and the watershed boundaries

are used to refine the contour segments. Barnich and Droogenbroeck [70] proposed a

density-aware BGS technique where the spatio-contextual property is exploited with a

random sampling strategy used for the background modeling. Haines and Xiang [71] pro-

posed a robust BGS method using a Dirichlet process GMM model where the background

distributions are estimated using pixel-wise non-parametric Bayesian method. It may be

observed from the above analysis that, one of the main problems in surveillance is to

locate the object of interest in a scene with low illumination and camouflaged foreground

objects.
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In this regard, St-Charles et al. [72] proposed a pixel level foreground segmentation

scheme where spatio-temporal binary features and color information are used to detect

the local changes. Subudhi et al. [73] proposed a statistical feature bag-based background

subtraction technique where the contents of the bags are represented as average, variance,

and the number of elements on the bags are used to construct the background model. Sajid

and Cheung [74] proposed a background subtraction technique where multiple background

models are created and the probabilities of foreground/background at each pixel location

are estimated. Further, the image pixels are combined to form mega-pixels and are used to

spatially denoise probability estimates to locate the object. Jiang and Lu [75] proposed

a background subtraction scheme using a weight sampling mechanism. A reward-and-

penalty strategy is used to reinforce active samples.

To emphasize the detection and tracking of small targets in infrared videos, Chen et al.

[76] proposed a robust surveillance scheme where the local contrast measure and a derived

kernel model is used to detect the objects in infrared videos. Further, Han et al. [77]

proposed a small target detection technique from infrared videos, where the the di↵erence

of Gabor (DoGb) filters is proposed and improved to suppress the complex background

edges, for accurate detection of objects in infrared videos. Singha and Bhowmik [78]

proposed a BGS scheme, where the spatial video salient features are represented using

Akin-Based Local Whitening Boolean Pattern (ALWBP), which are used to separate the

foreground and background region.

1.4.3.3 Sparse Matrix based Background Subtraction

Recently, it is observed that the concept of the sparse matrix is popularly used for back-

ground construction. In a sequence of image frames, due to the motion of the moving

objects, the distribution of the regions will be structurally sparse for di↵erent objects in

the scene. In this regard, a local change detection technique where the spatial informa-

tion in sparse outliers and the low-rank matrix is used to model the foreground and the

background, respectively [57]. The concept of principal component analysis (PCA) based

schemes are also devised for BGS including the binary PCA (BPCA) [79, 80]. Ebadi

et al. [81] proposed a BGS technique, where a modified principal component analysis

(PCA) uses the block sparse structure of the pixels of the moving object for local change

detection. Cao et al. [82] proposed a tensor-based robust PCA for BGS for compressed
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sequences, where the grouping of similar 3D patches from the background are used. Li

et al. [83] proposed a foreground detection technique using adaptive weighted low-rank

decomposition (WELD) mechanism where the gray-scale and the thermal videos given as

the input to the model and the sparse outliers are separated against the modeled back-

ground to represent as moving objects. Wu and Lu [84] proposed a BGS technique where

an adaptive pixel-block-based randomized arrangement is used for image sequence anal-

ysis. In the said scheme, the background model is created by an improved low-rank and

block-sparse matrix decomposition.

1.4.3.4 Fuzzy based Background Subtraction

Most of the real-life image sequences are a↵ected by illumination variation and non-static

background changes which creates uncertainty in the foreground and background seg-

mentation. Thus it may produce counterfactual inaccuracy of the BGS results. Fuzzy

set theories are repute to solve the said challenges [58]. Fuzzy running average [85] for

background subtraction is one of the pioneers works in state-of-the-art BGS techniques.

However, the said approach fails to model the multivalued background from a sequence

of image frames using fuzzy sets. In this regard, Zhang and Xu [86] proposed a fuzzy in-

tegral modeling mechanism to model the multi-valued pixels from a video scene. Further,

the said approaches are found to be poor performing for non-static background condi-

tions. Chiranjeevi and Sengupta [87] proposed a BGS technique, where the authors have

used a set of fuzzy aggregated multi-feature similarity measures applied to multimodal

backgrounds corresponding to the multiple models.

To deal with complex background scenes, a Type-2 fuzzy GMM model [88] is pro-

posed to model the non-static background pixels using the color and the texture value in

the video. El Baf et al. [89] proposed an adaptive BGS technique, where integration of

Choquet integral and fuzzy set theory is used for background update. Further, Type-2

Fuzzy Gaussian Mixture Model is integrated with the Bayesian framework is proposed

by Zhao et al. [90] for background subtraction. Maddalena and Petrosino [91] proposed

a BGS scheme that uses spatial coherence in a self-organization map (SOM) framework.

Background motion is also modeled with a fuzzy set-theoretic approach and a new his-

togram called fuzzy color histogram is created [92] to detect the local changes in a video

scene. Although the said approach is found to be e�cient but computation parameters
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involved in so are di�cult to estimate. Chacon-Murguia and Gonzalez-Duarte [93] pro-

posed a neuro-fuzzy model for background subtraction where the fuzzy inference Sugeno

system mimics human behavior to automatically adjust the parameters involved in the

SOM detection model. Considering the complexity of the parameter estimation in neuro-

fuzzy models, Zi-long et al. [94] proposed an adaptive fuzzy estimation scheme using

the Takagi-Sugeno-Kang (TSK) where the parameters of the system are optimized by

particle swarm optimization (PSO). Rajkumar et al. [95] proposed a BGS scheme using

FCM clustering and Adaptive Network-based Fuzzy Inference System (ANFIS) classifier

to deal with the multi-static background in the video scene.

Muhammet et al. [96] proposed a fuzzy BGS technique is also proposed where Choquet

integral is used over a set of pixels to avoid the uncertainties in video frames. It may be

observed that the color histogram of a scene can attenuate the color variations due to

the non-static background which is common in a video scene. In this regard, Qiao et al.

[97] proposed a background subtraction method that uses a fuzzy Color coherence vector

by fuzzy c-means clustering criteria. A BGS technique is also proposed in [98], where

fuzzy histograms based on fuzzy c-means clustering and the fuzzy nearness degree are

used for background modeling. Recently, Subudhi et al. [99] proposed a BGS technique

where an online kernelized fuzzy modal variation-based cost function is used to model the

multi-valued background from a sequence of image frames.

1.4.3.5 Deep-learning based Background Subtraction

In the last few years, convolutional neural networks (CNNs) have drawn researchers’ at-

tention for local change detection [59]. The CNN-based architectures are explored to

construct the background and foreground segmentation, which provides better accuracy

than most of the traditional BGS techniques. Braham and Van Droogenbroeck [100]

proposed a CNN-based BGS scheme where a few hand-crafted features are used for back-

ground construction. The background patches and the corresponding image patches are

used to train the CNN models. A patch around each pixel of the target frame was given

to the CNN that determine the label of the pixel was changed or not. Likewise, Babaee

et al. [101] proposed a BGS scheme using deep convolutional neural network, where the

background model is generated by integrating the output from SuBSENSE [72] and Flux

Tensor[102] algorithm. Wang et al.[103] developed a foreground segmentation technique
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which is based on a multi-scale CNN. It utilizes the various video frames as input with

di↵erent scales, and the results were combined to predict the foreground probabilities.

Further, Nguyen et al. [104] proposed a triplet CNN model, which is used as a motion

feature extractor for local change detection. Yan et al. [105] proposed a BGS scheme

where a deep neural network architecture is used to train the background model, and fur-

ther, a cognition-based post-processing algorithm is applied to detect the moving objects.

These deep learning-based BGS techniques provide better accuracy than the traditional

approaches, as the deep learning framework can extract semantic and low-level features.

It may be observed that many CNN-based techniques are not an end-to-end deep

learning framework and are su↵ered from computational complexity. In this regard, sev-

eral works are proposed by researchers across the globe. Hu et al. [106] presented an

end-to-end deep CNN for the foreground segmentation, where a 3D atrous CNN is uti-

lized for extraction of deep features and capture the dependencies among the video frames

using long short-term memory networks. Wang et al. [107] proposed a BGS technique

where the deep and hierarchical multiscale spatial-temporal features obtained from the

multiscale 3-D fully convolutional network are used to construct the background model.

However, these said techniques are required many training samples to train the network.

In this regard, Tezcan et al. [108] presented a foreground segmentation technique (BSUV-

Net) where few training samples are used to train the network. A target frame and

two background frames with semantic information are given input to the network for lo-

cal change detection. Also, Lim and Keles [109] proposed an encoder-decoder network

where an end-to-end multi-scale features learning mechanism is utilized for moving object

detection.

Recently, a generative adversarial network (GAN) is also used for local change de-

tection. Bakkay et al. [110] proposed conditional GAN where the generator and the

discriminator are used for the foreground segmentation. However, the conditional GAN

technique fails to locate the objects in continuously changing illumination in a scene.

In this regard, Sakkos et al. [111] proposed a background subtraction technique based

on triple multi-task generative adversarial network (TMT-GAN) that performs end-to-

end binary classification. Also, Zheng et al. [112] proposed a BGS technique where the

Bayesian GAN and the median filtering strategies are used to segment each pixel of the

video frames as foreground/background. Parallel vision theory is further adapted to en-
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hance the segmented results.

1.4.3.6 Benchmark Databases for Background Subtraction

The SOTA techniques use two challenging benchmark video databases to evaluate the

performance of BGS: changedetection.net [113], and Tripura University Video Dataset at

Night Time (TU-VDN) [78].

Changedetection.net Dataset

Changedetection.net [113] is a popular benchmark database used for the validation of

di↵erent local change detection algorithm. This database was reported at IEEE Change

Detection Workshops in 2014. This database contains (2014 dataset) with 11 di↵erent

categories with each category containing almost 4 to 6 image sequences. This database

contains a wide range of challenging categories including baseline, dynamic background,

camera jitter, intermittent object motion, shadows, thermal, challenging weather, low

frame-rate, night, PTZ, and air turbulence. It contains a total of 53 sequences with almost

s 1, 60, 000 frames. This database contains manually annotated segmented ground truth

foreground images for all the frames.

Tripura University Video Dataset at Night Time (TU-VDN)

TU-VDN [78] database contains di↵erent outdoor night videos captured by FLIR-t650sc

camera of four di↵erent categories: dust, fog, rain and low light. The image sequences are

captured under various atmospheric conditions such as dusty, rainy, and foggy with key

challenges like flat cluttered background and dynamic background under static camera.

1.4.3.7 Quantitative Measures for Background Subtraction

Visual interpretation for evaluation is rarely found to be satisfactory to assess the quality

of object detection. Such a way of evaluation lacks a quantitative measurements. Hence,

it is necessary to evaluate an object/change detection method in an objective way. The

measures: Precision, Recall, F-Measure, Percentage of wrong classifications (PWC),[114],

Matthews correlation co-e�cient (MCC) [78], and Accuracy (ACC) [78] are considered for

objective evaluation of the SOTA local change detection algorithms. The performance of
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any BGS scheme is better if the Precision, Recall, F-Measure, MCC, and ACC values are

higher with lower PWC value. Precision is described as a fraction of the retrieved instances

that are relevant, whereas Recall is defined as the fraction of relevant instances that are

retrieved. F-Measure combines Precision and Recall and is the harmonic mean of Precision

and Recall. The percentage of wrong classifications is defined as the ratio of instances

misclassified over all the instances. Matthews correlation co-e�cient is the correlation

co-e�cient between the predicted and true instances. Accuracy is the ratio between the

accurately predicted instances and all the instances. These evaluation measures can be

calculated as;

F-Measure =
2⇥ Precision⇥ Recall

Precision + Recall
, (1.12)

where Precision = TP

TP+FP
and Recall = TP

TP+FN
.

PWC =
100⇥ (FP + FN)

FP + FN + TP + TN
. (1.13)

MCC =
(TP⇥ TN)� (FP⇥ FN)p

(TP + FP)⇥ (TP + FN)⇥ (TN + FP)⇥ (TN + FN)
(1.14)

ACC =
TP + TN

TP + FP + TN+ FN
(1.15)

where true positive (TP) is the number of pixels correctly labeled as an object class, false

positive (FP) is the number of pixels incorrectly classified as an object class, true negative

(TN) is the number of pixels correctly labeled as background class, and false negative (FN)

is the number of pixels wrongly classified as background class. The TP, FP, TN, and FN

are determined by comparing the ground-truth images provided in the datasets with the

output images obtained by di↵erent techniques considered for the evaluation.
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1.5 Scope of The Thesis

This thesis has a total of four contributing chapters are as follows:

1.5.1 Contrast Preservation with Intensity Variation approach

for Pixel Level Image Fusion

In this work, we have proposed two pixel level fusion schemes: fuzzy edge preserving

intensity variation approach and weighted combination of maximum and minimum value

selection strategy. In the proposed fuzzy edge preserving intensity variation approach,

the salient feature map is obtained by analyzing the spatial inter-dependency between

the visible and IR images. However, the salient feature map is unable to retain the edges

from the source images. Therefore, we have explored the concept of fuzzy edge on visible

image to obtain its edges. The fused image is generated by combining the salient feature

map and edges of the visible image. Again in the weighted combination of maximum

and minimum value selection strategy, initially, a center sliding window is used in the

IR image. Then the moving block-based average operator is used for each center sliding

window. The detail feature map is obtained by using the maximum selection strategy

between the output of the block-based average operator with the corresponding location

of the visible image. The detail feature map is not able to preserve the subtle details from

the source images. So the intermediate feature map is acquired by applying the minimum

selection strategy among the source images. Eventually, the fused image is obtained by

using the weighted-average fusion approach among the detailed and intermediate feature

maps.

The proposed schemes are evaluated with challenging source pairs available at the

benchmark TNO database [2]. The e�cacy of the proposed fuzzy edge preserving intensity

variation approach is validated against eight state-of-the-art schemes, and the e�ciency of

the proposed weighted combination of maximum and minimum value selection strategy

is corroborated against the seven existing SOTA techniques. The performance of the

proposed techniques is validated qualitatively and quantitatively in order to justify our

findings.
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1.5.2 Integration of Multi-scale Features with Deep Learning

Architecture for Feature Level Image Fusion

In this work, we have proposed two feature level fusion schemes: integration of bi-

dimensional empirical mode decomposition with two streams VGG-16 and non-subsampled

contourlet transform induced two streams ResNet-50 network. In the proposed integra-

tion of bi-dimensional empirical mode decomposition with two streams VGG-16 scheme,

we have adhered to the bi-dimensional empirical mode decomposition (BEMD) scheme to

decompose the source images into several intrinsic mode functions (IMFs) at di↵erent

frequency bands. The proposed BEMD strategy with VGG-16 architecture explores fea-

tures in-depth on frequency domain at various levels and can handle the high uncertainty

in the source images. The proposed deep multi-level fusion strategy constructs the weight

maps to preserve the correlative data accurately from the images of di↵erent sensors and

provides a detailed fusion map. The minimum selection strategy among these detailed

maps retains the standard information and reduces the superfluous data. Again, in the

proposed non-subsampled contourlet transform induced two streams ResNet-50 network

algorithm, the source images corresponding to the visual and thermal sensors are de-

composed into the multi-directional, multi-scale, and shift-invariant coe�cients using the

non-subsampled contourlet transform (NSCT). The low frequency and high-frequency

coe�cients of the NSCT are fed into a two-stream ResNet-50 architecture to extract

multi-layer deep features. The use of NSCT followed by the deep neural architecture on

frequency domain led to the extraction of deep features in multi-direction with a di↵erent

scale which is one of the essential requirements for the image fusion scheme. In the pro-

posed technique, the considered ResNet-50 network consists of five convolutional blocks.

At each block of the ResNet-50 network, the sum of the absolute di↵erence (SAD) and

the moving block-based average (MBBA) operator are used to retain the details of the

source images. A weight map construction strategy has been proposed, where the normal-

ization operator and the bicubic interpolation are utilized to capture the complementary

information present in the source images. The feature maps are thus obtained by using

the weight maps and the source images. Eventually, the maximum and the minimum

selection strategy among these feature maps are used over all the convolutional blocks of

the ResNet-50 to generate the fused image. Both the proposed techniques provide a fused

image with lesser artifacts for a pair of input IR and visible images.
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Di↵erent experiments were carried out on the TNO benchmark database [2] to estimate

the e�cacy of the proposed algorithms. The e�ciency of the proposed integration of

bi-dimensional empirical mode decomposition with two streams VGG-16 technique is

corroborated against fifteen existing state-of-the-art fusion techniques, and the e�cacy

of the proposed non-subsampled contourlet transform induced two streams ResNet-50

network algorithm is validated against the existing ten state-of-the-art techniques. The

competency of the proposed algorithm is estimated using qualitative and quantitative

assessments and found to be e�cient.

1.5.3 Kernel Induced Possibilistic Fuzzy Associate Background

Subtraction for Moving Object Detection

In this work, we have proposed a kernel induced possibilistic fuzzy associate background

subtraction for video scene unsupervised background subtraction technique to detect the

local changes in fixed camera captured sequences. The proposed scheme follows two stages:

background training and foreground segmentation. In the background construction stage,

each pixel is modeled using a possibilistic fuzzy cost function in kernel induced space. The

use of induced kernel function projects the low dimensional data into a higher dimensional

feature space and the use of possibilistic function will construct a robust background

model based on the density of the data in temporal direction avoiding the noisy and

outlier points. The performance of the proposed scheme is tested on the benchmark

database: changedetection.net [114]. The e↵ectiveness of the proposed scheme is evaluated

on di↵erent performance evaluation measures. We corroborate our findings by comparing

them against twenty-nine existing state-of-the-art BGS techniques.

1.5.4 Multi-Scale Deep Learning Architecture based Background

Subtraction for Moving Object Detection

In this work, we have proposed two multi-scale deep learning architectures based back-

ground subtraction for moving object detection: modified ResNet-152 network with hy-

brid pyramidal pooling and multi-scale contrast preserving deep learning architecture. In

the proposed modified ResNet-152 network with hybrid pyramidal pooling algorithm, we

have designed an encoder-decoder type deep learning architecture with transfer learning
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for background subtraction (BGS). Here, a modified ResNet-152 network is considered as

an encoder to enhance the use of high-frequency components for the foreground segmen-

tation. We have developed a multi-scale features extraction (MFE) mechanism block, a

hybridization of pyramidal pooling architecture (PPA), and various atrous convolutional

layers to extract features at various scales. The use of PPA enhances the performance

of an MFE block which can handle various challenging scenes e↵ectively. We have also

proposed an e�cient decoder consisting of stacked transposed convolution layers (Tconvs)

to project from feature-level to pixel-level, predicting a score map. Then, a threshold is

applied on the score map to get the binary class labels as the background and foreground.

The higher blocks’ extracted features have semantic information but lack of providing

low-level features that are generally important for the foreground segmentation. There-

fore, shortcut connections followed by global average pooling (GAP) drive the low-level

features from the encoder network to the decoder network.

Again, in the proposed multi-scale contrast preserving deep learning architecture, we

have designed an encoder network that considers a hybrid of convolution and atrous

convolution blocks to preserve both sparse and dense features of a video with skip con-

nection. The proposed encoder with the multi-scale contrast preservation block is able to

keep multi-scale contrast features with less training loss. Further, the proposed decoder

network accurately projects the extracted features at di↵erent layers into pixel-level. The

proposed end-to-end model e�ciently provides a binary change detection map.

The proposed techniques are corroborated by testing it on two benchmark databases:

changedetection.net [113], and Tripura University Video Dataset at Night Time (TU-

VDN) [78]. The e↵ectiveness of the proposed modified ResNet-152 network with hybrid

pyramidal pooling algorithm is evaluated by comparing the results obtained by it with

thirty-one existing state-of-the-art techniques, and the e�cacy of the proposed multi-scale

contrast preserving deep learning architecture is determined by comparing it with twenty-

eight state-of-the-art BGS techniques. The performance of the proposed techniques is

validated qualitatively and quantitatively, and found to be e�cient.
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1.6 Organization of the Thesis

The rest of the thesis organization is as follows. Chapter 2 describes the proposed con-

trast preservation with intensity variation approaches for pixel level image fusion: fuzzy

edge preserving intensity variation approach and weighted combination of maximum and

minimum value selection strategy. The proposed integration of multi-scale features with

deep learning architectures for feature level image fusion: integration of bi-dimensional

empirical mode decomposition with two streams VGG-16 and non-subsampled contourlet

transform induced two streams ResNet-50 network are discussed in Chapter 3. Chapter 4

illustrates the proposed kernel induced possibilistic fuzzy associate background subtrac-

tion for moving object detection. The proposed multi-scale deep learning architectures

based background subtraction for moving object detection: modified ResNet-152 network

with hybrid pyramidal pooling and multi-scale contrast preserving deep learning archi-

tecture are presented in Chapter 5. Chapter 6 draws the overall conclusions and scope

for future work.



Chapter 2

Contrast Preservation with Intensity

Variation approach for Pixel Level

Image Fusion

2.1 Introduction

A brief introduction of the existing pixel level fusion techniques are discussed in Chapter

1. It can be summarized from the state-of-the-art pixel level fusion techniques that they

are unable to retain su�cient edge details in the fused images. The pixel level fusion

techniques add more artifacts in the fused images during the fusion process. Also, the

said techniques are found to be producing low contrast fused images. Such fused image are

unable to be used for many higher order applications: object detection, object tracking,

object recognition, etc. One of such examples are provided in Figure 2.1. Figure 2.1

(a) and (b) depict a pair of visible and IR images considered for experimentation. The

fused image obtained by ratio of low-pass pyramid (RP) [24] (an existing pixel level fusion

technique) and corresponding histogram are presented in Figure 2.1 (c) and (d). It may be

observed from Figure 2.1 (c) and (d) that, the fused image produced by the said technique

is incapable of preserving the edge details with low contrast. A zoomed portion of the

fused image depict that, the fused image does not carry meaningful information and is

also not suitable for human visible perception.

In this context, we have proposed two pixel level fusion schemes: fuzzy edge preserv-

29
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(a) (b)

(c) (d)

Figure 2.1: Visual analysis of (a) Visible image, (b) IR image (c) Fused image obtained by the RP
technique, and (d) Histogram of the fused image.

ing intensity variation approach and weighted combination of maximum and minimum

value selection strategy, to preserve and retain the edge details in the fused image. In

the proposed fuzzy edge preserving intensity variation approach, the maximum selection

strategy is used among the median of the infrared image with the corresponding pixel on

visible image to generate the salient feature map (SFM). The edges of the visible image

is obtained in the next stage of the algorithm using a Fuzzy edge technique. Finally the

fused image is obtained by combining the salient feature map and the edges of the visible

image. In the weighted combination of maximum and minimum value selection strategy,

the detail feature map is obtained by utilizing the maximum selection strategy between

the pixel-intensity of visible image and block-based average of center sliding window. In

the next stage, the source images are compared by using the minimum selection strat-

egy to obtain the intermediate feature map. Eventually, the fused image is achieved by

utilizing the weighted-average technique among the detail and intermediate feature maps.

The proposed schemes are tested on the benchmark TNO database. The e↵ectiveness

of the proposed fuzzy edge preserving intensity variation approach is validated against

eight state-of-the-art schemes, and the e�ciency of the proposed weighted combination of

maximum and minimum value selection strategy is corroborated against the seven existing

techniques. The performance of the proposed techniques is validated qualitatively and

quantitatively in order to justify our findings. It is observed that the proposed algorithms

are attained higher accuracy against the considered state-of-the-art techniques.

The rest of this chapter is organized as follows. The proposed pixel level fusion algo-
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rithms are discussed in Section 2.2. Section 2.3 presents the results and discussions with

future works. The conclusion of the proposed works is carried out in Section 2.4.

2.2 Proposed Contrast Preservation with Intensity

Variation approach for Pixel Level Image Fusion

In this chapter, we have proposed two pixel level fusion schemes: fuzzy edge preserving

intensity variation approach and weighted combination of maximum and minimum value

selection strategy, to preserve and retain the edge details in the fused image. Here we

assumed that, the Is, s denotes the source images from various sensors, where s 2 {1, 2},

1 corresponds to the visible image, 2 corresponds to the IR image, and F is the fused

image.

2.2.1 Proposed Fuzzy Edge Preserving Intensity Variation Ap-

proach

In this chapter, we propose a novel pixel level fusion method whose graphical illustration

is presented in Figure 2.2. The detailed description of di↵erent stages of the proposed

scheme are narrated as follow.

2.2.1.1 Spatial Domain Analysis

In the initial stage of the proposed scheme, we considered a center sliding window in IR

image I2(x, y) of size w ⇥ w. To include the border pixels in the operation we initially

zero padded the IR image. The number of rows and columns to be zero-padded on each

side of the IR image based on the size of the center sliding window as w�1

2
.

The spatial pixel distribution of salient feature map SFM (x , y) can be obtained using

a maximum selection strategy between the median of the center sliding window with the

corresponding position in the visible image as,

SFM(x, y) =

8
>><

>>:

I1(x, y) if I1(x, y) > median
(x,y)2(w⇥w)

I2(x, y)

median
(x,y)2(w⇥w)

(I2(x, y)) otherwise
. (2.1)
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Figure 2.2: Block diagram of the proposed fuzzy edge preserving intensity variation approach.

The salient feature map obtained in this stage is unable to retain the edges from the

source images. Therefore, in the next stage, we have explored the concept of fuzzy edge

to retain the contrast of the images.

2.2.1.2 Fuzzy Edge for Contrast Preservation

The images captured from multiple sensors possess uncertainty within a pixel due to

the multi-valued brightness level. It is obvious that a deterministic method of obtaining

edges may not give a better results in image fusion. Hence, it is required to explore the

capabilities of fuzzy sets theoretic approaches. In the proposed algorithm, we have used

a fuzzy edge preservation mechanism to obtain the edge details of the visible image.

Let us assume fuzzy set B of the universe Y can be represented as

B = {(µB(y), y), 8 2 Y }, (2.2)

where the characteristic function µB(y), (0  µB(y)  1) in fact, can be viewed as a
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weighting coe�cient that reflects the ambiguity in a set, and as it approaches unity, the

grade of membership of an event in B becomes higher. For example, µB(y) = 1 indicates

a strict containment of the event y in B. If on the other hand, y does not belongs to

B, µB(y) = 0. Any intermediate value would represent the degree to which y could be a

member of B. If µB = 0.5, then y is called a crossover point. Fuzzy set theory can be

extended to images where an image I of size M ⇥N with the maximum grey level L can

be treated as a two-dimensional array of fuzzy singletons. Each fuzzy singleton with a

membership function representing the degree of having illumination level l, where l = 0,

1, · · · L� 1. Therefore, an image can be represented as

I =
[

m

[

n

pmn/ymn , (2.3)

m = 0, 1, · · · M � 1; n = 0, 1, · · · N � 1.

where pmn/ymn denotes the grade of owning some property pmn by the (m,n)th pixel

intensity ymn. To derive the property pmn, we have used similar kind of expression used

in [115] and the expression for pmn can be given as;

pmn =

2

41 +
|I1(x, y)� min

(x,y)2(w⇥w)

I1(x, y)|

Fd

3

5
�Fe

, (2.4)

The property plane is determined using max or min operator. Fe indicates the expo-

nential and Fd signifies the denominational fuzzifiers, respectively. By varying the value of

fuzzifiers we can control the fuzziness in the property plane. The positive constant Fe and

Fd are independent of the pixel locations. From (2.4), it is illustrious, for min
(x,y)2(w⇥w)

I1(x, y)

= 0, pmn equal to ↵ is finite positive quantity. Hence, the range of pmn is (↵, 1) instead of

(0, 1). After getting the property plane, the edge E(x, y) of an image can be determined

using the operation;

E(x, y) = (L� 1)

(
1�

2

41 +
|I1(x, y)� min

(x,y)2(w⇥w)

I1(x, y)|

Fd

3

5
�Fe )

(2.5)
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L = 2n . (2.6)

Here L is the maximum grey level of the image and n is the number of bits required to

represent each pixel.

2.2.1.3 Fused Image Generation

In the final stage the fused image F (x, y) can be constructed by combining SFM(x, y)

obtained from (2.1) and the E(x, y) obtained from (2.5), using,

F (x, y) = A[SFM(x, y) + E(x, y)]. (2.7)

where A = L�1

2L�2
. A is used to make F (x, y) in the range (0, 255).

2.2.2 Proposed Weighted Combination of Maximum and Mini-

mum Value Selection Strategy

In this chapter, we also propose a novel pixel level fusion method whose graphical illus-

tration is presented in 2.3. The subsequent steps of the proposed algorithm are described

as follow.

IR Image

Visible Image

30 35 40

50 25 28

32 30 22

3X3 center sliding ZindoZ

32

Ma[imXm oSeUaWion

Reconstruction

MinimXm oSeUaWion

Block-based
aYerage 

50

40

80

IR Image

Visible Image

Intermediate feature map generation

Detail feature map generation

Figure 2.3: Block diagram of the proposed weighted combination of maximum and minimum value
selection strategy.



CHAPTER 2. CONTRAST PRESERVATION PIXEL LEVEL FUSION 35

2.2.2.1 Detail Feature Map Generation

The thermal radiation information normally represented by the pixel values. Hence, the

objects are clearly identified in the IR image because of the grey level variation among the

background and the objects. This inspired us to propose a fusion scheme where the fused

image which have the comparable pixel values dissemination with the provided IR image.

In the proposed scheme, we consider a center sliding window w ⇥ w in the IR image. To

include border pixels in operation, we initially zero-padded the IR image. The rows and

columns are zero-padded with w�1

2
. We utilize the block-based average operator (BBAO)

in each center sliding window. The BBAO obtained at each center sliding window is

calculated as,

BBAO(x, y) =

Pw�1
2

p=�w�1
2

Pw�1
2

q=�w�1
2

I2(x+ p, y + q)

w2
. (2.8)

where I2 indicates the IR image, and (x, y) indicates the pixel location.

Then the detail feature map DFM is obtained by applying the maximum selection

strategy between the BBAO and pixel value at any pixel location (x, y) in the visible

image as,

DFM(x, y) =

8
><

>:

BBAO(x, y) if BBAO(x, y) > I1(x, y)

I1(x, y) otherwise
, (2.9)

where BBAO(x, y), I1(x, y) represent the block-based average operator and pixel value

in the visible image at location (x, y), respectively. The salient features that we have

obtained in the above process are not suitable for human visible perception, which is

shown in Figure 2.3. So in the next stage, we need to preserve essential details from the

source images, which may be more informative.

2.2.2.2 Intermediate Feature Map Generation

To enhance visual contents in the fused image, the background information is the impor-

tant requirement. In great detail the background is characterized by the visible image as

compared to the IR image. Therefore, to get the detailed information of the background,

In this stage, the intermediate feature map IFM is generated by using the minimum
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selection strategy among the source images and can be given as,

IFM(x, y) =

8
><

>:

I2(x, y) if I2(x, y) < I1(x, y)

I1(x, y) otherwise
, (2.10)

The information contents that we obtained in the IFM have complementary properties

as compared to the information contents of DFM . Both DFM and IFM contains the

standard features and the redundant information as well. So to reconstruct the fused

image, we use the weighted-average technique, which is discussed below.

2.2.2.3 Fused Image Generation

The salient features, such as DFM and IFM , we obtained from the source images,

contains the standard features. Here, we consider the weighted-average technique to fuse

the salient features for reconstructing the fused image and can be given as;

F (x, y) = �1DFM(x, y) + �2IFM(x, y), (2.11)

where �1 and �2 denote the weight values for the detail feature map and intermediate

feature map. To retain the common information and minimize the redundant information,

in this article, we considered �1 = 0.5 and �2=0.5.

2.3 Results and Discussions

In this section, we test the performance of the proposed schemes on a publicly accessi-

ble TNO database collected from [2]. To test the e�ciency of the proposed fuzzy edge

preserving intensity variation approach, we compared the results obtained by it with

those of eight existing state-of-the-art fusion techniques: Laplacian pyramid (LP) [23],

filter-subtract-decimate pyramid (FSD) [26], gradient pyramid (GP) [26], ratio of low-

pass pyramid (RP) [24], contrast pyramid (CP) [25], morphological pyramid (MP) [26],

discrete wavelet transform (DWT) [27], and shift invariant discrete wavelet transform

(SI-DWT) [27]. To justify the e�ciency of the proposed weighted combination of maxi-

mum and minimum value selection strategy, we compared it against seven state-of-the-art

image fusion techniques: Cross bilateral filter (CBF) [116], Weighted least square (WLS)
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[117], convolutional sparse representation (CSR) [34], ratio of low-pass pyramid (RP)

[24], ratio of low-pass pyramid-sparse representation (RP-SR) [24], Convolutional spar-

sity based morphological component analysis (CS-MCA) [35] and Convolutional neural

network (CNN) [36].

All the experiments in this chapter are performed on a PC with 3.20 GHz Intel Core

CPU and 16 GB RAM. To measure the performance of our proposed algorithm against

the considered existing state-of-the-art techniques, we have performed both subjective

and objective evaluation. With the goal of quantitative comparison between the pro-

posed techniques and the existing fusion strategies, various evaluation measures: Entropy

(EN) [49], mutual information (MI) [49], mutual information for the discrete cosine fea-

tures (FMIdct) [50], mutual information for the wavelet features (FMIw) [50], amount of

artifacts added during the fusion process (Nabf ) [51], average structural similarity index

(SSIMa) [52] and average edge preservation index (EPIa) [53] are used. The fusion per-

formance is better when the numerical values of evaluation measures such as: EN, MI,

FMIdct, FMIw, SSIMa, EPIa are higher with lower value of Nabf .
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Figure 2.4: Visual analysis of results on the Nato camp, Street, Lake, and Sandpath images (from left to
right). From top to bottom: Visible images, IR images, fused images obtained by LP, FSD, GP, RP, CP,
MP, DWT, SI-DWT, and the proposed fuzzy edge preserving intensity variation approach.
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2.3.1 Qualitative illustration of Fuzzy Edge Preserving Intensity

Variation Approach

The source images and corresponding fused images obtained by the state-of-the-art tech-

niques and the proposed approach are shown in Figure 2.4. The first and second rows are

the visible and IR images of Nato camp, Street, Lake, and Sandpath images taken from

the TNO database used for fusion. It can be seen from Figure 2.4 that, the foreground

objects are not clearly highlighted in the fused images obtained by the LP, FSD, and

GP techniques. The fused images acquired by the RP, CP, and MP techniques contain

more artifacts, and the salient features are not clear. The fused images achieved by the

DWT and SI-DWT techniques found to have blurred details with more noise. However,

the fused images obtained by the proposed scheme precisely preserve the foreground and

background information with reduced artifacts against the existing state-of-the-art fusion

schemes.

Histogram analysis is an apt strategy to decide the contrast of any image. Therefore,

the same has been used herein. Figure 2.5 represents the histogram plot of the eight

existing state-of-the-art and proposed techniques for the Kaptein 1123 image. From this

Figure, it may be observed that, the proposed algorithm produces high contrast fused

image as compared to the existing state-of-the-art fusion techniques.

2.3.2 Quantitative comparison of Fuzzy Edge Preserving Inten-

sity Variation Approach

The quantitative evaluation of the proposed fuzzy edge preserving intensity variation

approach and the state-of-the-art fusion techniques are achieved using four evaluation

measures: EN, MI, FMIdct and FMIw.

The values of EN, MI, average of FMIdct and average of FMIw, are reported in Table

2.1 - 2.4 as obtained using eight state-of-the-art techniques and the proposed technique,

where best values are indicated in bold. Also, the graphical comparison on EN and MI

measures among di↵erent techniques is shown in Figure 2.6. As we can see from Table

2.1-2.2 and Figure 2.6, the proposed technique has comparably a good ENs and MIs than

other state-of-the-art techniques but smaller value of EN compared to the RP method for

tank image only. From Table 2.3-2.4, it may be found that the average values of FMIdct
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Figure 2.5: The histogram of Kaptein 1123 fused images obtained by (a) LP, (b) FSD, (c) GP, (d) RP, (e)
CP, (f) MP, (g) DWT, (h) SI-DWT, and (i) proposed fuzzy edge preserving intensity variation approach.

and FMIw obtained for our proposed method are better as compared to the considered

state-of-the-art methods. From the quantitative comparison, our proposed technique has

better fusion performance than the state-of-the-art techniques.

Table 2.1: Quantitative comparisons of entropy

Algorithm Kaptein 1123 Nato camp Street Lake Sandpath Duine Tank

LP 6.731 6.571 6.249 6.680 6.488 5.954 7.436

RP 6.720 6.442 6.161 6.636 6.231 5.768 7.461

CP 6.696 6.631 6.110 6.772 6.556 5.949 7.334

FSD 6.603 6.315 5.978 6.579 6.218 5.776 7.392

GP 6.598 6.307 5.975 6.579 6.211 5.772 7.387

MP 6.826 6.845 6.449 6.847 6.710 6.129 7.267

DWT 7.036 6.843 6.764 6.667 6.588 5.961 6.283

SI-DWT 7.014 6.813 6.745 6.646 6.540 5.945 6.359

Proposed 7.170 6.910 6.843 6.934 6.805 6.157 7.448
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Table 2.2: Quantitative comparisons of mutual information

Algorithm Kaptein 1123 Nato camp Street Lake Sandpath Duine Tank

LP 1.781 1.395 1.906 1.601 0.955 1.297 1.881

RP 1.886 1.433 1.883 1.723 0.971 1.386 1.667

CP 1.442 1.337 1.369 1.630 0.941 1.288 1.392

FSD 1.938 1.432 2.234 1.877 1.039 1.344 2.205

GP 1.956 1.445 2.248 1.892 1.055 1.358 2.261

MP 1.627 1.342 1.780 1.285 0.814 1.216 1.945

Proposed 3.199 2.045 3.324 2.820 1.725 1.892 2.519

Table 2.3: Quantitative comparisons of mutual information for the discrete cosine features

Images LP RP CP FSD MP Proposed

Kaptein 1123 0.291 0.232 0.247 0.308 0.231 0.308

Nato camp 0.279 0.241 0.268 0.297 0.194 0.286

Sandpath 0.269 0.224 0.245 0.285 0.212 0.305

Duine 0.304 0.263 0.302 0.318 0.235 0.309

Tank 0.179 0.152 0.145 0.192 0.154 0.232

Average 0.264 0.222 0.241 0.280 0.205 0.288

Table 2.4: Quantitative comparisons of mutual information for the wavelet features

Images LP RP CP FSD MP DWT SI-DWT Proposed

Sandpath 0.327 0.293 0.344 0.336 0.275 0.340 0.367 0.345

Tank 0.309 0.260 0.302 0.322 0.280 0.258 0.279 0.325

Average 0.318 0.277 0.323 0.329 0.278 0.299 0.323 0.335
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Figure 2.6: Quantitativ comparisons of EN and MI on Kaptein 1123, Nato camp, Street image, Lake,
Sandpath, Duine and Tank.
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Figure 2.7: Visual analysis of results on the Kaptein 1123, Marne and Bench images (from left to right).
From top to bottom: Visible images, IR images, fused images obtained by CBF, RP, RP-SR, CS-MCA,
and proposed weighted combination of maximum and minimum value selection strategy.
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2.3.3 Qualitative illustration of Weighted Combination of Max-

imum and Minimum Value Selection Strategy

The source images and the results obtained by the state-of-the-art techniques as well

as the proposed algorithm are presented in Figure 2.7. The first and second rows are

the visible and IR images used for fusion. As we can perceive from Figure 2.7 that

the fused images obtained by the CBF method cannot retain the edge details from the

source images and introduce more artifacts during the fusion process. The fused images

obtained by the RP technique preserve ambiguous visual content, which are not suitable

for human visual perception. The results acquired by the RP-SR scheme have many

isolated points which degraded the quality of background and foreground information.

The visual impression attained by the CS-MCA technique is not clear because of the

ringing artifacts. However, the resultant images obtained by the proposed scheme found

to have enhanced features with reduced artifacts against the existing fusion schemes. Also,

the fused images obtained by the proposed scheme strongly correlate with source images

and look more natural compared to the state-of-the-art techniques.

2.3.4 Quantitative comparison of Weighted Combination of Max-

imum and Minimum Value Selection Strategy

We have considered four evaluation measures: FMIdct [50], Nabf [51], average structural

similarity index SSIMa [52], and EPIa [53] to evaluate the performance of the proposed

technique. The average values of FMIdct, Nabf , SSIMa, and EPIa obtained by the fused

image resulting from the state-of-the-art and proposed weighted combination of maximum

and minimum value selection strategy are reported in Table 2.5 where the finest values

of evaluation measures are represented in bold. From Table 2.5 we can perceive that

the FMIdct, Nabf and SSIMa of the proposed algorithm have the best average values

as compared to the seven state-of-the-art techniques. But, the average EPIa value of

our algorithm is higher than all the existing techniques excluding the CSR. However,

the proposed fusion scheme produces a closer value to the CSR. These average values

indicates that the e↵ectiveness of our technique is better as compared to the state-of-

the-art techniques. So the fused images are attained by our proposed algorithm have

important details compared to the considered SOTA techniques. The Table 2.6 and
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Figure 2.8 show that the fused images obtained by our algorithm have lesser artifacts and

noises as compared to the existing techniques.

Table 2.5: Quantitative comparisons of average values of the FMIdct, Nabf , SSIMa and
EPIa on TNO database

Methods CBF WLS CSR RP RP-SR CS-MCA CNN Proposed

Avg.FMIdct 0.26309 0.33102 0.34640 0.28210 0.27930 0.35841 0.35269 0.36942
Avg.Nabf 0.31727 0.21257 0.01958 0.22677 0.21444 0.06680 0.13280 0.00563
Avg.SSIMa 0.59957 0.72360 0.75335 0.68424 0.67385 0.72964 0.71372 0.76802
Avg.EPIa 0.57240 0.67837 0.71130 0.64488 0.63737 0.69154 0.68444 0.70909

Table 2.6: Quantitative comparisons of amount of noise added

Methods CBF WLS CSR RP RP-SR CS-MCA CNN Proposed

Image1 0.23167 0.14494 0.01494 0.18188 0.19922 0.05548 0.12243 0.00709
Image2 0.48700 0.16997 0.02199 0.32816 0.44373 0.08130 0.11717 0.02188
Image3 0.54477 0.21469 0.02070 0.26990 0.17392 0.06196 0.13342 0.01031
Image4 0.45288 0.22866 0.02378 0.31436 0.15666 0.07792 0.13154 0.00665
Image5 0.43257 0.19188 0.00991 0.23420 0.15975 0.03433 0.11558 0.00022
Image6 0.23932 0.22382 0.02296 0.18569 0.15037 0.06947 0.13074 0.00107
Image7 0.41779 0.15368 0.01514 0.15455 0.16687 0.07079 0.12248 0.00670
Image8 0.15233 0.23343 0.03404 0.35424 0.31220 0.09665 0.09363 0.00468
Image9 0.11741 0.17177 0.02371 0.11645 0.11665 0.07226 0.13313 0.00088
Image10 0.20090 0.22419 0.02013 0.29081 0.27369 0.07114 0.15679 0.00193
Image11 0.47632 0.20588 0.01022 0.09387 0.10909 0.04387 0.12432 0.00143
Image12 0.25544 0.22335 0.01545 0.21989 0.24685 0.05387 0.13585 0.00822
Image13 0.36066 0.19607 0.01888 0.27621 0.23131 0.06410 0.12659 0.00747
Image14 0.18971 0.20332 0.02036 0.16489 0.14370 0.06897 0.14908 0.00265
Image15 0.21509 0.20378 0.02207 0.18090 0.17750 0.07838 0.13583 0.00081
Image16 0.52783 0.30672 0.01936 0.33994 0.32261 0.06661 0.15255 0.00978
Image17 0.52887 0.31160 0.01561 0.21055 0.30008 0.06330 0.16254 0.01268
Image18 0.26649 0.25937 0.01499 0.20357 0.25116 0.05345 0.16153 0.00808
Image19 0.12582 0.16205 0.01379 0.16681 0.14794 0.04653 0.11416 0.00245
Image20 0.25892 0.18401 0.02574 0.32388 0.24738 0.08103 0.13493 0.00160
Image21 0.18091 0.25074 0.02745 0.15135 0.17251 0.09139 0.13453 0.00165
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Figure 2.8: Quantitative comparisons of amount of noise added for di↵erent schemes.

2.3.5 Discussions and Future Works

Fusion of visible and infrared images is a challenging task in a vision-based system. This

can be helpful to detect and track the moving objects in any surveillance system for the
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target scene. Significant information extraction from the source images and propagating

this information into the fused image without adding artifacts are quite di�cult jobs in

the image fusion process. In this chapter, we have proposed two pixel level image fusion

schemes: fuzzy edge preserving intensity variation approach and weighted combination

of maximum and minimum value selection strategy. The proposed algorithm results are

validated qualitatively as well as quantitatively by comparing with its result those of the

di↵erent state-of-the-art (SOTA) techniques. For fair evaluation, the SOTA techniques

are implemented without altering the parameters. It may be observed that the proposed

algorithms can retain maximum details by increasing the contrast and lesser artifacts

in the fused image. Also, to know the e�ciency of the proposed algorithms, we have

performed a quantitative comparison among them. From Table 2.7, it may be observed

that the proposed weighted combination of maximum and minimum value selection strat-

egy for image fusion attain better accuracy against the proposed fuzzy edge preserving

intensity variation approach in terms of all considered measures.

Table 2.7: Quantitative comparisons between the proposed fuzzy edge preserving intensity
variation approach and weighted combination of maximum and minimum value selection
strategy

Algorithms/
Quantitative measures

Fuzzy edge preserving
intensity variation approach

Weighted combination of
maximum and minimum
value selection strategy

Avg.FMIdct 0.31052 0.36942
Avg.Nabf 0.28250 0.00563

Avg.SSIMa 0.60635 0.76802
Avg.EPIa 0.66744 0.70909

The proposed fuzzy edge preserving intensity variation approach and weighted combi-

nation of maximum and minimum value selection strategy improve the visual contents of

thermal sequences. However, all the parameters are fixed manually in the proposed fuzzy

edge preserving intensity variation approach. An Expectation-Maximization algorithm

can be used to fixing up those parameters. Again, in the proposed weighted combination

of maximum and minimum value selection strategy, the weighted-average fusion approach

improves the noise in the fused image. Using a statistical approach, one can reduce the

noise in the fused image.
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2.4 Conclusions

Two pixel level image fusion schemes have been proposed in this chapter. In the pro-

posed fuzzy edge preserving intensity variation approach, we have investigated the spatial

inter-dependency among the source images to generate the salient feature map with re-

duced artifacts. However, the salient feature map cannot preserve su�cient edge details.

Therefore, the concept of the fuzzy edge is explored in the visible image to retain its

edge details with significant contrast. The salient feature map with edge details gener-

ates a high contrast fused image with essential information. In the proposed weighted

combination of maximum and minimum value selection strategy, a maximum selection

strategy is explored to obtain the detailed feature map, which has the prominent details

of the source images. However, the detail feature map cannot preserve the subtle details

from the source images. Therefore, a minimum selection strategy is applied among the

source images to generate an intermediate feature map with subtle details. A weighted

combination of detail and intermediate feature map produces a fused image with standard

features and reduced artifacts.

The proposed schemes are evaluated with challenging source pairs available at the

benchmark TNO database. The e�cacy of the proposed fuzzy edge preserving intensity

variation approach is validated against eight state-of-the-art schemes. The e�ciency of

the proposed weighted combination of maximum and minimum value selection strategy

is corroborated against the seven existing techniques. The performance of the proposed

techniques is validated qualitatively and quantitatively in order to justify our findings. It

is found that the proposed algorithms are attained higher accuracy against the considered

state-of-the-art techniques.



Chapter 3

Integration of Multi-scale Features

with Deep Learning Architecture for

Feature Level Image Fusion

3.1 Introduction

A brief introduction of the existing feature level image fusion techniques are discussed in

the Chapter 1. It can be concluded from the literature, that the sparse representation-

based fusion schemes [33, 34, 35, 35] do not consider multi-scale decomposition strategy,

which causes loss of many important details in the fused image. Further, in the deep

learning-based fusion techniques, the extracted features are not fully utilized, and hence,

may cause loss of information in the fused image. Such fused images are unable to be used

for many higher order applications: object detection, object tracking, object recognition,

etc. One of such examples are provided in Figure 3.1. Figures 3.1 (a) and (b) portrays a

pair of visible and IR images considered for experimentation. The fused image obtained

by an existing feature level fusion technique (deep neural network (DNN) [37]) is presented

in Figure 3.1 (c). It may be observed from Figure 3.1 (c), that the fused image produced

by the DNN technique is incapable of preserving significant details and produces a higher

amount of artifacts. A zoomed portion of the fused image portray that, the region in the

fused image does not carry meaningful information and is not suitable for human visible

perception.

In this context, we have proposed two feature level image fusion schemes: integration

47
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(a) (b)

(c)

Figure 3.1: Visual analysis of (a) Visible image, (b) IR image, and (c) Fused image obtained by the DNN
technique.

of bi-dimensional empirical mode decomposition with two streams VGG-16 and non-

subsampled contourlet transform induced two streams ResNet-50 network in this chapter.

In integration of bi-dimensional empirical mode decomposition with two streams VGG-

16 technique, we have proposed the use of bi-dimensional empirical mode decomposition

(BEMD) strategy integrated with an VGG-16 deep neural network architecture to retain

the features of visible and infrared images in-depth at various levels in fused images.

The fused image acquired by the proposed fusion strategy keeps the required details and

strongly correlates with the source images. Further, in the proposed non-subsampled

contourlet transform induced two streams ResNet-50 network technique, the integration

of non-subsampled contourlet transform (NSCT) mechanism and ResNet-50 network is

adhered to exploit the multi-scale, multi-directional, and shift-invariant details of the

source images at low-frequency and high-frequency bands. The proposed novel fusion

strategy generates the fused image that retains the background and object information

from the source images e�ciently.

The proposed schemes are evaluated on the benchmark TNO database. The e�cacy

of the proposed integration of bi-dimensional empirical mode decomposition with two

streams VGG-16 scheme is corroborated against fifteen existing fusion schemes. Fur-

ther, the performance of the proposed non-subsampled contourlet transform induced two

streams ResNet-50 network algorithm is demonstrated against ten existing fusion schemes.

We have used qualitative and quantitative analysis to confirm our findings. It is observed
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that the proposed schemes provide better results than the existing SOTA techniques.

Further, the organization of this chapter is as follows. Section 3.2 describes the pro-

posed feature level fusion schemes. The results and discussions with future works are

presented in Section 3.3. Section 3.4 draws the conclusions of the proposed works.

3.2 Proposed Integration of Multi-scale Features with

Deep Learning Architecture for Feature Level Im-

age Fusion

In this chapter, we have proposed two feature level image fusion techniques: integration

of bi-dimensional empirical mode decomposition with two streams VGG-16 and non-

subsampled contourlet transform induced two streams ResNet-50 network. Here we as-

sumed that, the Is, s denotes the source images from various sensors, where s 2 {1, 2},

1 corresponds to the visible image, 2 corresponds to the IR image, and F is the fused

image.

3.2.1 Proposed Integration of Bi-dimensional Empirical Mode

Decomposition with Two Streams VGG-16

Usually IR and visible images have high uncertainty and may possess camera noise. There-

fore, it is a quite challenging task to extract the meaningful features from both the images

and propagate into a fused image with reduced artifacts. In this regard, we proposed a

integration of bi-dimensional empirical mode decomposition with two streams VGG-16

technique that can extract multi-scale deep features from the source images. Here, the

BEMD block is integrated with the VGG-16 network to preserve the deep multi-level vi-

sual details at various scales. It is observed that the proposed fusion strategy can retains

significant visual details at a multi-level to produce a fused image with lesser artifacts.

The graphical exposition of the proposed scheme is narrated in Figure 3.2. The schematic

description of each block is described as follows.



CHAPTER 3. MULTI-SCALE FEATURE LEVEL FUSION 50

BEMDBEMD

BEMD

VGG-16 Net

VGG-16 Net

ConY1

ConY2

ConY3

ConY1

ConY2

ConY3

ConY4

ConY5

ConY4

ConY5

Deep
MultileYel

Fusion
Strateg\

Minimum
Selection
Strateg\

Figure 3.2: Block diagram of the proposed integration of bi-dimensional empirical mode decomposition
with two streams VGG-16 scheme.

3.2.1.1 Bi-dimensional Empirical Mode Decomposition for Multi-Scale Fea-

ture Extraction

The empirical mode decomposition (EMD)[118] technique is popularly used in the signal

and image processing domain to decomposes any signal into finite oscillatory components.

It is an adaptive algorithm and relevant for stationary as well as non-stationary signal

analysis. The extracted oscillatory components from the signal are named as intrinsic

mode function (IMF ). It is observed that the EMD mechanism plays an important role

in one-dimensional signal analysis. The EMD mechanism is further extended and utilized

for two-dimensional signal or image analysis and is known as bi-dimensional empirical

mode decomposition (BEMD) [119]. The BEMD strategy extracts the IMFs from the

source images by utilizing the sifting process [120] and can be described as;

IMFs,n = {IMFs,1, IMFs,2, · · · · ·, IMFs,N�1, R
0
s,N}; (3.1)

8n = 1, 2, · · · · ·, N � 1, N.

where IMFs,n indicates the IMFs for the images of visual and thermal sensors. n indi-

cates the number of IMFs and R0
s,N denotes the residue bands of source images.
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3.2.1.2 VGG-16 Net for Fusion of Intrinsic Mode Functions

In the proposed scheme, we have introduced the BEMD strategy to decompose the source

images into N numbers of intrinsic mode functions at multi-scale with di↵erent frequency

bands. To retain the maximum details in the fused image with reduced noise, it is

necessary to extract the deep features at di↵erent levels from the IMFs and combine

them accurately. Therefore, we have proposed a unique deep multi-level fusion strategy

with VGG-16 (deep learning architecture) [121] that provides the multi-scale and multi-

level visual characteristics of the considered scene. The considered VGG-16 architecture

consists of convolutional layers, max-pooling layers, and a rectified linear unit (ReLU) as

activation function with five convolutional blocks. The convolutional layers are used to

retain the spatial information of the source images, and max-pooling layers are used for

the down-sampling operation. The presence of the ReLU function in the network makes

it faster and e�cient.

In the proposed algorithm, we have used IMFsn(x, y) except residual bands of source

images to extract the deep features as shown in Figure 3.2. Let us assume that ⇥i
s

deep features are extracted by the VGG-16 network with ith convolutional block, i 2

{1, 2, 3, 4, 5}. ⇥i
s(x, y) indicates the contents at position (x, y). The visual and the IR

images IMFs are given as the input to the two streams of the VGG-16 net to retain

the deep features. Subsequently, at each block, we have utilized the sum of the absolute

di↵erence (SAD) operator to map from features space to image space named as activity

level map Ai
s and can be given as;

Ai
s(x, y) = SAD(⇥i

s(x, y)). (3.2)

To make the proposed scheme prosperous to mis-registration, we have considered a center

sliding window w ⇥ w in the Ai
s. A block-based average (BBA) operator in the center

sliding window is used to obtain the action level map Ãi
s and can be calculated as;

Ãi
s(x, y) =

Pw�1
2

p=�w�1
2

Pw�1
2

q=�w�1
2

Ai
s(x+ p, y + q)

w2
. (3.3)

For the larger value of w, the proposed algorithm is more prosperous to mis-registration.

However, at the same time, small-scale details may be lost, which are essential for multi-
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modal image fusion. Hence, in proposed work, we have kept the size of the center sliding

window as 3⇥ 3.

To precisely preserve the complementary information from the source images, we have

developed an action weight map W i
s by using the normalization operator in the Ãi

s. The

W i
s in the range [0,1] can be determined as;

W i
s(x, y) =

Ãi
s(x, y)P

2

m=1
Ãi

m(x, y)
. (3.4)

As we know, the max-pooling layer with stride of 2 in the VGG-16 architecture reduces

the size of the input feature to 1/2 times. Hence, the bi-cubic interpolation is utilized in

the W i
s to generate the intermediate weight map W̃ i

s where the size of W̃ i
s same as the

source images size.

The intermediate feature maps IFM i are generated from the source images and in-

termediate weight maps to retain the high strength details and remove the low strength

details. Considering five layer of two streams VGG-16 network, we have five pairs of in-

termediate weight maps, and for each pair of intermediate weight maps, the intermediate

feature map can be calculated as;

IFM i(x, y) =
sX

z=1

W̃ i
z(x, y)⇥ Iz(x, y). (3.5)

The detail feature map DFM is obtained by using maximum selection strategy among

these intermediate feature maps to preserve sharp details and can be calculated as;

DFM(x, y) = max[IFM i(x, y)], (3.6)

likewise, we acquired various detail feature maps from the corresponding IMFs.

3.2.1.3 Fused Image Generation

To generate the fused image F , we have utilized a minimum selection strategy among

these detail feature maps to preserve the standard information and reduce the redundant

data. The fused image is obtained as;

F (x, y) = min[DFMn(x, y)], (3.7)
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where n indicates the number of IMFs pairs.

3.2.2 Proposed Non-subsampled Contourlet Transform Induced

Two Streams ResNet-50 Network

It is observed from the state-of-the-art techniques, the non-subsampled contourlet trans-

form (NSCT) decomposition mechanism has considered a transform-domain-based feature

extraction strategy to extract multi-scale and shift-invariant features from infrared and

visual images. Further either low frequency [42] or high frequency [40] coe�cients are

used as the input to the deep CNN architecture for extraction of deep multi-scale features

which are used for fusion. It is to be noted that any fusion architecture will be incom-

plete without the utilization of both low as well as high-frequency features. Hence such

approaches are found to be not providing a significant accuracy in the fusion process.

In addition to this; one of the recent fusion architecture reported in [42] uses the deep

features extracted from low-pass coe�cients of NSCT which are not rich in edge details

and hence unable to preserve the structural information in the fused image. Further, the

band-pass coe�cients are found to be fused using a modulus maximum selection strategy

to propagate artifacts into the fused images. The performance of the said techniques in

the TNO database as reported with measures: amount of noise added to the fused images

by the fusion process to be 0.14742, average structural similarity index measure (SSIMa)

to be 0.74004 and the average edge-preserving index (EPIa) to be 0.71303. It shows

a poor performance of the said [42] technique. This is mainly due to the loss of high-

frequency details in the fused images and the use of modulus maximum selection strategy

that propagated artifacts in the fused image. Similarly, the DL technique [40] which uses

the high-frequency coe�cients in the deep learning architecture are found to propagate a

higher amount of noise in the fused image. It may be observed that the said technique

reported the amount of noise added to the fused images by the fusion process measure to

be 0.00267 for the TNO database. The poor performance of the said technique is mainly

due to the fact that noise propagates with high-frequency details. Also, it decreases the

accuracy of the fusion process. The results reported by the said approaches are shown in

Figure 3.3. It can be clearly visible that use of low frequency coe�cients by [42] as shown

in Figure 3.3 (c) resulted in contour e↵ects along the edges. Similarly, the use of high

frequency coe�cients [40] for fusion has created a large amount of noise across the edges
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shown in Figure 3.3 (d). Hence this reduces the accuracy of the said approaches.

(a) Visible image (b) IR image (c) [42] (d) [40]

Figure 3.3: Visual analysis of (a) Visible image, (b) IR image, (c) Fused image obtained by the ResNet-
152 based technique and (d) Fused image obtained by the DL technique

In the proposed work, we tried to address the above mentioned challenges by designing

a fusion technique that takes care of both low as well as high-frequency coe�cients of

the transform domain features. It also may be concluded from the above analysis that

low-frequency coe�cients, in conjunction with a high-frequency coe�cients, can produce

considerable improvement in the fusion accuracy.

In the proposed work, we tried di↵erent multi-scale decomposition mechanisms with

the two-stream ResNet-50 network and found that the Non-subsampled contourlet trans-

form (NSCT) induced two-stream ResNet-50 architecture to be e�cient for multi-modal

image fusion. The steps of the proposed fusion mechanism are described as follows. The

motivation and contribution behind considering the NSCT mechanism with two-stream

ResNet-50 residual network and proposed novel fusion strategy is as follows:

(1) The proposed algorithm relies on a non-subsampled contourlet transform (NSCT)

decomposition mechanism to avoid the frequency aliasing problem and enhance the

directional selectivity as well as shift-invariance of the details from the thermal and

visual images.

(2) The proposed technique utilizes both high frequency and low-frequency coe�cients

in two parallel Res-Net-50 networks with residual connections to extract the multi-

scale deep features which essentially characterize the subtle and detailed information

of images captured from visual and infrared sensors.

(3) It may be observed that the deeper blocks of the ResNet-50 network gradually learn

more complex features and hence provides an improved performance.

(4) The lower blocks of the ResNet-50 network can learn and obtain the low-level local

features such as edges, colors, and textures, while the deeper blocks learn and obtain

high-level global features like objects and events.
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(5) The NSCT mechanism followed by the two-stream ResNet-50 network can preserve

the deep features at multi-scale and multi-direction with di↵erent levels that are

essential for IR and visual image fusion.

(6) The proposed fusion strategy precisely retains the significant visual information from

the source images that generate a fused image with maximum details and reduced

artifacts.
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Figure 3.4: Block diagram of the proposed non-subsampled contourlet transform induced two streams
ResNet-50 network scheme.

3.2.2.1 Source Images Decomposition

In this stage, the images from various sensors are decomposed into low and high-frequency

coe�cients using the NSCT [122, 29, 24]. In contourlet transform, the directional filter

banks (DFBs) and LP filters are used for directional and multi-scale decomposition. To

obtain shift-invariance and exclude the frequency alias of the contourlet transform, Cunha

et al. [123] developed the non-subsampled contourlet transform (NSCT). This NSCT com-

prises non-subsampled pyramid filter banks (NSPFBs) and non-subsampled directional

filter banks (NSDFBs).

To obtain the multi-scale decomposition of the images of di↵erent sensors, the NSPFB

is utilized. At each scale, the NSDFB is employed to divide and pass high-frequency

coe�cients in several directions. One low-frequency and one high-frequency coe�cient

can be obtained for the source images at each NSPFB decomposition level. The ensuing
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NSPFB levels are performed to break down the low-frequency coe�cient iteratively that

preserves the vital details in the image. Therefore, NSPFB can provide j + 1 coe�cients

consisting of one low-frequency coe�cient and j high-frequency coe�cients with the same

size as the source image. Here, j indicates the decomposition levels. Then, the NSDFB is

utilized to decompose the high-frequency coe�cients at each scale, providing directional

components of the same size as the source image. The NSDFB is designed by using the

directional fan filter banks [29] which are two-channel non-subsampled filter banks. In this

work, NSPFB and NSDFB are performed using the ‘maxflat’ [124] and ‘dmaxflat7’ [124]

filters. We have used the ‘maxflat’ filter for pyramidal decompositions, and the ‘dmaxflat7’

filter of order 7 is for directional coe�cients. This pair of filters provides better accuracy

and avoids smearing of image details. We have kept the NSCT decomposition level of 4 to

preserve maximum detail from the sources. It is found that the NSCT with decomposition

level 4 retains small-scale and large-scale features from the sources which are suitable for

image fusion.

From the above discussion, as we can see, the NSCT has the characteristics of con-

tourlet transform and has shift-invariance properties. In the NSCT, the size of the dif-

ferent coe�cients are the same; hence the relation among the coe�cients are easily found

which is useful in designing the rules for image fusion. Also, the e↵ect of mis-registration

reduced e�ciently in the fused image [29]. Therefore, the NSCT is more appropriate for

image fusion.

3.2.2.2 Two Stream Network for Feature Extraction and Fusion of the Coef-

ficients

Conventional neural networks have limited layers, which cause the loss of information

during feature extraction. In order to retain maximum information in the fused images,

deeper neural networks may be employed. However, due to the vanishing gradient [125]

and degradation [126] problem, it is challenging to train the deep neural network. In [127],

the authors put forth a residual network to cater to this problem. With the residual rep-

resentation and the shortcut connections, this network is easier to optimize and provides

better accuracy by increasing the depth. Further, the low and high-frequency coe�cients

must be separated and unequally needs to be weighted through the residual networks to

properly characterize the deep features corresponding to the infrared and visual images.
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For the low and high-frequency coe�cients, we have used a two-stream ResNet-50 net-

work, which extracts the deep multi-layer features as shown in Figure 3.4. The proposed

two-stream network runs parallel, where one stream runs on the low-frequency coe�cients

of the NSCT and another stream runs on the high-frequency coe�cients of the NSCT. In

both streams, ResNet-50 is used. This network consists of 50 weight layers which include

five convolutional blocks (conv1, conv2, conv3, conv4, conv5) and is trained by ImageNet

[128]. The lower block of the ResNet-50 network learns features like edges or colors of the

image, and the higher block of the network learns features like objects and events. In this

work, the corresponding coe�cient pairs are given to the deep neural network, separately.

This network allows coe�cient information to be passed directly to the subsequent layers,

removing the same information and highlighting minor changes. Therefore, this network

explores the diverse details from coe�cients that enhance the e�cacy of the proposed

scheme.

The residual block of the deep neural network consists of convolutional layers, batch

normalization layers, and a rectified linear unit (ReLU) as an activation function. Convo-

lutional layers are employed to obtain the spatial information of the source images using

convolutional kernels. For faster learning rates and properly initializing the neural net-

work, the batch normalization operation is performed after each convolution layer. The

use of the ReLU function introduces non-linearity that makes the network faster and

more e�cient. After constructing the residual block, the stacked residual blocks depict

the ResNet-50 network [127]. The ResNet-50 network has wide applications in the field

of computer vision, however, it has not been used much in image fusion techniques.

We can represent the residual block of the deep neural network as;

Qt = RBO(Pt,Wt) + Pt. (3.8)

Pt+1 = <(Qt). (3.9)

<(Qt) =

8
><

>:

Qt Qt > 0

0 Qt  0
. (3.10)
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where Pt and Qt indicates the input and output feature of the tth residual block. Wt =

{Wt,r|1rR} is a set of weights and biases, and R is the number of layers associated with

the tth residual block. RBO(·) represent the residual block operation, e.g., a stack of

convolution, batch normalization and ReLU layers and <(·) is a ReLU function.

NRUmali]aWiRn RSeUaWRU
+ BicXbic inWeUSRlaWiRn

SAD + MBBA
RSeUaWRU

Figure 3.5: Block diagram of the proposed deep-multi layers fusion strategy.

We have proposed a novel fusion strategy for the multi-layer deep features from all

the convolutional blocks of the ResNet-50 network that preserve as much information as

possible. The proposed deep multi-layers fusion strategy is shown in Figure 3.5. Let us

assume the Ics represent the coe�cients pairs and the ⇥i
s denotes the deep features ex-

tracted by the ResNet-50 network with ith convolutional block, i 2 {1, 2, 3, 4, 5}. ⇥i
s(x, y)

represent the information at the position (x, y) in the deep features. Initially, a similar

kind of coe�cients pair are given to the ResNet-50 network individually to obtain the

⇥i
s. Then, at each block, to retain the edge details and geometric structure from the deep

features, we have proposed an activity level map construction process where the sum of

the absolute di↵erence SAD operator is used pixel-by-pixel basis among these feature

maps. Here, we determined the absolute di↵erence between the succeeding feature maps

in the multi-layer deep features and combined them to generate the activity level map Ai
s

and can be calculated as;

Ai
s(x, y) = SAD(⇥i

s(x, y)). (3.11)
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To make the proposed scheme insensitive to mis-registration, the action level map

Ãi
s is obtained by considering a center sliding window w ⇥ w in the Ai

s. Further, Ai
s is

zero-padded with w�1

2
numbers of rows and columns. Also, MBBA operator is considered

in this window to obtain the Ãi
s and can be calculated as;

Ãi
s(x, y) =

Pw�1
2

p=�w�1
2

Pw�1
2

q=�w�1
2

Ai
s(x+ p, y + q)

w2
. (3.12)

With a larger value of w, the fusion method is excepted to be more robust to mis-

registration, but some small-scale details may be lost simultaneously. As the small-scale

details are frequently required in the multi-modal image fusion, it is more suitable to

choose a smaller value of the w. For the fusion process, we set the dimensions of the

center sliding window as 3 ⇥ 3. It is found that the center sliding window with a size of

3 ⇥ 3 explores the spatial dependency among neighborhood pixels very well to preserve

small-scale details from the sources against the center sliding window with size of 5⇥ 5,

7⇥ 7 and 9⇥ 9.

3.2.2.3 Weight Maps Generation

The IR and visible images provide complementary information, i.e., the information

present in one image might not be present in the other. Generally, the IR images provide

thermal radiation information where the object is identified, but the background informa-

tion is insu�cient. However, the visible image highlights the background information but

fails to provide the object’s information. We need to integrate objects and background

information from the two source images into one fused image. To this end, we assign

low weight to pixels with less significant information and vice-versa. Hence, in this work,

we have proposed a weight map construction process where the normalization operator is

used in the Ãi
s(x, y) to obtain the action weight map W i

s(x, y). The W
i
s(x, y) is considered

to be in the range of [0,1] and can be represented as;

W i
s(x, y) =

Ãi
s(x, y)P

2

m=1
Ãi

m(x, y)
. (3.13)

In the conv1 block of ResNet-50 network, 7 ⇥ 7 convolutional layer with stride of 2
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is used which reduces the size of the input image to 1/2 times of the actual dimensions

of the input image. The max-pooling layer is used in the ResNet-50 network after the

conv1 block with stride of 2 which is a kind of sub-sampling operation. This layer reduces

the size of deep features to 1/2 times of the actual dimensions of the input deep features.

Again, at the beginning of the rest of the blocks such as conv3, conv4, and conv5, 1 ⇥ 1

convolutional layer with stride of 2 is used which further reduces the size of the deep

features to 1/2 times of actual dimensions. Hence, the intermediate weight map W̃ i
s is

obtained by utilizing the bicubic interpolation which resizes the W i
s into the source image

size.

Maximum
selection strateg\ 

Figure 3.6: Block diagram of the proposed intermediate and detail feature maps generation process.

The intermediate feature map IFM i can be obtained by using the source images and

the intermediate weight maps are shown in Figure 3.6 to preserve the high strength salient

features and to discard the low strength salient features of the source images. Now we

have five pairs of intermediate weight maps W̃ i
s . For each pair of W̃ i

s , the intermediate

feature map is calculated as;

IFM i(x, y) =
sX

z=1

W̃ i
z(x, y)⇥ Iz(x, y). (3.14)

Finally, the detail feature mapDFM is determined by applying the maximum selection

strategy among these five intermediate feature maps are presented in Figure 3.6 to preserve

the sharp features and can be given as;

DFM(x, y) = max[IFM i(x, y)], (3.15)
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similarly, we obtained several detail feature maps from all the coe�cient pairs.

3.2.2.4 Fused Image Generation

The detail feature maps we obtained by the above process have the sources’ textural

details and thermal radiation information. The thermal radiation information is generally

characterized by pixel intensities which make the objects easily identifiable. Generally, the

textural details are mainly characterized by the gradients and provide detailed information

for the scene. For the complete description of the scene, objects, and detailed information

of the target scene is highly essential for the fused image F . Therefore, to get the objects

as well as detailed information in the F , the minimum selection strategy is applied among

these detail feature maps from the various coe�cient pairs, which conserve the common

information and decrease the redundant information and can be given as;

F (x, y) = min[DFM c(x, y)], (3.16)

where c denotes the number of coe�cient pairs.

3.3 Results and Discussions

The proposed algorithms are implemented on a 16 GB RAM equipped with Core i7

system, 1.5 MB L2 cache. The proposed schemes are tested on all the source image pairs

available on the TNO benchmark database [2].

In this section, the performance of the proposed algorithms are validated qualitatively

as well as quantitatively. To evaluate the performance of the proposed algorithms, we

have used four quantitative measures: mutual information for the discrete cosine features

(FMIdct) [50], amount of artifacts added during the fusion process (Nabf ) [51], average

structure similarity index (SSIMa) [52], and average edge preservation index (EPIa) [53].

The achievement of the proposed integration of bi-dimensional empirical mode decompo-

sition with two streams VGG-16 technique is verified by comparing the results obtained by

it with those of the recently developed fifteen existing state-of-the-art fusion techniques:

cross bilateral filter (CBF) [116], weighted least square (WLS) [117], convolutional sparse

representation (CSR) [34], ratio of low-pass pyramid (RP) [24], RP with sparse repre-

sentation (RP-SR) [24], latent low-rank representation (LatLRR) [129], morphological
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component analysis based on convolutional sparsity (CS-MCA) [35], Fuzzy edge, Joint

SR with saliency detection (JSRSD) [130], and saliency detection (SLD)[31], convolu-

tional neural network (CNN) [36], deep neural network (DNN) [37], Fusion based on

generative adversarial network (FusionGAN) [131], image fusion based on CNN (IFCNN)

[132], and residual fusion network (RFN) [41]. To justify the e�ciency of the proposed

non-subsampled contourlet transform induced two streams ResNet-50 network technique,

we compared it against with ten state-of-the-art image fusion techniques: cross bilateral

filter (CBF) [116], weighted least square (WLS) [117], convolutional sparse representation

(CSR) [34], ratio of low-pass pyramid (RP) [24], RP with sparse representation (RP-SR)

[24], latent low-rank representation (LatLRR) [129], morphological component analysis

based on convolutional sparsity (CS-MCA) [35], convolutional neural network (CNN) [36],

deep neural network (DNN) [37], and deep learning based fusion (DL) [40].

3.3.1 Qualitative illustration of Integration of Bi-dimensional

Empirical Mode Decomposition with Two Streams VGG-

16

The original images acquired from the visual and the thermal sensors along with the results

obtained by the proposed and di↵erent considered state-of-the-art techniques: CBF, RP,

RP-SR, Fuzzy edge, RFN, and DNN are presented in Figure 3.7. It may be observed

that the resultant images procured by the di↵erent techniques used for comparison: CBF,

RP, RP-SR, and Fuzzy edge have produced many artifacts and cannot retain significant

details in the fused image, as shown in the red rectangle highlighted region on di↵erent

images. The outcomes of the RFN technique have blurred details with more noise. Due to

ringing artifacts around the edge details, the significant features are not clearly visible or

highlighting non-required details in the fused image by the DNN technique. However, the

results obtained by the proposed technique have maximum details with lesser artifacts.
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Figure 3.7: Visual analysis of results on Bench, Octec, and Marne images (from left to right). From
top to bottom: (a) Visible images, (b ) IR images, fused images obtained by (c) CBF, (d) RP, (e) RP-
SR, (f) Fuzzy edge, (g) RFN, (h) DNN and (i) proposed integration of bi-dimensional empirical mode
decomposition with two streams VGG-16 scheme.
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3.3.2 Quantitative comparison of Integration of Bi-dimensional

Empirical Mode Decomposition with Two Streams VGG-

16

The evaluation of fusion performance is di�cult due to irrelevant variation in visual

demonstrated fusion results obtained by di↵erent fusion schemes. Therefore, in this paper

we have used the four most suggested fusion metrics: mutual information for the discrete

cosine features (FMIdct) [50], amount of artifacts added during the fusion process (Nabf )

[51], average structure similarity index (SSIMa) [52], and average edge preservation index

(EPIa) [53].

Table 3.1: Quantitative comparisons of average values of the FMIdct, Nabf , SSIMa and
EPIa on TNO database

Quantitative measurements

/Algorithms
Avg.FMIdct Avg.Nabf Avg.SSIMa Avg.EPIa

CBF[116] 0.26309 0.31727 0.59957 0.57240

WLS[117] 0.33102 0.21257 0.72360 0.67837

CSR[34] 0.34640 0.01958 0.75335 0.71130

RP[24] 0.28210 0.22677 0.68424 0.64488

RP-SR[24] 0.27930 0.21444 0.67385 0.63737

LatLRR[129] 0.33817 0.01596 0.76486 0.76223

CS-MCA[35] 0.35841 0.06680 0.72964 0.69154

Fuzzy edge 0.31052 0.28250 0.60635 0.66744

JSRSD[130] 0.14253 0.34657 0.54127 0.47473

SLD[31] 0.27030 0.13430 0.72897 0.66774

CNN[36] 0.35269 0.13280 0.71372 0.68444

DNN[37] 0.36658 0.02324 0.70852 0.68552

FusionGAN[131] 0.36335 0.06706 0.65384 0.68470

IFCNN[132] 0.37378 0.17959 0.73186 0.73767

RFN[41] 0.29669 0.07288 0.69949 0.68864

Proposed 0.39962 0.00149 0.77671 0.77909

Table 3.1 encapsulates the average quantitative measures of the proposed and the

state-of-the-art fusion schemes where the best values are indicated in bold. From this

Table, it may be observed that the proposed scheme attained higher accuracy in terms

of all considered measures against fifteen existing fusion algorithms. Also, the fused

images obtained by the proposed scheme include important visual content with maximum

edge details due to the higher average value of FMIdct and EPIa against the existing

fusion schemes. Further, the fused images acquired by the proposed algorithm strongly

correlate with source images and contain fewer artifacts as compared to the state-of-the-

art techniques because of the best average value of SSIMa and Nabf .
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Figure 3.8: Visual analysis of results on Octec, Man in front of house, Marne, Movie 18, and Bench images
(from left to right). From top to bottom: (a) Visible images, (b ) IR images, fused images obtained by
(c) CBF, (d) RP, (e) RP-SR, (f) CNN, (g) DNN, and (h) proposed non-subsampled contourlet transform
induced two streams ResNet-50 network scheme.

3.3.3 Qualitative illustration of Non-subsampled Contourlet Trans-

form Induced Two Streams ResNet-50 Network

The paired source and fused images acquired from the proposed method and other state-

of-the-art techniques are shown in Figure 3.8. The performance of fusion of the proposed

scheme is evaluated on few IR and visible image pairs taken from the TNO benchmark

database: Octec, Man in front of house, Marne, Movie 18 and Bench.

Figure 3.8 (a) and Figure 3.8 (b) denotes the visible and the IR images, respectively.

It may be observed that from Figure 3.8 (c), (d) and (e) the fused images generated by

CBF, RP, and RP-SR contain more noise and the details are not clearly visible. The
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resulting images obtained by CNN are shown in Figure 3.8 (f). It can be seen that these

techniques have produced more artifacts. Also, the image details are blurred. The detailed

information in images after fusion are shown in Figure 3.8 (g). These are obtained by DNN

and the details are not clear because of the ringing artifacts around the features. On the

contrary, the fused images are shown in Figure 3.8 (h) obtained by the proposed scheme

having fewer artifacts, preserves more detailed information, and looks more natural as

compared to these existing techniques.

3.3.4 Quantitative comparison of Non-subsampled Contourlet

Transform Induced Two Streams ResNet-50 Network

Evaluation of the performance of fusion techniques is di�cult as the ground truth is not

always available for most challenging scenes. It is observed that in most of the literature

cited the standard quantitative evaluation measures: mutual information for the discrete

cosine features (FMIdct) [50], amount of noise added to fused images by the fusion process

(Nabf ) [51], average structure similarity index (SSIMa) [52] and average edge preservation

index EPIa [53]. Hence considering the importance of this work, we also adhered to the

same.

The values of FMIdct, Nabf , SSIMa and EPIa are reported in Table 3.2 - 3.5 and

the same is graphically represented in Figure 3.9 - 3.12 for the proposed and the ten

state-of-the-art techniques: cross bilateral filter (CBF) [116], weighted least square (WLS)

[117], convolutional sparse representation (CSR) [34], ratio of low-pass pyramid (RP) [24],

RP with sparse representation (RP-SR) [24], latent low-rank representation (LatLRR)

[129], morphological component analysis based on convolutional sparsity (CS-MCA) [35],

convolutional neural network (CNN) [36], deep neural network (DNN) [37], and deep

learning based fusion (DL) [40] for challenging image pairs, where values in bold indicate

the best ones. It can be seen from Table 3.2 and Figure 3.9, the proposed method has

the best value of FMIdct as compared to the state-of-the-art techniques for the camp

image to movie 18 image. However, the proposed algorithm produces the FMIdct value

for the sandpath, soldier behind smoke, and soldier in trench images are acceptable. From

Table 3.3 and Figure 3.10, the Nabf values of fused images are obtained by the proposed

technique are satisfactory for all the images excluding marne and soldier behind smoke

images. The SSIMa values of our proposed technique shown in Table 3.4 and Figure
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3.11, is best as compared to the state-of-the-art techniques excluding the DL technique

for the street, bunker, soldier behind smoke, and soldier in trench images. However, the

proposed technique produces comparable results to the DL. As compared with all the

state-of-the-art techniques, the proposed algorithm obtains the best values in EPIa are

shown in Table 3.5 and Figure 3.12, for all the fused images.

From Table 3.6, it is clear that the average values of FMIdct, Nabf , SSIMa and EPIa

metrics, that are obtained by the proposed algorithm for all the IR and visible image

pairs, have the best average values and are indicated in bold against the state-of-the-

art techniques. Observing these values, it is clear that the fused images generated by

the proposed approach have better performance of image fusion than the state-of-the-art

techniques. Also, the proposed method preserves su�cient structural information and

features because of the best average values in SSIMa and FMIdct. Furthermore, for

the same reason, the fused images obtained by the proposed method are relatively more

natural and contain fewer artifacts because of the best average values of EPIa and Nabf .

Table 3.2: Quantitative comparisons of mutual information for the discrete cosine features

Methods

/ Images
CBF WLS CSR RP RP-SR LatLRR CS-MCA CNN DNN DL Proposed

Camp (CM) 0.24495 0.26995 0.27958 0.23513 0.23373 0.33541 0.28777 0.26425 0.28822 0.37289 0.37352
Street (ST) 0.28458 0.33872 0.37597 0.26278 0.21694 0.36015 0.36819 0.35397 0.39065 0.39408 0.40121

Man in front of house (MFT) 0.25719 0.33967 0.37682 0.30276 0.29940 0.35512 0.39458 0.39683 0.36878 0.43083 0.43164
Airplane in trees (AIT) 0.13701 0.21218 0.20117 0.18999 0.18390 0.20096 0.22734 0.23828 0.26310 0.28504 0.28760

Bunker (BR) 0.39827 0.37730 0.42364 0.35298 0.35935 0.36187 0.43206 0.41950 0.44599 0.44724 0.44902
Kaptein 1123 (KP1123) 0.22292 0.29200 0.27340 0.21496 0.19783 0.32829 0.27580 0.27313 0.28839 0.38330 0.38710
Kaptein 1654 (KP1654) 0.22987 0.29371 0.28996 0.24721 0.23381 0.32103 0.30758 0.28810 0.30120 0.38961 0.39118

Lake (LE) 0.30142 0.35993 0.38601 0.30381 0.29754 0.35490 0.40938 0.40580 0.40987 0.42693 0.42949
Men in doorway (MID) 0.28895 0.33821 0.38661 0.30284 0.30309 0.35787 0.40336 0.39310 0.40295 0.43667 0.43714

Marne (ME) 0.18351 0.33048 0.28026 0.18682 0.20946 0.33252 0.27684 0.30218 0.27160 0.39157 0.39273
Movie 1 (MV1) 0.17596 0.31727 0.29606 0.22095 0.20910 0.30702 0.30989 0.32215 0.33448 0.36826 0.37218

Movie 18 (MV18) 0.22016 0.30172 0.27818 0.24503 0.23262 0.32068 0.26703 0.27907 0.24446 0.38474 0.38569
Sandpath (SP) 0.26415 0.26049 0.29298 0.20958 0.20050 0.31613 0.33588 0.25211 0.29544 0.37606 0.37599

Soldier behind smoke (SBS) 0.20102 0.37284 0.42015 0.26611 0.26560 0.35426 0.41893 0.41351 0.54888 0.44377 0.44496

Soldier in trench (SIT) 0.31521 0.41898 0.42609 0.39744 0.41310 0.37319 0.42641 0.44681 0.44870 0.45949 0.45838

Table 3.3: Quantitative comparisons of amount of noise added

Methods

/ Images
CBF WLS CSR RP RP-SR LatLRR CS-MCA CNN DNN DL Proposed

CM 0.23167 0.14494 0.01494 0.18188 0.19922 0.01720 0.05548 0.12243 0.02976 0.00013 0.00012
ST 0.48700 0.16997 0.02199 0.32816 0.44373 0.02922 0.08130 0.11717 0.05862 0.00381 0.00271

MFT 0.23932 0.22382 0.02296 0.18569 0.15037 0.00873 0.06947 0.13074 0.02096 0.00099 0.00039
AIT 0.41779 0.15368 0.01514 0.15455 0.16687 0.03166 0.07079 0.12248 0.02886 0.00188 0.00147
BR 0.11741 0.17177 0.02371 0.11645 0.11665 0.00485 0.07226 0.13313 0.00770 0.00029 0.00019

KP1123 0.25544 0.22335 0.01545 0.21989 0.24685 0.01399 0.05387 0.13585 0.01355 0.00058 0.00024
KP1654 0.36066 0.19607 0.01888 0.27621 0.23131 0.01560 0.06410 0.12659 0.05044 0.00035 0.00030

LE 0.18971 0.20332 0.02036 0.16489 0.14370 0.00796 0.06897 0.14908 0.01751 0.00082 0.00033
MID 0.21509 0.20378 0.02207 0.18090 0.17750 0.00971 0.07838 0.13583 0.02381 0.00060 0.00028
ME 0.52783 0.30672 0.01936 0.33994 0.32261 0.02138 0.06661 0.15255 0.03734 0.00090 0.00106

MV1 0.52887 0.31160 0.01561 0.21055 0.30008 0.01364 0.06330 0.16254 0.01785 0.00122 0.00082
MV18 0.26649 0.25937 0.01499 0.20357 0.25116 0.00715 0.05345 0.16153 0.01155 0.00023 0.00022
SP 0.12582 0.16205 0.01379 0.16681 0.14794 0.00682 0.04653 0.11416 0.00997 0.00002 0.00002
SBS 0.25892 0.18401 0.02574 0.32388 0.24738 0.00913 0.08103 0.13493 0.00000 0.00203 0.00147

SIT 0.18091 0.25074 0.02745 0.15135 0.17251 0.00783 0.09139 0.13453 0.01798 0.00171 0.00124
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Table 3.4: Quantitative comparisons of average structural similarity index

Methods

/ Images
CBF WLS CSR RP RP-SR LatLRR CS-MCA CNN DNN DL Proposed

CM 0.62376 0.72827 0.74954 0.68137 0.66828 0.76182 0.72064 0.70593 0.70536 0.77758 0.77773
ST 0.49861 0.66873 0.67474 0.56186 0.49782 0.67029 0.66204 0.64162 0.64394 0.68125 0.68042

MFT 0.61724 0.72050 0.76172 0.70548 0.69924 0.76892 0.73225 0.72259 0.71112 0.78623 0.78638
AIT 0.67194 0.84142 0.86480 0.83519 0.81738 0.86276 0.84326 0.82597 0.82501 0.87467 0.87486
BR 0.61793 0.64769 0.66693 0.63219 0.62424 0.68909 0.63460 0.62636 0.62314 0.70616 0.70612

KP1123 0.64975 0.72693 0.76111 0.67889 0.65247 0.77222 0.74062 0.72790 0.71975 0.78692 0.78730
KP1654 0.53699 0.69730 0.71927 0.62293 0.63508 0.73233 0.69720 0.68246 0.66818 0.74651 0.74655

LE 0.69888 0.74456 0.78059 0.73414 0.72757 0.79005 0.74930 0.73288 0.73150 0.80594 0.80621
MID 0.59021 0.68192 0.71294 0.65640 0.65196 0.72292 0.68254 0.67433 0.66418 0.73985 0.73997
ME 0.45747 0.66894 0.72178 0.60058 0.59287 0.72532 0.70375 0.67747 0.68157 0.73502 0.73529
MV1 0.50982 0.72919 0.77048 0.69698 0.63134 0.77284 0.75505 0.72093 0.71527 0.78256 0.78295
MV18 0.68824 0.76997 0.81841 0.75496 0.72086 0.83420 0.79671 0.77181 0.77540 0.84742 0.84772
SP 0.63683 0.67587 0.68663 0.62227 0.62255 0.71667 0.65416 0.65309 0.64363 0.73217 0.73247
SBS 0.53005 0.67908 0.70304 0.59670 0.62040 0.71191 0.67525 0.65557 0.65703 0.72860 0.72849

SIT 0.68207 0.73718 0.77933 0.74709 0.72367 0.79277 0.75171 0.73514 0.72770 0.80901 0.80866

Table 3.5: Quantitative comparisons of average edge preservation index

Methods

/ Images
CBF WLS CSR RP RP-SR LatLRR CS-MCA CNN DNN DL Proposed

CM 0.68093 0.74477 0.77789 0.69472 0.69107 0.81879 0.76101 0.74752 0.76442 0.83152 0.83204
ST 0.60258 0.66523 0.69587 0.52280 0.48176 0.71043 0.69155 0.69811 0.63488 0.72348 0.72671

MFT 0.38920 0.54510 0.59472 0.55984 0.55803 0.68432 0.55419 0.54445 0.57417 0.70270 0.70955
AIT 0.77945 0.92920 0.94178 0.92362 0.90167 0.94880 0.93411 0.92374 0.94051 0.95315 0.95363
BR 0.58591 0.60933 0.66039 0.62096 0.62976 0.71873 0.63206 0.61184 0.61871 0.74439 0.74794

KP1123 0.59079 0.71674 0.72890 0.61052 0.58267 0.77093 0.71778 0.71832 0.72229 0.79187 0.79382
KP1654 0.57477 0.69082 0.71296 0.59284 0.58582 0.73989 0.69871 0.65968 0.70428 0.77252 0.77309

LE 0.42554 0.49105 0.54321 0.53619 0.52919 0.63076 0.50955 0.50200 0.52519 0.65282 0.66287
MID 0.39622 0.49706 0.53012 0.53254 0.53038 0.63693 0.48716 0.47987 0.47221 0.65574 0.66781
ME 0.45498 0.69038 0.74923 0.51199 0.54174 0.78169 0.73229 0.73960 0.70806 0.80071 0.80128
MV1 0.54331 0.73843 0.75911 0.69273 0.65109 0.80500 0.74833 0.74562 0.76353 0.81527 0.81836
MV18 0.68496 0.79267 0.81168 0.74566 0.71477 0.84746 0.80166 0.80356 0.79386 0.86333 0.86362
SP 0.64656 0.67145 0.68749 0.60725 0.60090 0.75524 0.65481 0.65949 0.66299 0.78255 0.78303
SBS 0.31405 0.51057 0.53468 0.50252 0.48912 0.61281 0.51688 0.48557 0.46178 0.63151 0.64413
SIT 0.45947 0.52624 0.55940 0.59872 0.59527 0.64858 0.53314 0.51942 0.51058 0.66813 0.68093

Table 3.6: Quantitative comparisons of average values of the FMIdct, Nabf , SSIMa and
EPIa on TNO database

Evaluation measures

/Methods
Avg.FMIdct Avg.Nabf Avg.SSIMa Avg.EPIa

CBF[116] 0.26309 0.31727 0.59957 0.57240

WLS[117] 0.33102 0.21257 0.72360 0.67837

CSR[34] 0.34640 0.01958 0.75335 0.71130

RP[24] 0.28210 0.22677 0.68424 0.64488

RP-SR[24] 0.27930 0.21444 0.67385 0.63737

LatLRR[129] 0.33817 0.01596 0.76486 0.76223

CS-MCA[35] 0.35841 0.06680 0.72964 0.69154

CNN[36] 0.35269 0.13280 0.71372 0.68444

DNN[37] 0.36658 0.02324 0.70852 0.68552

DL[40] 0.40463 0.00120 0.77803 0.77923

Proposed 0.40597 0.00085 0.77831 0.78359

3.3.5 Discussions and Future Works

The good quality of the image of a scene is unable to capture by the sensors due to the

uncertainty in the source images and sensor noise. In this context, image fusion plays

an essential role. The aim of the fusion task is to generate a fused image that incorpo-

rates the complementary data conveyed by various source images: thermal and visible

images. However, generating a fused image with significant details and reduced artifacts

is challenging in the vision-based system. In this chapter, we have developed two feature

level IR and visible image fusion schemes: integration of bi-dimensional empirical mode
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Figure 3.9: Quantitative comparisons of mutual information for the discrete cosine features for di↵erent
schemes.
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Figure 3.10: Quantitative comparisons of amount of noise added for di↵erent schemes.

decomposition with two streams VGG-16, and non-subsampled contourlet transform in-

duced two streams ResNet-50 network. The proposed algorithms results are validated

qualitatively as well as quantitatively by comparing with its result those of the di↵erent

state-of-the-art (SOTA) techniques. For fair evaluation, the SOTA techniques are imple-

mented without altering the parameters. It may be found that the proposed algorithms

are attained better accuracy against several SOTA techniques.

Also, to know the achievement of the proposed algorithms, we have performed a quan-

titative comparison among integration of bi-dimensional empirical mode decomposition

with two streams VGG-16 technique and non-subsampled contourlet transform induced
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Figure 3.11: Quantitative comparisons of average structural similarity for di↵erent schemes.
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Figure 3.12: Quantitative comparisons of edge preservation index for di↵erent schemes.

two streams ResNet-50 network technique. From Table 3.7, it may be observed that the

proposed non-subsampled contourlet transform induced two streams ResNet-50 network

algorithm introduces much lesser noise and artifacts with maximum details into the fused

image against the other proposed feature level infrared and visible image fusion scheme.

The proposed integration of bi-dimensional empirical mode decomposition with two

streams VGG-16 and non-subsampled contourlet transform induced two streams ResNet-

50 network schemes enhance visual perception of the thermal sequences with reduced

artifacts. However, in the proposed integration of bi-dimensional empirical mode decom-

position with two streams VGG-16 technique, the BEMD mechanism introduces artifacts

in the fused image. Thus, we are planning to exploit the probabilistic-based decomposi-
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Table 3.7: Quantitative comparisons between the proposed integration of bi-dimensional
empirical mode decomposition with two streams VGG-16 and non-subsampled contourlet
transform induced two streams ResNet-50 network schemes

Algorithms/
Quantitative Measures

integration of BEMD
with two streams VGG-16

NSCT induced
two streams ResNet-50 network

Avg.FMIdct 0.39962 0.40597
Avg.Nabf 0.00149 0.00085

Avg.SSIMa 0.77671 0.77831
Avg.EPIa 0.77909 0.78359

tion strategy to handle the said issue in the future. Again, in the non-subsampled con-

tourlet transform induced two streams ResNet-50 network algorithm, we have considered

a deterministic weight map generation process that reduces the fused image’s contrast.

Considering uncertainty within a pixel in an image, a fuzzy set-theoretic fusion strategy

can also be used.

3.4 Conclusions

Two image fusion schemes of IR and visible images at the feature level have been addressed

in this chapter. In the proposed integration of bi-dimensional empirical mode decompo-

sition with two streams VGG-16 technique, the proposed bi-dimensional empirical mode

decomposition (BEMD) strategy is integrated with a VGG-16 deep neural architecture

that can learn a mapping from image space to feature space at multi-scale with di↵erent

levels. The proposed multi-level fusion strategy; investigates the spatial inter-dependency

among these features and accurately acquires the complementary information from the

source images. The proposed technique produces a fused image with essential details and

reduced artifacts for IR and visible image pairs. Again, in the proposed non-subsampled

contourlet transform induced two streams ResNet-50 network scheme, the proposed non-

subsampled contourlet transform (NSCT) induced two-stream network using ResNet-50

architecture can exploit the multi-scale, multi-directional, and shift-invariant details of the

sources at low-frequency and high-frequency bands. We have adhered to a pre-trained

ResNet-50 deep neural network to generate the deep feature maps of the directional de-

tails. The deep layered architecture of the two-stream ResNet-50 network reduces the

information loss during feature extraction and provides better accuracy as it is based on

residual connections with identity mapping. We have proposed a unique fusion strategy
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for deep multi-layer, shift-invariant features to detect the complementary information of

source images e�ciently. The proposed scheme produces a fused image with lesser noise

for the corresponding IR and visible image pairs.

The results obtained by the proposed schemes are verified on various challenging

scenes: illumination variation, smoke, occluded objects, non-uniform lighting conditions,

etc. available at the TNO benchmark database. The e�cacy of the proposed integration

of bi-dimensional empirical mode decomposition with two streams VGG-16 scheme is cor-

roborated against fifteen existing fusion schemes. Also, the performance of the proposed

non-subsampled contourlet transform induced two streams ResNet-50 network algorithm

is demonstrated against ten existing fusion schemes. To confirm our findings, we have

used qualitative and quantitative analysis. It is observed that the fused images attained

by the proposed algorithms have a strong correlation with the source images and higher

accuracy than the existing fusion methods.



Chapter 4

Kernel Induced Possibilistic Fuzzy

Associate Background Subtraction

for Moving Object Detection

4.1 Introduction

Conventional Background Model 
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Figure 4.1: Data distribution due to conventional modeling

It may be summarized from the Chapter 1 that many works were reported in the state-

of-the-art literature for background subtraction or local change detection. However, there

are two major disadvantages that a↵ect the accuracy and complexity of the algorithms:

estimation of the parameters in the generative model used for background construction

and unnecessary inclusion of outliers (non-required/noisy pixel values) in the background

73
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model. The parameters used in the generative models in background construction are

very complex to be calculated. In this regard, non-parametric methods are convenient

to characterize the background of a scene as do not assume a generative model for de-

scribing the data. However, the use of multi-valued background models is always unable

to characterize the randomness within the pixel values. Similarly, during the background

construction process, the use of noisy or outliers pixels may produce errors in constructing

a stable background model. The contribution of the noisy pixel may unnecessarily either

increase the variance of a particular background type as the mode of the distribution may

deviate or will try to merge multiple background types into a single one. Let’s consider

an example of a sequence of frames from Fountain-02, whose pictorial view of the same

can be seen in Figure 4.1. Here di↵erent background types are represented by di↵erent

colors. Considering the ideal shape of the data distribution one can expect that a good

background construction algorithm will project the data distribution to follow the actual

shape as shown at top of the figure. However, the shape of the pixel distributions using the

conventional background model will project them to the group in the wrong background

type, due to the varying density of the data point. Similar observations can be made for

di↵erent other data distributions as shown in Figure 4.2. Further as can be seen in the

last plot of Figure 4.2, due to noise points the background mode is shifted and produce a

biased distribution, where the noise points try to shift the mode of the distribution.

Most of the techniques developed in the literature use deterministic approaches to

resolve the problem of background construction. However, it is to be noted that the

changes in subsequent frames of a video are quite common and the region undergoes

static-background changes (pixel posses multi-valued background) are obvious. This high

ambiguity in the spatial and temporal domain in the video is due to the multi-valued

brightness of pixels. Deterministic approaches are e↵ective only for video frames with

significant contrast changes. Deterministic approaches are rarely able to distinguish the

randomness of changes in video frames. Hence deterministic approaches may not always

be suitable to produce good results in background subtraction. As reported in Artificial

intelligence techniques, there are two approaches to deal with randomness: probabilistic

and fuzzy set-theoretic approaches. However probabilistic theory-based BGS make a hard

decision for foreground and background and involve many complex parametric estimation

processes.
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Figure 4.2: Conventional against ideal BGS model

Considering the above discussions, it can be understood that, fuzzy set theories are

repute to handle uncertainties to a reasonable extent, arising from deficiencies of infor-

mation available from a situation (the deficiency may result from incomplete, ill-defined,

not fully reliable, vague, and contradictory information). It justifies applying the concept

of fuzzy set based BGS is better than a hard decision-based BGS. In this context, it is

also important that learning algorithms may not always able to provide useful insights

structures of the data in the temporal domain which can help in the process of deci-

sion making/classifying a pixel in foreground/background class. A drawback with fuzzy

set-theoretic BGS is its poor performance against noisy or outlier data and its accuracy

degrades with poor or wrong initialization of background pixels. Again, the non-linear

temporal ambiguities of data in lower dimensional space are also not able to give good re-

sults. This motivates us to design a fuzzy Possibilistic background subtraction algorithm

in Kernel induced space is expected to yield a satisfactory performance in this regard.

The use of possibilistic concepts in BGS will help in detecting and avoiding noisy/outlier

points in background subtraction. Similarly, inducing in kernel space will help in mapping

the spatiotemporal video data to a non-linear high dimensional kernel space of infinite

dimensions, where it will be easy to build a stable background model.

In this chapter, we proposed a kernel induced possibilistic fuzzy associated unsu-

pervised background subtraction technique to detect the local changes in fixed camera

captured sequences. The proposed scheme follows two stages: background training and

foreground segmentation. In the background construction stage, each pixel is modeled

using a possibilistic fuzzy cost function in kernel induced space. The use of induced kernel

function projects the low dimensional data into a higher dimensional feature space and

the use of possibilistic function will construct a robust background model based on the

density of the data in temporal direction avoiding the noisy and outlier points. Hence,

the use of a possibilistic induced kernelized fuzzy modal variation cost function reduces
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the e↵ects of high ambiguity in the spatial and temporal domain of the video due to the

multi-valued brightness of the pixels.

The performance of the proposed kernel induced possibilistic fuzzy associate back-

ground subtraction scheme is tested on the database: changedetection.net. The e�cacy

of the proposed scheme is evaluated on di↵erent performance evaluation measures. The

investigation is corroborated by comparing the results against twenty-nine existing state-

of-the-art techniques and is found to be better.

The rest of this chapter is organized as follows. The proposed kernel induced possi-

bilistic fuzzy associate background subtraction for video scene is discussed in Section 4.2.

Section 4.3 discusses the results and discussions with future works. The conclusion of the

proposed works is carried out in Section 4.4.

4.2 Proposed Kernel Induced Possibilistic Fuzzy As-

sociate Background Subtraction for Video Scene

A kernel induced possibilistic fuzzy associated background subtraction scheme is proposed

in this chapter to detect the local changes corresponding to dynamic changes in the scene.

The use of the induced kernel function will project the temporal data to an infinite-

dimensional space to build the background model. To boost the accuracy against the

noise and reduce the error due to outliers, the concept of possibilistic fuzzy C-means

algorithm [133] is adhered to in the proposed background subtraction scheme. The flow-

chart of the proposed scheme is provided in Figure 4.3.

Here it is assumed that the time instant is the same as that of the frame instant. Let

us assume there are N frames are there in the video. The proposed scheme is divided

into two stages: training or background construction and foreground separation. In the

proposed scheme we assume n is the number of frames used for background construction

or training and N � n are the testing or target frames used for foreground separation.

Each frame in the video is assumed to be represented as Ii(x, y), where (x, y) represents

the pixel location in a video frame and i is the frame instant, where i = 0, 1, 2, .., n, ..., N .
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Figure 4.3: Block diagram of the proposed kernel induced possibilistic fuzzy associate background sub-
traction scheme.

4.2.1 Background Construction

In the proposed scheme we have used the n number of initial frames of a video to model

the background of the scene. The model is integrated at individual pixel location (x, y).

The proposed background model is initialized by considering a small region of support

at every pixel location of the frame at t = 0 time instant. It is assumed that there are

initially, two background types are there and further new background types are added

based on the scene under consideration or sequence of image frames under consideration.

Each background type is represented by the mode corresponding to it. In the next frame

onward, each pixel at location (x, y) is fitted with the kernel induced possibilistic fuzzy

associated cost function Qt(x, y) as follow,

Qt(x, y) =
tX

i=1

mX

j=1

{µr
ij(x, y)}||�(Ii(x, y))� �(vj(x, y))||2

+
mX

j=1

�j

tX

i=1

(µij(x, y)lnµij(x, y)� µij(x, y)), t  n, (4.1)

where m represents the number of constructed background type at location (x, y). The

kernel function is assumed to be � which projects the pixel values from a RGB color

plane to infinite dimensional plane and r is the fuzzification parameter, which induces

degree fuzziness to the function. µij(x, y) represents the belongingness of Ii(x, y) pixel

into jth background type and vj is defined as the mode corresponding to jth background

type. �j represents the spread of the jth background type. The function ln in eq (4.1)
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represents the logarithmic operation. The above mentioned cost function has two parts:

the first part represents the within background type variance or average (typical) soft

induced distortion Q(t,KF )(x, y) and the second part is the integration of the possibilistic

term Q(t,PM)(x, y). Hence, this can be expressed as,

Qt(x, y) = Q(t,KF )(x, y) +Q(t,PM)(x, y). (4.2)

In eq (4.1), the term ||�(Ii(x, y))��(vj(x, y))||2 is the distance in the kernel space. Using

Mercer’s theorem the distance in kernel space can be computed as,

||�(Ii(x, y))� �(vj(x, y))||2 = K(Ii(x, y), Ii(x, y)) +K(vj(x, y), vj(x, y))�

2K(Ii(x, y), vj(x, y)). (4.3)

where the K(.) represents the dot product and considering a positive semidefinite kernel

for any two entity x1 and x2 we may describe it as;

K(x1, x2) = �(x1)
T�(x2). (4.4)

Considering a Gaussian kernel function we can express;

K(Ii(x, y), vj(x, y)) = exp{�||Ii(x, y)� vj(x, y)||2/�2}, (4.5)

where � is the variance corresponding to each background type. Hence the expression for

the cost function can be given as,

Qt(x, y) =
tX

i=1

mX

j=1

µr
ij(x, y)(1�K(Ii(x, y), vj(x, y)))

+
mX

j=1

�j

tX

i=1

(µij(x, y)lnµij(x, y)� µij(x, y)). t  n. (4.6)

At tth time instant for pixel location (x, y), the value It(x, y) is fitted to the cost function

in eq (4.6) once by computing the cost function considering the pixel belongs to the mode

of m existing background type and another by considering the value Ii(x, y) is added as

new background type (hence total m + 1 background type), where new mode is It(x, y).

Then, the minimum cost value along with its parameters will be used to update the old
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cost value. Considering this, the mode value, fuzzy membership value are updated for

each pixel value in di↵erent frames of the video.

Considering r = 1 and taking the derivatives of the above mentioned cost function eq

(4.6), we may obtain the updating rule for the fuzzy membership function as;

µij(x, y)
t+1 = e

�
⇢

2(1�K(It(x,y),vj(x,y))

�j

�

, (4.7)

similarly, the mode corresponding to the background type in kernel space can be obtained

as,

vj(x, y)
t+1 =

tP
i=1

µij(x, y)�(Ii(x, y))

tP
i=1

µij(x, y)

. (4.8)

Hence for each pixel location in (t + 1)th frame the updated background model’s fuzzy

membership value and modes can be represented as,

vj(x, y)
t+1 =

8
>>>>>>><

>>>>>>>:

tP
i=1

µij(x,y)�(Ii(x,y))

tP
i=1

µij(x,y)
,

if Ii(x, y) 2 old background;

initiate vm+1(x, y), otherwise

. (4.9)

The updated membership values will be,

µij(x, y)
t+1 =

8
>>>>>>>>><

>>>>>>>>>:

e
�
⇢

2(1�K(It(x,y),vj(x,y))

�j

�

, j = 1, 2, 3, ..m

if Ii(x, y) 2 old background types;

e
�
⇢

2(1�K(It(x,y),vj(x,y))

�j
, j=1,2,3,..,m,m+1

�

otherwise

. (4.10)

However the parameters in eqs (4.7) and (4.10) can not be computed directly. It is to be

noted that the induced mapping will map the data to infinite feature space by;

k�(Ii(x, y))k = �(Ii(x, y))
T�(Ii(x, y)) = kii. (4.11)
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Considering the above kernel tricks we may obtain the update rule for the membership

function as,

µij(x, y) = exp

"
� 1

�j

 
kii� 2

Pt
l=1

µlj(x, y))kljPt
i=1

µij(x, y))
+

Pt
l=1

Pt
m=1

µlj(x, y))µmj(x, y))klm�Pt
i=1

µij(x, y))
�2

!#

(4.12)

where klj = K(Il(x, y), Ij(x, y)). Taking the partial derivative of the cost function in

eq (4.1) with respect to �j and equating to 0, we may obtain,

�t+1

j = �{
Pt

i=1
µij(x, y)k�(Ii(x, y))� �(Vj(x, y))k2Pt

i=1
µij(x, y)

} (4.13)

Deriving the above equation we may obtain,

�t+1

j = �
tP

i=1
µij(x,y)

2

4
tP

i=1

µij(x, y)

0

@kii�
2

tP
l=1

µlj(x,y)klj

tP
i=1

µij(x,y)
+

tP
l=1

tP
m=1

µlj(x,y)µlj(x,y)klm

✓
tP

i=1
µij(x,y)

◆2

1

A

3

5 , (4.14)

where � represents the spread function constant and is used for the controlling the spread

of the modes corresponding to the background. The said steps will be followed for each

pixel location for all n frames.

4.2.2 Foreground Separation and Background Update

In the next stage, of processing, the locations of the moving objects are detected from the

test/target frames. The foreground segmentation or moving object detection is followed

on N � n frames starting from (n + 1)th frame to N th frame. At each pixel location in

the target frame it is checked if the pixel belongs to any of the existing background mode

type vj by fitting it against the Kernel induced possibilistic function as in eq (4.6). If any

pixel in the target frame belongs to any of the mode type vj, then the pixel in the target

frame will be considered as the part of the background else assumed as a foreground pixel.

This can be represented as,

 i(x, y) =

8
<

:
0, if Ii(x, y) 2 vj(x, y), i = n+ 1, ..., N ;

1, otherwise.
(4.15)
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 i(x, y) is local change detection output image, where the foreground pixels are repre-

sented by 1 and background by 0. vj(x, y) represents jth background modes at (x, y)

location. Hence the background at each pixel location in target frame are updated as,

vj(x, y) =

8
>>><

>>>:

tP
i=1

µij(x,y)�(Ii(x,y))

tP
i=1

µij(x,y)
, if  i(x, y) = 0;

vj(x, y), otherwise

. (4.16)

and the membership values are updated as;

µij(x, y) =

8
><

>:

e
�
⇢

2(1�K(It(x,y),vj(x,y))

�ti

�

if  i(x, y) = 0;

µij(x, y), otherwise

. (4.17)

and the new cost function is calculated as;

Qt(x, y) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

tP
i=1

mP
j=1

µr
ij(x, y)(1�K(fi(x, y), vj(x, y)))

+
mP
j=1

�j
tP

i=1

(µij(x, y)lnµij(x, y)

�µij(x, y)),

if  i(x, y) = 0;

Qt(x, y), otherwise.

(4.18)

Steps of the proposed background subtraction technique are enumerated in Algorithm

1.

4.3 Results and Discussions

The simulation and experimentation of the proposed scheme is carried out in a Core

i7TM , 7th generation system with 16GB RAM, 16MB L2 cache. The proposed technique

is implemented in C++ programming language with Ubuntu operating system. It is

validated on di↵erent test sequences and in this chapter, it is reported on the popular

benchmark databases: changedetection.net [114].
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Algorithm 1 : Induced Possibilistic Kernelized average soft induced distortion based
background subtraction scheme

Input: N number of video frames I1, I1, .., IN .
Divide N frames into training (n) and testing (N � n) frames.
Proposed scheme has two stages: background model and foreground separation & up-
date.
Training Stage:
Initiate with i = 0;
� Consider a rectangle w at every pixel location (x, y) and initiate the background,
assuming mode (m = 2).
� Compute the cost function using eq (4.1).
� Compute the fuzzy membership values and modes using eqs (4.7)-(4.8)
�While (i  n)
{
�i=i+1;
�for each pixel (x, y);
⇤ compute the new cost function Jt(x, y) assuming that fi(x, y) belongs to the old

background
⇤ compute the new cost function J

0
t(x, y) assuming that fi(x, y) belongs to new mode

⇤ if (J
0
t(x, y) < Jt(x, y))

�Update Jt(x, y) = J
0
t(x, y)

�Update the new modes and membership values as in eqs (4.9)-(4.12)
}
Object separation and background update:
Initiate with i = n+ 1;
�While (i  N)
{
�i=i+1;
�for each pixel (x, y);
⇤ compute the new cost function Jt(x, y) assuming that fi(x, y) belongs to the old

background
⇤ Then consider the pixel as a part of background else as foreground
�Update the new modes and membership values based on eqs (4.16)-(4.18)

}
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4.3.1 Performance Evaluation

Here we have gone for two ways of evaluating the proposed scheme: visually and quanti-

tatively.

4.3.1.1 Visual Analysis of Results

The visual analysis of results are carried out using di↵erent challenging sequences: PETS2006,

Badminton, Water surface, Canoe, MSA, Waving tree, and Snowfall. The results obtained

by the proposed scheme and other state-of-the-art techniques are reported in Figure 4.4.

All the considered original frames are shown in Figure 4.4 (a). Corresponding ground-

truth images are provided in Figure 4.4 (b). The KDE-based BGS scheme’s results are

reported in Figure 4.4 (c) which produces many missed alarms. Figure 4.4 (d) displays

the results on the considered frames by the BRPCA based BGS scheme. It is observed

from this figure that in several places the BRPCA based scheme produces many missed

alarms and false alarms for low-resolution sequences. Figure 4.4 (e) represents the results

of the ViBe based BGS scheme, where poor quality results are captured. The results for

the pROST based BGS scheme are reported in Figure 4.4 (f), where better results are

obtained for di↵erent sequences except the snowfall. Similar analysis can be made for

the DPGMM scheme (as shown in Figure 4.4 (g)). The results obtained by the feature

bags technique are shown in Figure 4.4 (h). The results obtained by the proposed BGS

scheme as shown in Figure 4.4 (i) is found to have provided better accuracy with fewer

misclassification errors.

A similar analysis is presented in Figure 4.5 where the comparison of the proposed

scheme against di↵erent deep learning techniques are provided. Figure 4.5 (c) and (d)

represent the object detection results obtained with those of the DeepBS and Cascade

CNN schemes. Both the schemes provided results where many parts of the moving objects

are not detected properly. Figure 4.5 (e) and (f) shows the results of the BSUV net and

BSUV net+semantic BGS techniques where many parts of the scene are falsely identified

as the moving object. The results of the proposed scheme as provided in Figure 4.5 (g)

are found to be visually more prominent as compared to all other considered techniques.

The results obtained by the proposed scheme and other state-of-the-art techniques for

the thermal sequences available at changedetection.net are reported in Figure 4.6. All

the considered original frames are shown in Figure 4.6 (a). Corresponding ground-truth
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Figure 4.4: Moving object detection for di↵erent sequences (PETS2006, Badminton, Water surface,
Canoe, MSA, Waving tree, and Snowfall): (a) original frame, (b) corresponding ground-truth, moving
object detection results obtained by non-deep learning based BGS schemes: (c) KDE, (d) BRPCA, (e)
ViBe, (f) pROST, (g) DPGMM, (h) feature bags and (i) proposed kernel induced possibilistic fuzzy
associate background subtraction scheme.

images are provided in Figure 4.6 (b). The DeepBS based BGS scheme’s results are

reported in Figure 4.6 (c), which produces many missed alarms. Figure 4.6 (d) depicts

the results obtained by the WisenetMD based BGS scheme. It is observed from this figure

that the WisenetMD based scheme produces ghosts for the considered frames. Figure 4.6

(e) represents the results of the Cascade CNN based BGS scheme, where few pixels are

misclassified as the object. The results for the IUTIS 5 based BGS scheme are reported

in Figure 4.6 (f), where poor quality results are produced. Figure 4.6 (g), shows the

results of the BSUV net which produce a high false-positive rate. Figure 4.6 (h) denotes

the results obtained by the SemanticBGS where many object pixels are wrongly classified

as background pixels. The results of BSUV net2.0 are presented in 4.6 (i), where false

detections are observed. The results obtained by the proposed BGS scheme are shown in

Figure 4.6 (j). It is found from this figure that the proposed algorithm precisely classifies

the object as well as background pixels and provides a better accuracy.
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Figure 4.5: Moving object detection for di↵erent sequences: (a) original frame, (b) corresponding ground-
truth, moving object detection results obtained by deep learning based BGS schemes: (c) DeepBS, (d)
Cascade CNN, (e) BSUV net, (f) BSUV net+semantic, and (g) proposed kernel induced possibilistic
fuzzy associate background subtraction scheme.

The execution time taken by the proposed scheme as compared to other considered

existing techniques is reported in Table 4.1. It may be observed from this table that, the

time taken by the proposed scheme per frame is more than ViBe and Kernelized fuzzy

technique whereas lesser time as compared to the other considered techniques.

Table 4.1: Average execution time (in second) required for di↵erent algorithms

Video Codebook KDE BRPCA DT ViBe Gaussian pROST DPGMM Feature Bags Fuzzy Possibilistic

Wronskian mode Induced

Water surface 0.10 0.12 0.16 0.15 0.04 0.12 0.10 0.10 0.12 0.07 0.08

MSA 0.13 0.15 0.21 0.19 0.05 0.13 0.12 0.11 0.13 0.09 0.09

Waving tree 0.13 0.15 0.22 0.19 0.05 0.13 0.12 0.11 0.13 0.09 0.09

PETS2006 0.16 0.17 0.25 0.22 0.07 0.15 0.14 0.13 0.16 0.11 0.12

Badminton 0.14 0.16 0.21 0.19 0.06 0.12 0.12 0.12 0.13 0.11 0.11

Canoe 0.14 0.15 0.20 0.18 0.05 0.11 0.12 0.12 0.13 0.09 0.10

Snowfall 0.15 0.17 0.25 0.22 0.07 0.15 0.14 0.13 0.16 0.11 0.12

4.3.1.2 Quantitative Evaluation

The performance of the proposed scheme is evaluated by comparing it against the state-

of-the-art BGS techniques: Codebook [67], KDE [56], BRPCA [79], DT [134], ViBe

[70], Gaussian Wronskian [63], pROST [135], DPGMM [71], Feature Bags [73], Fuzzy

mode[99], SOBS-CF [91], SuBSENSE [72], RPCA [82], multimode background [74], GMM

[55], PAWCS [136], SharedModel [137], Spectral-360 [138], WeSamBE [75], Cascade CNN

[103], DeepBS [101], BSUV net [108], BSUV-net+SemanticBGS [108], BMN-BSN [139],

BSPVGAN [112], WisenetMD [140], IUTIS-5 [141], SemanticBGS [142], and BSUV net
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Corridor Sequence

DiningRoom Sequence

LakeSide Sequence

Library Sequence

Park Sequence

Figure 4.6: Moving object detection for di↵erent sequences: (a) original frame (b) corresponding ground-
truth, moving object detection results obtained by deep learning based BGS schemes: (c) DeepBS, (d)
WisenetMD, (e) Cascade CNN, (f) IUTIS 5, (g) BSUV net (h) SemanticBGS, (i) BSUV net2.0 and (j)
proposed kernel induced possibilistic fuzzy associate background subtraction scheme.

2.0 [143].

The e↵ectiveness of the proposed scheme on the PETS2006, Badminton, Water sur-

face, Canoe, MSA, Waving tree, and Snowfall sequences are evaluated by using three

evaluation measures: average Precision, average Recall, and average F-measure. Table

4.2 represents the evaluation of the proposed scheme on PETS2006, Badminton, Wa-

ter surface, Canoe, MSA, Waving tree, and Snowfall sequences. In Table 4.2, we have

compared the performance of the proposed scheme with those of the considered state-of-

the-art techniques in terms of the average Precision, the average Recall, and the average

F-measure. It may be observed that in the case of a waving tree sequence the proposed

scheme is giving lesser Recall as compared to the feature bags scheme. Similarly, for the

Canoe sequence, the Precision obtained by the KDE scheme is found to be higher than

the proposed scheme. However, the proposed scheme provides a higher average F-measure

in the case of all the sequences as compared to the considered state-of-the-art techniques.

The performance of the proposed scheme and other said schemes on changedetec-

tion.net database is provided in Table 4.3. It may be observed from this table that the
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Table 4.2: Average Precision, Recall and F-measure for di↵erent image sequences

Water surface MSA Waving tree PETS2006 Badminton Canoe Snowfall

Approaches Pr Re FM Pr Re FM Pr Re FM Pr Re FM Pr Re FM Pr Re FM Pr Re FM

Codebook [67] 0.51 0.71 0.60 0.81 0.86 0.84 0.80 0.88 0.84 0.84 0.97 0.90 0.61 0.77 0.69 0.86 0.85 0.85 0.67 0.79 0.73

KDE [56] 0.40 0.79 0.52 0.67 0.79 0.73 0.53 0.81 0.64 0.83 0.79 0.81 0.67 0.79 0.73 0.96 0.83 0.89 0.90 0.68 0.78

BRPCA [79] 0.86 0.92 0.89 0.83 0.90 0.86 0.81 0.86 0.83 0.80 0.86 0.83 0.68 0.80 0.74 0.78 0.86 0.82 0.70 0.76 0.73

DT [134] 0.84 0.91 0.88 0.80 0.88 0.84 0.80 0.75 0.77 0.77 0.81 0.79 0.75 0.82 0.79 0.81 0.86 0.83 0.70 0.76 0.73

ViBe [70] 0.71 0.85 0.77 0.86 0.90 0.88 0.79 0.84 0.82 0.86 0.70 0.78 0.73 0.78 0.75 0.88 0.89 0.88 0.71 0.76 0.73

Gaussian 0.91 0.95 0.93 0.83 0.87 0.85 0.77 0.84 0.81 0.90 0.97 0.93 0.83 0.86 0.85 0.87 0.89 0.88 0.73 0.82 0.77

Wronskian [63]

pROST [135] 0.65 0.78 0.72 0.85 0.93 0.89 0.79 0.88 0.83 0.70 0.67 0.68 0.87 0.81 0.84 0.92 0.93 0.92 0.66 0.76 0.71

DPGMM [71] 0.89 0.94 0.92 0.87 0.94 0.90 0.82 0.87 0.85 0.85 0.98 0.91 0.89 0.68 0.77 0.79 0.95 0.86 0.76 0.81 0.79

Feature Bags [73] 0.92 0.97 0.95 0.90 0.92 0.91 0.86 0.96 0.89 0.92 0.98 0.95 0.86 0.85 0.85 0.89 0.91 0.90 0.82 0.87 0.85

Possibilistic Induced0.950.980.960.940.950.940.90 0.94 0.920.940.980.960.920.930.92 0.93 0.950.930.900.940.92

proposed scheme provides a better average F-measure output as compared to the existing

considered sate-of-the-arts-techniques on as sequences of changedetection.net database.

It may be observed that in two instances, dynamic background and camera jitter, the

Cascade CNN scheme provided a better result. However, the proposed scheme provides

comparably results in this regard. Also, the e�ciency of the proposed scheme is cor-

roborated against seventeen state-of-the-art BGS techniques on five thermal sequences

available at changedetection.net database are provided in Table 4.4. It may be observed

that the proposed scheme has provided a higher accuracy in terms of average Precision,

average Recall, average F-measure, and lower values of the average PWC as compared to

seventeen state-of-the-art techniques.

Table 4.3: Average F-measure for changedetection.net database

Techniques Baseline Dynamic Background Camera Jitter Intr. Obj. Motion Shadow Thermal

KDE [56] 0.909 0.596 0.572 0.409 0.803 0.742

SOBS-CF [91] 0.873 0.309 0.745 0.534 0.664 0.873

ViBe [70] 0.870 0.565 0.600 0.507 0.803 0.665

DPGMM [71] 0.929 0.814 0.748 0.542 0.813 0.813

SuBSENSE [72] 0.950 0.818 0.815 0.657 0.899 0.817

RPCA [82] 0.677 0.684 0.547 0.672 0.729 0.565

Feature Bags [73] 0.943 0.837 0.818 0.643 0.820 0.822

Multimode background [74] 0.932 0.621 0.836 0.823 0.838 0.910

WeSamBE [75] 0.936 0.790 0.780 0.724 0.914 0.813

Cascade CNN [103] 0.967 0.947 0.967 0.868 0.946 0.887

DeepBS [101] 0.965 0.844 0.896 0.689 0.943 0.650

BSUV net[108] 0.969 0.797 0.774 0.750 0.922 0.858

BSUV net+SemanticBGS[108] 0.964 0.818 0.779 0.760 0.967 0.845

BMN-BSN[139] 0.952 0.637 0.696 0.637 0.789 0.785

Possibilistic Induced 0.972 0.903 0.911 0.823 0.951 0.913

4.3.2 Discussions and Future Works

The proposed scheme is tested on di↵erent sequences with challenging background condi-

tions: speckling water, vibrating blinds, vibrating trees, snowfall, water fountains, shadow,
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Table 4.4: Quantitative comparisons on 5 thermal sequences of changedetection.net
database

Approaches Avg.Precision Avg.Recall Avg.F-Measure Avg.PWC

KDE [56] 0.8974 0.6725 0.7423 1.6795

GMM [55] 0.8652 0.5691 0.6621 4.2642

PAWCS [136] 0.8280 0.8504 0.8324 1.4018

SuBSENSE [72] 0.8328 0.8161 0.8171 2.0125

SOBS-CF [91] 0.8715 0.6347 0.7140 1.8021

WeSamBE [75] 0.8554 0.7727 0.7962 2.3538

Multimode Background [74] 0.8268 0.8162 0.8194 1.4289

SharedModel [137] 0.8072 0.8618 0.8319 1.8656

Spectral-360 [138] 0.9114 0.7238 0.7764 1.6337

DeepBS [101] 0.9257 0.6637 0.7583 3.5773

BSPVGAN [112] 0.9770 0.9763 0.9764 0.2406

WisenetMD [140] 0.8696 0.7867 0.8152 1.8993

Cascade CNN [103] 0.8577 0.9461 0.8958 1.0478

IUTIS-5 [141] 0.8969 0.7990 0.8303 1.1484

BSUV net [108] 0.8551 0.8739 0.8581 1.7058

SemanticBGS [142] 0.9118 0.7664 0.8219 1.3897

BSUV net 2.0 [143] 0.9359 0.8594 0.8932 1.1659

Proposed 0.9861 0.9838 0.9849 0.1251

foggy scene, rainy scene, surface reflection, etc. The proposed scheme is tested on the

scene with camera jitter, thermal captured sequences, camera shake and vibration, the

scene with di↵erent illumination conditions, and real-life long run sequences to establish

the e↵ectiveness of the proposed scheme. It may be concluded that the proposed scheme

is found to be very e↵ective in constructing a stable and robust background model with

the ability to deal with the randomness of pixels in video scenes due to multi-valued

background brightness.

The inclusion of the fuzzy set theory in the proposed BGS technique involves a soft

decision in infinite-dimensional kernel induced space to construct the background and

detect the moving object locations in a video frame. It may also be noted that the use of

the possibilistic concept in fuzzy set theory in BGS will help to handle the uncertainties in

a video frame up to a reasonable extent, arising from deficiencies of information available

from a situation. This deficiency may be due to incomplete, ill-defined, not fully reliable,

vague, and contradictory information.

In the proposed scheme few important parameters are considered for the initialization

of the experiments. We initialize our algorithm with a Gaussian kernel, with � = 1.

Further � is updated based on eq (4.14). We also tried with random initialization of �

value in the range [0.01, 10] and found that the performance is not significantly changing,

hence fixed the initialization value � = 1. The parameter � is set to be 1 as optimum on

a trial and error basis. We tried with di↵erent values of � and found that performance is
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Figure 4.7: Selection of optimum value of parameter � on changedetection.net database.

not significantly changing. We checked the Gaussian kernel with di↵erent values of � in

the range [0.1, 2] with F-measure values on the Changedetection.net database. The same

is reported in Figure 4.7. We found that with � = 1, we are getting the best F-measure

value and we adhered to it.

In many instances, the objects in the scene stay for some time and move further or

vice-versa. In the proposed scheme we update the background model during the testing

phase, we check if at instances a foreground/background doesn’t change for at least 48

frames, then we start updating it as a new background mode type and further consider

it as a part of the background model.

The proposed scheme is evaluated against considered state-of-the-art techniques. The

parameters used for the state-of-the-art techniques are considered to be an optimum set

of values. The codebook based BGS technique, considers two learning rate parameters in

the range [0.2, 0.7] and [1.1, 1.8]. The codebook based BGS’s source code is obtained from

1. For ViBe BGS the parameters are considered as follow: total samples = 30, matching

threshold = 10, matching number = 2 and update-factor = 8. In Gaussian modeled

Wronskian technique the threshold parameter is considered in the range [3, 5] and the

learning rate parameter in the range [0.001, 0.3]. The source code for the same is obtained

from 2. For pROST algorithm we have used k = 15, p = 0.25, and mu = 0.025. Similarly

for DPGMM algorithm, we have used minsize = 32, cert limit = 0.005, conc = 0.01,

max layers = 8, and threshold = 0.6.

The proposed scheme is eligible to detect the local changes from the di↵erent challeng-

ing scenarios. It may be observed that the fuzzy membership function is itself induces

uncertainty. Hence this may give poor results sometimes. In such a scenario, the use

1http://www.umiacs.umd.edu/ knkim/
2https://sites.google.com/site/subudhibadri/mywork/bgs
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of a type-II fuzzy set may produce an e↵ective result by reducing the e↵ects of uncer-

tainty. Further in challenging sequences with non-static background conditions, it may

be expected that the fuzzy histogram-based BGS technique may produce an improved

accuracy.

4.4 Conclusions

In this chapter, we put forth, a background subtraction technique using kernel induced

possibilistic fuzzy theoretic decision process. In the background construction stage, each

pixel is modeled using a possibilistic fuzzy cost function in kernel induced space. The

use of the induced kernel function will project the low dimensional data into a higher

dimensional space and the use of the possibilistic function will construct a robust back-

ground model based on the density of the data in the temporal direction avoiding the noisy

and outlier points. The performance of the proposed scheme is tested on the database:

changedetection.net. The e↵ectiveness of the proposed scheme is evaluated on di↵erent

performance evaluation measures. The investigation is corroborated by comparing the

results against twenty-nine existing state-of-the-art techniques.



Chapter 5

Multi-Scale Deep Learning

Architecture based Background

Subtraction for Moving Object

Detection

5.1 Introduction

The accuracy of the moving object detection using the background subtraction (BGS)

techniques depends on the background construction modelling. However, background

construction is a challenging task, as a video scene is generally, a↵ected by illumination

variation, shadow, disturbed weather, poor texture, low resolution, camera motion (jitter,

tilting, and zooming), etc. Also, most of the existing BGS methods are scene-specific, and

the outcomes of many algorithms are based upon manual parameter tuning. Further, the

accuracy of these conventional techniques depends on hand-crafted features. Additionally,

it is found that the visual surveillance-based BGS techniques are demonstrated for thermal

videos. However, as thermal videos are mostly a↵ected by the low resolution or missing

information details, the SOTA techniques are found to be indigent in nature. Figure 5.1

(a) and (b) portray original image and corresponding ground-truth image considered for

experimentation. The detected result obtained by an existing deep learning BGS scheme

BSUV-Net 2.0 [143] is presented in Figure 5.1 (c). It may be observed from Figure 5.1

(c) that, the result obtained by the said technique is generate many isolated points in the

91
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BGS and unable to provide the exact shape of the moving object.

(a) (b)

(c)

Figure 5.1: Visual analysis of (a) original image, (b) ground-truth image, and (c) moving object detection
result obtained by the BSUV-Net 2.0 technique.

In this context, we have proposed two multi-scale deep learning architectures based

background subtraction techniques for moving object detection in this chapter: modified

ResNet-152 network with hybrid pyramidal pooling and multi-scale contrast preserving

deep learning architecture. In the proposed modified ResNet-152 network with hybrid

pyramidal pooling algorithm, a pre-trained modified ResNet-152 network is adhered to

as an encoder with a transfer learning mechanism is capable of retaining deep features

at various levels. Here, we designed a multi-scale features extraction (MFE) architecture

which is a hybridization of pyramidal pooling architecture (PPA) and various atrous

convolutional layers to extract multi-scale and multi-dimensional features at various scales.

The decoder network consisting of stacked transposed convolution layers (Tconvs) can

e↵ectively projects the feature-level into the pixel-level. Again in the proposed, multi-

scale contrast preserving deep learning architecture, the encoder network considers hybrid

of convolution and atrous convolution blocks to preserve both sparse and dense features

of a video with skip connections. The proposed encoder with the multi-scale contrast

preservation block is able to keep multi-scale contrast features with less training loss.

Here, the decoder network accurately projects the extracted features at di↵erent layers

into pixel-level.

The proposed schemes are tested on benchmark databases: changedetection.net, and

Tripura University Video Dataset at Night Time (TU-VDN). The e↵ectiveness of the pro-
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posed modified ResNet-152 network with hybrid pyramidal pooling technique is validated

against thirty-one state-of-the-art techniques. Further, the e�cacy of the proposed multi-

scale contrast preserving deep learning architecture is corroborated against twenty-eight

existing SOTA techniques and is found to be e↵ective. To confirm our findings, we have

used qualitative and quantitative analysis.

The rest of the chapter is organized as follows. Section 5.2 describes the proposed deep

learning based background subtraction schemes. The results and discussions with future

works are carried out in Section 5.3. Section 5.4 draws the conclusions of the proposed

works.

5.2 Proposed Multi-Scale Deep Learning Architec-

ture based Background Subtraction for Moving

Object Detection

In this chapter, we have proposed two multi-scale deep learning architectures for moving

object detection: modified ResNet-152 network with hybrid pyramidal pooling and multi-

scale contrast preserving deep learning architecture to detect the objects accurately with

reduced missed/false alarms .

5.2.1 Proposed Modified ResNet-152 Network with Hybrid Pyra-

midal pooling

In this chapter, we have proposed a robust and stable encoder-decoder network for detect-

ing the moving objects from a video scene with di↵erent challenging scenarios. Here, we

proposed a deep CNN architecture as an encoder integrated with the multi-scale features

extraction (MFE) block. We proposed a stacked transposed convolutional network as a

decoder network to attain the said objective. The block diagram of the proposed scheme

is presented in Figure 5.2.

5.2.1.1 The Encoder Configuration

In this work, a pertained ResNet-152 network is adhered to as the encoder. ResNet-152

[127] network operates on a deep residual learning framework and is widely used for several
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pooling architecture.

Computer Vision applications. However, the said architecture was never explored to date

for local change detection. In this article, we made an attempt to exploit the capabilities

of the ResNet-152 network for local change detection. The ResNet-152 network consists

of five blocks, where each block has a stacked of convolutional layers, batch normalization

layers, and a rectified linear unit (ReLU) as an activation function. The Convolutional

layers of the ResNet-152 network are capable of extracting the spatial information of

the input image by using convolutional kernels. The batch normalization [144] layers are

utilized in the deep neural network, which boosts the training speed with a faster learning

rate. The use of ReLU in the network makes it faster and e�cient.

In this work, we tried with a di↵erent variant of CNN architecture and found that

ResNet-152 network to be a stable and e�cient one. The motivation behind choosing the

ResNet-152 network in the proposed scheme against another variant of CNN architecture

is as follow:

(1) It may be observed that the deeper blocks of the ResNet-152 network gradually

learn more complex features that provide improved performance.

(2) The lower blocks of the ResNet-152 network can learn and extract high spatial
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resolution features with low-level local features: edges, colors, and textures, while

the deeper blocks learn and extract high-level global features like objects and events

with lower spatial resolution.

(3) The computational complexity of the ResNet-152 network is quite less with a higher

number of layers.

(4) The ResNet-152 network uses the stacked residual networks with identity mapping

to tackle the vanishing gradient problem and hence, provides better accuracy.

Here we have adhered to a modified form of deep Resnet-152 network in the pro-

posed algorithm, which incorporates the initial three blocks. We keep the first two blocks

weights same as the pre-trained ResNet-152 network, and the weights for the third block

are learned using transfer learning. Transfer learning is a mechanism that converges

knowledge from the source domain to the target domain. The use of transfer learning

in the proposed scheme explores new tasks that depend on formerly acquired jobs by

the deep ResNet-152 network. Additionally, it makes the model accurate, faster while

training on fewer samples. We remove the max-pooling layer between the first two blocks

to increase the use of deep multi-layer features with high spatial resolution. Also, we

remove the fourth and fifth blocks of the ResNet-152 network to enhance the use of high

spatial resolution and high-frequency components in the proposed scheme. The low-level

features are extracted at the first block of the encoder by using 3⇥ 3 convolution layers

with 64 and 128 filters. These low-level features are propagated towards the decoder net-

work through shortcut connections followed by global average pooling that improves the

feature representation.

5.2.1.2 The Multi-Scale Features Extraction (MFE) Block

In this work, We have proposed an MFE block to be sandwiched between the encoder-

decoder network to preserve the contextual information from the deep multi-layer features.

The deep feature maps (F) of size H
4
⇥ W

4
⇥ 512 from the encoder network are given to

an MFE block. Here H ⇥ W denotes the dimension of the input image. The MFE

block is composed of a pyramidal pooling architecture (PPA) [145], and various atrous

convolutional layers [146] as shown in Figure 5.3 (a). Additionally, the MFE block has a

convolutional layer to preserve the sparse information. The contextual relationship among
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the pixels of video scenes are the important elements in local change detection, and the

lack of these may lead to many isolated points as missed/false alarms in the foreground

map. Therefore, in this article, we have investigated a PPA that preserves the contextual

relationship for video scenes. The graphical representation of the pyramidal pooling block

is shown in Figure 5.3 (b), consisting of three max-pooling layers with strides (sd) of 1,

2 and 4; followed by 3⇥ 3 convolutional layers, with 64 filters. The max-pooling layer is

utilized to preserve useful information in every pooling block and decrease the dimension

of feature maps. The filter size for the max-pooling layers is considered to be 2⇥ 2 with

strides of 1, 2, and 4, respectively. The output of the max-pooling layers followed by

convolution layers are represented as M1, M2, and M3. The dimension of M1 same as

input deep feature maps F , whereas the dimensions of M2 and M3 are reduced by a factor

of 2 and 4, respectively. Therefore, the dimensions of M2 and M3 are up-sampled and

concatenated with M1 along the depth dimension. The output of the PPA (X ) followed

by activation function (ReLU) and 1⇥ 1 convolutional layer with 64 filters are given as,

X = Kn ⇤ (M1 � (" {M2})� (" {M3})). (5.1)

where Kn indicates the n number of kernels, n 2 {1, 2 · · · ·, 63, 64}. ‘⇤’ represents the

convolutional operation. ‘�’ is the concatenation operation, and ‘"’ is the upsampling

operation.

Again, feature maps F from the encoder are given to a 3 ⇥ 3 convolutional layer

with 64 filters which will try to preserve the sparse information of the deep features

and three 3⇥ 3 convolutional layers with di↵erent dilation rates. Here the convolutional

layers with di↵erent dilation rates are called as atrous convolution, which retains the

dense information of the deep features. The feature maps from the convolutional layer

followed by ReLU are represented as ⇣. For the target scenes, it is essential to use

the spatial information of the current pixel with its neighborhood pixels to extract the

dense contextual features. Therefore, atrous convolution is a mechanism that allows

us to expand the receptive field of filters without increasing the parameters as well as

computational complexity and can be defined as,

Ke = K + (K � 1)(Rd � 1), (5.2)
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where K ⇥ K indicates the filter size, Rd is the dilation rate, and Ke ⇥ Ke is the

size of the expanded receptive field. Therefore, in the proposed MFE block, we precisely

utilize three branches of 3⇥3 convolution layers each consisting of 64 filters, with dilation

rates of 4, 8, and 16. The output of the atrous convolution layers followed by ReLU are

represented as ⇣ 0, ⇣ 00, and ⇣ 000.

Feature maps from the PPA, a convolutional layer, and three atrous convolutional lay-

ers are concatenated along the channels to generate 5⇥64 depth feature maps. The output

multi-scale feature maps of an MFE block are obtained by processing these feature maps

through the contrast normalization (CN) followed by an activation function (ReLU) and

a spatial dropout (SD) layer. It may be observed that the use of contrast normalization

instead of batch normalization enhances the performance of an MFE block. Also, the use

of ReLU followed by SD with a rate of 0.25 increases the learning performance of the

proposed model with fewer training samples. The output multi-scale feature maps from

an MFE block (Y) can be defined as

Y = SD{CN{X � ⇣ � ⇣ 0 � ⇣ 00 � ⇣ 000}}. (5.3)

where SD{·} indicates the spatial dropout operation and CN{·} is the contrast normal-

ization operation.

5.2.1.3 The Decoder Configuration

The proposed decoder network e�ciently decodes the MFE block’s output that generates

a dense probabilistic mask. Multi-scale feature maps from an MFE block (Y) of size

H
4
⇥ W

4
⇥ 320 are given to the decoder network for decoding, which consists of five blocks

namely: TC1, TC2, TC3, TC4, and TC5. The TC1 block contains stack of two 1 ⇥ 1

and a 3 ⇥ 3 transposed convolutional layers with stride of 1. The main motive of the

1 ⇥ 1 transposed convolutional layer is to project the higher dimensional feature space

into the lower dimensions. Also, the use of 1 ⇥ 1 transposed convolutional layer reduces

the computational complexity of the network. Further, the use of the 3 ⇥ 3 transposed

convolutional layer can extract the spatial information of the feature maps. Therefore,

the stacked 1 ⇥ 1 and 3 ⇥ 3 transposed convolutional layers produce a robust network

while performing on fewer parameters.

Initially, the features from an MFE block operated with TC1 block to project the
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feature space from H
4
⇥ W

4
⇥ 320 to H

4
⇥ W

4
⇥ 512. TC2 block consists of a similar

arrangement as TC1 block of layers except that we utilize 5⇥5 instead of 3⇥3 transposed

convolutional layer with stride sd = 2. This block projects the feature space from H
4
⇥

W
4
⇥ 512 to H

2
⇥ W

2
⇥ 256. The feature maps from the TC2 block followed by contrast

normalization (CN) and ReLU function are fused with low-level features to boost the

features representation. These low-level features are pulled at the end of the first block

of the encoder by utilizing a 3 ⇥ 3 convolutional layer with 128 filters. Subsequently,

these features are propagated towards the decoder through shortcut connection followed

by 1 ⇥ 1 convolutional layer, 256 filters with global average pooling (GAP). The use of

GAP improves the performance of the model, which is robust to spatial translations of

the low-level features. Then, the fused feature maps are given to the TC3 block, which

consists of a 5⇥ 5 transposed convolutional layer, 64 filters with stride of 2. TC3 block is

used to expand the feature maps to a size of H ⇥W ⇥ 64.

The feature maps from the TC3 block followed by CN and ReLU function are fused

with low-level features that are pulled from the beginning of the first block of an encoder.

These low-level features are generated using a 3 ⇥ 3 convolutional layer with 64 filters,

guided towards the decoder through shortcut connection followed by GAP. Further, the

fused features are processed through the TC4 block, followed by CN and ReLU function,

which project 64 feature maps to 128 feature maps. We have observed that these 128

feature maps in this block provide better representation to each pixel and improve the

e�cacy of the proposed model. Finally, in the TC5 block, we project 128 feature maps to

1 feature map by utilizing 1⇥ 1 transposed convolution layer with stride of 1 followed by

a sigmoid activation function. The TC5 block generates a score map that predicts each

pixel value’s probability in the range [0, 1]. Later, we apply a threshold value to classify

each pixel on the score map, either belongs to foreground or background.

Note that we add ReLU non-linearity to every transposed convolutional layer in TC1,

TC2, and TC3. Also, to mitigate over-fitting in the proposed model, we use L2 regular-

ization to the weights of the first layer of TC1, TC2, and 5⇥ 5 transposed convolutional

layer of TC3 block.



CHAPTER 5. MULTI-SCALE DEEP LEARNING BASED BGS 99

5.2.1.4 Training Details and Parameter Settings

The proposed model is implemented in Keras framework with Tensorflow backend. Train-

ing is performed end-to-end over NVIDIA Tesla T4 GPU system with batch size of 2. The

smaller batch size in the proposed scheme can converge the model faster and remarkable

regularization e↵ect. The model is trained using N = 200 frames with P number of pixels

in each frame which can be given as,

{{Lb
a, C

b
a}Pa=1

}Nb=1
, a 2 {1, 2, · · ·P}, b 2 {1, 2, · · ·N}, (5.4)

where Lb
a denotes the ath pixel in bth frame. The term Cb

a represents actual class of the

ath pixel of bth frame.

Further, to compare the actual and predicted class label of each pixel, we use the

binary cross-entropy loss (BCEL) function to train the model as;

BCEL = � 1

P

PX

a=1

[zalog(ẑa) + (1� za)log(1� ẑa)], (5.5)

where P is the number of training image pixels, za 2 {0, 1} is the actual label of pixel a,

and ẑa is the predicted pixel label. The function log indicates the logarithmic operation.

We have utilized RMSProp optimizer with ⇢ = 0.9 and ✏ = 1e � 08 for training the

proposed model. This provides a faster convergence rate as compared to other classical

optimizers. Initially, the learning rate is fixed to 0.0001. If the validation loss during 5

consecutive epochs does not improve, the learning rate is further scaled down by 10. We

kept a maximum of 100 epochs to train the model but the early stopping mechanism is

adopted; if the validation loss does not improve for 10 successive epochs. If the training

frames are fed to the model sequentially, it may result in biased learning weights. This

problem arises because consecutive frames are highly correlated with each other. There-

fore, to train the model initially, we shu✏e the training frames. Further, these frames

are divided into 90% as training and 10% for validation. We provide more weights to the

foreground class and fewer weights to the background class to reduce the imbalanced data

classification problem during training the model. We fix the L2 regularization strength

to 0.0005 for the proposed model that can reduce the chance of over-fitting.
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5.2.2 Proposed Multi-Scale Contrast Preserving Deep Learning

Architecture

In this chapter, we have developed a BGS technique consisting of an e�cient encoder-

decoder deep-learning architecture. Local change detection is a challenging task because

of the high uncertainty in the video scenes. As the deep learning network can extract the

features in-depth and handle the vagueness in the challenging scenes, we have developed

an encoder network using skip connection that provides better accuracy with increasing

depth. The proposed multi-scale contrast preservation block can retain discriminative

details from the in-depth features and act as a better feature representation block. The

decoder network in the proposed model precisely projects the feature space into image

space. The graphical representation of the proposed CNN architecture is presented in

Figure 5.4 (a). The steps of the proposed scheme are narrated as follows. The proposed

scheme contains three blocks: the encoder, the multi-scale contrast preservation, and the

decoder.

5.2.2.1 The Encoder Configuration

In this work, we have proposed a novel encoder network with residual connections con-

sisting of four blocks as shown in Figure 5.4 (a). Each block of the encoder network

comprises five modules: module 1 to module 5 as shown in Figure 5.4 (b). The main

motivation behind the proposed encoder is to model the sparse and dense features from

the video frames using CNN models. We adhered to use one convolutional and four atrous

convolutional [146] layers in each block of the proposed encoder model. The convolutional

layer is responsible to extract the sparse features whereas the atrous convolution layers

are responsible for extracting dense features. The atrous convolution are considered to

be with dilation rates of 2, 4, 8, and 16 for extracting more dense features followed by

contrast normalization (CN) layer [147] and activation function (ReLU). The module 1

for Block 1 consists of a stack of two 3⇥ 3 convolutional layers with 64 filters.

The use of CN layer in the proposed model achieves an improved performance against

batch normalization for smaller batch size [147]. Further, the presence of the ReLU

function makes the model faster. In addition to this, module 1 for Block 2 consists

of a stack of two 3 ⇥ 3 convolutional layers with 128 filters and a 1 ⇥ 1 convolutional

layer. The stacked 3 ⇥ 3 and 1 ⇥ 1 convolutional layers produce a robust network while
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performing fewer parameters. Further, module 1 for Block 3 consists of a stack of three

3 ⇥ 3 convolutional layers with 256 filters and a 1 ⇥ 1 convolutional layer with 64 filters

followed by a CN layer and ReLU activation function. Finally, module 1 of Block 4 consists

of a stack of three 3 ⇥ 3 convolutional layers with 512 filters and a 1 ⇥ 1 convolutional

layer with 64 filters followed by a CN layer and ReLU.

For the same input, the distinct outcomes of all the modules are added and driven

from block-1 to block-2 through the spatial dropout (SD) layer [148] with a rate of 0.25

and a max-pooling layer. Again, the same is propagated from block-1 to block-2 through

skip connection followed by CN and ReLU layer and combined with the output of block-

2. Similarly, the data transferred is accomplished from block-2 to block-3 but block-3 to

block-4 is done without a max-pooling layer. The skip connection in the proposed model

transfers the fine details of the image from the lower block to the higher block, producing

coarse details of the image. A combination of fine and coarse details can promote the

feature representation and will enhance the accuracy of the proposed model. We have

used the max-pooling layer after the SD layer of block-1 and 2 to reduce the spatial

dimension of input features that decrease the computational complexity of the model.

The filter size for the max-pooling layer is 2 ⇥ 2 with stride of 2. Finally, the outputs

of the block-1 followed by 1 ⇥ 1 convolutional layer with 64 filters, stride of 2, block-2,

block-3 and block-4 are concatenated along the channels that represent the feature maps

from the encoder (F) and can be given as

F = EB1� EB2� EB3� EB4. (5.6)

where EB1, EB2, EB3, and EB4 denotes the output of four di↵erent encoder blocks.

‘�’ indicates the concatenation operation.

5.2.2.2 The Multi-Scale Contrast Preservation Block (MSCPB)

We have proposed a new multi-scale contrast preservation (MSCP) block as shown in

Figure 5.5 to preserve the multi-scale sparse and dense features extracted in the proposed

encoder. The MSCP block consists of a max-pooling layer followed by 1⇥1 convolutional

layer with 64 filters, a 3 ⇥ 3 convolutional layer, and various atruos convolutional layers

with dilation rate 4, 8, 16 with each consisting of 64 filters followed by kernel size 3 ⇥ 3

avg-pooling layer. For the encoder’s deep feature, the max-pooling layer is used to retain
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Figure 5.5: Block diagram of the proposed multi-scale contrast preservation block

the prominent detail in every pooling area and the output of this layer followed by 1⇥ 1

convolutional layer and ReLU function represented byM. Since the local change detection

is considered as a binary classification task, the outcome shows enormous contrast between

the moving objects and the background. Hence, in this work, we have preserved the

contrast details X̄u of the encoder’s feature and can be given as;

X̄u = ReLU{CVu � AvgPool(CVu)}. (5.7)

where CVu denotes the feature maps of a convolutional layer and various atrous convolu-

tional layers, u 2 {1, 2, 3, 4}.

The output of the MSCP block (Ȳ) is generated by concatenating M and X̄u along

the depth dimension and processed through the contrast normalization (CN) followed by

an activation function (ReLU) and a spatial dropout (SD) layer with a dropout rate of

0.25. The multi-scale feature maps from the MSCP block can be calculated as;

Ȳ = SD{CN{M� X̄u}}. (5.8)

5.2.2.3 The Decoder Configuration

The decoder network consists of three blocks where each block sandwiches a 3 ⇥ 3 con-

volutional layer with 64 filters, contrast normalization (CN) layer, and ReLU activation

function. The multi-scale feature maps from the MSCP block are given to the decoder
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network’s first block, which produces 64 feature maps. The output of this block is fused

with low-level features, which is pulled from the end of module 1 of the encoder first

block using a 3⇥ 3 convolutional layer with 128 filters. These low-level features are prop-

agated from the encoder to the decoder network through skip connection followed by 1⇥1

convolutional layer with 64 filters and global max pooling layer. The fusion layer 1 in

the decoder enhances the feature representation where the low-level features are initially

multiplied with the output of the decoder first block and subsequently combined with

the initial feature maps obtained by the same. Finally, these fused feature maps are up-

sampled and given to the next block. Here, a similar kind of operation is performed, and

fusion layer 2 boosts the feature representation. Here, for fusion, the low-level features

are extracted using a 3 ⇥ 3 convolutional layer with 64 filters from the beginning of the

encoder first block and propagated towards the decoder followed by skip connection and

global max pooling layer. The fused feature maps from fusion layer 2 are up-sampled

and fed to the third block of a decoder, which projects the fused features into 64 feature

maps. The output of this block is followed by a 1 ⇥ 1 convolutional layer with 1 filter

and a sigmoid function that provides a single feature map. We have applied a threshold

value of 0.9 on the single feature to predict, each pixel either belongs to foreground or

background.

5.2.2.4 Training Details and Parameter Settings

The proposed model is implemented in Keras framework with Tensorflow backend. Train-

ing is performed end-to-end over NVIDIA Tesla T4 GPU system with batch size of 1. The

smaller batch size in the proposed scheme can converge the model faster and remarkable

regularization e↵ect. The model is trained using N = 200 frames. We have utilized RM-

SProp optimizer with ⇢ = 0.9 and ✏ = 1e � 08 for training the proposed model. This

provides a faster convergence rate as compared to other classical optimizers. Initially,

the learning rate is fixed to 0.0001. If the validation loss during 5 consecutive epochs

does not improve, the learning rate is further scaled down by 10. We kept a maximum

of 100 epochs to train the model but the early stopping mechanism is adopted; if the

validation loss does not improve for 10 successive epochs. If the training frames are fed

to the model sequentially, it may result in biased learning weights. This problem arises

because consecutive frames are highly correlated with each other. Therefore, to train
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the model initially, we shu✏e the training frames. Further, these frames are divided into

90% as training and 10% for validation. We provide more weights to the foreground class

and fewer weights to the background class to reduce the imbalanced data classification

problem during training the model.

5.3 Results and Discussions

Both of the proposed techniques are executed on a Core i7 system with 16 GB RAM, 1.5

MB L2 cache. The proposed techniques are implemented by python programming with

the Windows�10 operating system. The training and testing of the models are performed

by utilizing NV IDIA Tesla T4 GPU provided by Google Colaboratory with Keras. The

proposed algorithms are validated by testing it with two benchmark databases: TU-VDN

[78], and changedetection.net [113]. To validate the e↵ectiveness of the proposed tech-

niques, we have carried out both qualitative and quantitative analysis on all the considered

sequences. The performance of the proposed techniques are verified by comparing the re-

sults obtained by it with several state-of-the-art BGS techniques. The performance of the

proposed techniques are corroborated through various quantitative assessments: average

Precision, average Recall, average F-measure, average percentage of wrong classifications

[114], average Matthews correlation co-e�cient [78], and average accuracy [78].

5.3.1 Qualitative illustration of Modified ResNet-152 Network

with Hybrid Pyramidal pooling

The visual analysis of the change detection results are initially, carried out using few test-

ing sequences taken from the changedetection.net dataset: PeopleInShade, DiningRoom,

BusStation, Highway, Sofa and LakeSide. These testing sequences incorporate diverse

challenging e↵ects: hard and soft shadow, ghost artifacts, noise, low contrast, high un-

certainty and high ambiguity pixel values, etc. For visual illustration of the proposed

technique is visually compared against few existing state-of-the-art deep learning based

BGS techniques: DeepBS [101], BSPVGAN [112], WisenetMD [140], Cascade CNN [103],

IUTIS-5 [141], BSUV Net [108], FgSegNet S FPM [149] and FgsegNet v2 [109].

All the original frames and the corresponding ground-truth images of the considered

six challenging sequences are shown in Figure 5.6 (a) and (b). The results obtained by
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the DeepBS scheme as shown in Figure 5.6 (c), illustrate that many of the edge pixels

are missing due to imbalanced pixel values in various video frames. Thus, the DeepBS

technique provides many missed alarms in the change detection results. Figure 5.6 (d)

shows the segmented foreground results obtained by the BSPVGAN technique where

many false alarms appear in the scene. The object detection results achieved by the

WisenetMD method are given in Figure 5.6 (e), where it can be perceived that few details

of the moving objects are missing. Hence, the missed alarm rate is high in the detected

results. Figure 5.6 (f) represents the Cascade CNN results where many false detections

are observed. Figure 5.6 (g) shows the results of the IUTIS-5 scheme, which is unable to

identify the small variation in grey values and generate ghosts in the challenging scene.

The results obtained by the BSUV Net technique are presented in Figure 5.6 (h). In the

said method, it can be seen that many parts of the background is identified as foreground.

The results obtained by FgSegNet S FPM and FgsegNet v2 are shown in Figure 5.6 (i)

and (j), where some better performance is obtained for all the considered six sequences.

However, the said techniques wrongly classified some object pixels as background. On

the contrary, the results obtained by the proposed algorithm presented in Figure 5.6 (k)

yields better performance against other state-of-the-art techniques as the foreground and

background pixels are accurately classified. The proposed technique precisely detects the

shape of the moving objects as compared to other considered existing state-of-the-art

techniques.

The visual analysis of the moving object detection are also carried out using various

testing sequences taken from TU-VDN dataset: Rain, Lowlight, Fog and Dust with

key challenges like flat cluttered background and dynamic background. The considered

original frames and the corresponding ground-truth images are presented in Figure 5.7

(a)-(b). The results on five competitive techniques: SuBSENSE [72], LOBSTER [150],

PBAS [151], KDE [56], and VuMeter [152] are shown in Figures 5.7 (c)-(g), respectively.

It may be observed that the results obtained by the SOTA techniques are unable to detect

the objects accurately. Also, these SOTA techniques generates holes and false alarms in

the detected results. However, the results obtained by the proposed algorithm is shown

in Figure 5.7 (h) confirm our findings by giving better results than the SOTA techniques.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

PeopleInShade Sequence

DiningRoom Sequence

BusStation Sequence

Highway Sequence

Sofa Sequence

LakeSide Sequence

Figure 5.6: Moving object detection for di↵erent sequences: (a) original frame (b) corresponding ground-
truth, moving object detection results obtained by deep learning based BGS schemes: (c) DeepBS, (d)
BSPVGAN, (e) WisenetMD, (f) Cascade CNN, (g) IUTIS 5, (h) BSUV Net (i) FgSegNet S FPM, (j)
FgSegNet v2 and (k) proposed modified ResNet-152 network with hybrid pyramidal pooling scheme.

5.3.2 Quantitative comparison of Modified ResNet-152 Network

with Hybrid Pyramidal pooling

The performance of the proposed technique is corroborated through various quantitative

assessment: average Precision, average Recall, average F-measure, average PWC [114],

average Matthews correlation co-e�cient, and average accuracy [78]. The e↵ectiveness of

the proposed algorithm is validated by testing it with two benchmark databases: TU-VDN

[78], and changedetection.net [113].

At the first stage of the experiment, we have used TU-VDN [78] to check the e�ciency

of the proposed technique. This database consists of various sequences that are captured

under various atmospheric conditions such as dusty, rainy, and foggy with key challenges

like flat cluttered background and dynamic background. For this database, the e�cacy

of proposed scheme is evaluated against fifteen state-of-the-art techniques: ViBe [70],

SuBSENSE [72], LOBSTER [150], PAWCS [136], FST [153], PBAS [151], Multicue [154],
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(a) (b) (c) (d) (e) (f) (g) (h)

Rain Sequence

Lowlight Sequence

Fog Sequence

Dust Sequence

Figure 5.7: Moving object detection for di↵erent sequences: (a) original frame (b) corresponding ground-
truth, moving object detection results obtained by non-deep learning based BGS schemes: (c) SuBSENSE,
(d) LOBSTER, (e) PBAS, (f) KDE, (g) Vumeter and (f) proposed modified ResNet-152 network with
hybrid pyramidal pooling scheme.

ISBM [155], MTD [156], VuMeter [152], KDE [56], MoG V2 [157], Eigenbackground [158],

Codebook [159], and ALWBP [78]. The evaluation of the proposed scheme is carried out

using three quantitative measures: average F-measure, average Matthews correlation co-

e�cient, and average accuracy [78] are provided in Table 5.1. From Table 5.1, it may

be found that except accuracy measure for fog sequence; the proposed scheme provides

a higher accuracy by all these measures on di↵erent categories as compared to other

considered SOTA techniques.

In the next stage of the experiment, we have used changedetection.net database, which

consists of eleven categories of video with fifty-three various challenging sequences. Here,

we have considered a Recall, Specificity, False-positive rate (FPR), False-negative rate

(FNR), Precision, F-measure and PWC are the quantitative evaluation metrics. The

above-mentioned evaluation measures for results obtained by the proposed scheme on

changedetection.net are reported in Table 5.2. It can be observed from Table 5.2 that the

proposed technique provides adequate values of all the above-mentioned measures.

To verify the e�ciency of the proposed scheme, we compared the results obtained by

it on five thermal sequences available at changedetection.net database against eight deep

learning-based BGS techniques: DeepBS [101], BSPVGAN [112], WisenetMD [140], Cas-
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cade CNN [103], IUTIS-5 [141], BSUV Net [108], SemanticBGS [142], and BSUV Net2.0

[143], and nine non-deep learning-based state-of-the-art BGS techniques: KDE [56], GMM

[55], PAWCS [136], SuBSENSE [72], SOBS-CF [91], WeSamBE [75], Multimode Back-

ground [74], Shared Model [137] and Spectral-360[138]. From Table 5.3, it may be ob-

served that the proposed scheme has provided a higher accuracy in terms of all the consid-

ered measures than the SOTA techniques. Similarly, in order to justify the e↵ectiveness

of proposed scheme, we compared the results obtained by it on all the available videos

(53 videos) available at changedetection.net database against nineteen state-of-the-art-

techniques: Ten deep learning and nine deterministic existing techniques. The ten deep

learning based BGS techniques: DeepBS [101], BSPVGAN [112], WisenetMD [140], Cas-

cade CNN [103], IUTIS-5 [141], BSUV Net [108], SemanticBGS [142], FgSegNet S FPM

[149], FgsegNet v2 [109] and BSUV Net2.0 [143]. Table 5.4 presents the evaluation mea-

sures on changedetection.net database obtained by the proposed technique and considered

state-of-the-art deep learning based BGS techniques. It may observed from Table 5.4 that,

the proposed background subtraction technique yields higher values of average Precision,

average F-measure and lower value of average PWC as compared to all deep learning based

state-of-the-art techniques. However, the proposed technique provides a closer average

Recall value to the FgSegNet S FPM and the FgsegNet v2 techniques.

The performance of the proposed technique further evaluated by comparing it against

the considered non deep learning based architectures: KDE [56], GMM [55], PAWCS [136],

SuBSENSE [72], SOBS-CF [91], WeSamBE [75], Multimode Background [74], Shared

Model [137] and Spectral-360[138]. From Table 5.4, it can be observed that the proposed

technique provides higher values of average Precision, average Recall, average F-measure,

and lower value of average PWC for all the considered image sequences than the considered

non deep learning based state-of-the-art techniques.

5.3.3 Qualitative illustration of Multi-Scale Contrast Preserving

Deep Learning Architecture

The visual analysis of the moving object detection is carried out using various testing se-

quences taken from changedetection.net and TU-VDN are shown in Figures 5.8-5.9. The

considered original frames and the corresponding ground-truth images from the changede-

tection.net are presented in Figure 5.8 (a)-(b). The DeepBS [101] based BGS scheme’s



CHAPTER 5. MULTI-SCALE DEEP LEARNING BASED BGS 110

Table 5.1: Quantitative comparisons on all the sequences of TU-VDN database

Dust Fog Rain Low Light

Approaches
Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Avg.

F-Measure

Avg.

MCC

Avg.

ACC

ViBe [70] 0.5565 0.5823 0.9740 0.6844 0.7119 0.9921 0.7307 0.7379 0.9877 0.5738 0.5954 0.9907

SuBSENSE [72] 0.5405 0.5679 0.9722 0.8204 0.8218 0.9969 0.6112 0.6171 0.9788 0.4812 0.5091 0.9837

LOBSTER [150] 0.4967 0.5346 0.9688 0.6649 0.6769 0.9943 0.5658 0.5949 0.9793 0.5244 0.5413 0.9890

PAWCS [136] 0.2322 0.2872 0.9656 0.5176 0.5559 0.9945 0.6628 0.6752 0.9875 0.3155 0.3505 0.9870

FST [153] 0.2360 0.2564 0.7189 0.5173 0.5659 0.9677 0.6760 0.6938 0.9892 0.4061 0.4509 0.9523

PBAS [151] 0.4033 0.4311 0.9547 0.6936 0.7086 0.9952 0.7035 0.6893 0.9823 0.5668 0.5803 0.9901

Multicue [154] 0.6166 0.6345 0.9714 0.5511 0.5913 0.9717 0.5511 0.5912 0.9717 0.4961 0.5314 0.9798

ISBM [155] 0.2191 0.2443 0.7040 0.4951 0.5456 0.9501 0.2773 0.3387 0.9312 0.3594 0.4064 0.9654

MTD [156] 0.4709 0.4772 0.9729 0.5561 0.5640 0.9928 0.4843 0.4948 0.9802 0.4656 0.4927 0.9814

VuMeter [152] 0.2171 0.2578 0.9667 0.3071 0.3698 0.6083 0.6225 0.6373 0.9814 0.3336 0.3882 0.9862

KDE [56] 0.2689 0.2978 0.9453 0.5332 0.5522 0.9938 0.6198 0.6315 0.9606 0.3845 0.3996 0.9691

MoG V2 [157] 0.2208 0.2799 0.9673 0.2117 0.2509 0.9928 0.3532 0.3963 0.9651 0.3119 0.3486 0.9854

Eigenbackground [158] 0.3603 0.3996 0.9184 0.3413 0.3734 0.9629 0.2120 0.1761 0.6499 0.3695 0.4190 0.9673

Codebook [159] 0.2066 0.2245 0.6807 0.2319 0.3299 0.9111 0.2736 0.3958 0.9021 0.3093 0.3623 0.8848

ALWBP [78] 0.7002 0.6983 0.9763 0.7451 0.7456 0.9960 0.6962 0.6832 0.9877 0.6555 0.6658 0.9891

Proposed 0.9131 0.9093 0.9926 0.8706 0.8745 0.9937 0.8792 0.8817 0.9959 0.8681 0.8709 0.9919

Table 5.2: Quantitative analysis on all the sequences of changedetection.net database

Category Recall Specificity FPR FNR Precision F-Measure PWC

BadWeather 0.9832 0.9999 0.0001 0.0168 0.9921 0.9876 0.0354

Baseline 0.9968 0.9999 0.0001 0.0032 0.9982 0.9975 0.0147

Camera Jitter 0.9953 0.9999 0.0001 0.0047 0.9968 0.9960 0.0339

Dynamic Background 0.9949 0.9999 0.0000 0.0051 0.9957 0.9953 0.0065

Intermittent Object Motion 0.9915 0.9999 0.0001 0.0085 0.9963 0.9939 0.0616

Low Framerate 0.9433 0.9999 0.0001 0.0567 0.9613 0.9520 0.0262

Night Videos 0.9788 0.9997 0.0003 0.0212 0.9860 0.9824 0.0717

PTZ 0.9909 0.9999 0.0000 0.0091 0.9953 0.9931 0.0144

Shadow 0.9955 0.9999 0.0001 0.0045 0.9963 0.9959 0.0338

Thermal 0.9912 0.9998 0.0002 0.0088 0.9958 0.9935 0.0564

Turbulence 0.9768 0.9999 0.0001 0.0232 0.9813 0.9790 0.0222

Average 0.9853 0.9999 0.0001 0.0147 0.9905 0.9878 0.0343

Table 5.3: Quantitative comparisons on 5 thermal sequences of changedetection.net
database

Approaches Avg.Precision Avg.Recall Avg.F-Measure Avg.PWC

DeepBS [101] 0.9257 0.6637 0.7583 3.5773

BSPVGAN [112] 0.9770 0.9763 0.9764 0.2406

WisenetMD [140] 0.8696 0.7867 0.8152 1.8993

Cascade CNN [103] 0.8577 0.9461 0.8958 1.0478

IUTIS-5 [141] 0.8969 0.7990 0.8303 1.1484

BSUV Net [108] 0.8551 0.8739 0.8581 1.7058

SemanticBGS [142] 0.9118 0.7664 0.8219 1.3897

BSUV Net2.0 [143] 0.9359 0.8594 0.8932 1.1659

KDE [56] 0.8974 0.6725 0.7423 1.6795

GMM [55] 0.8652 0.5691 0.6621 4.2642

PAWCS [136] 0.8280 0.8504 0.8324 1.4018

SuBSENSE [72] 0.8328 0.8161 0.8171 2.0125

SOBS-CF [91] 0.8715 0.6347 0.7140 1.8021

WeSamBE [75] 0.8554 0.7727 0.7962 2.3538

Multimode Background [74] 0.8268 0.8162 0.8194 1.4289

SharedModel [137] 0.8072 0.8618 0.8319 1.8656

Spectral-360 [138] 0.9114 0.7238 0.7764 1.6337

Proposed 0.9958 0.9912 0.9935 0.0564

results are presented in Figure 5.8 (c), which produces many false alarms. Figure 5.8 (d)

displays the results obtained by the WisenetMD [140] based BGS scheme. It is observed

from this figure that the WisenetMD based scheme produces ghosts for the considered

frames. Figure 5.8 (e) represents the results of the Cascade CNN [103] based BGS scheme,
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Table 5.4: Quantitative comparisons on all the sequences of changedetection.net database

Approaches Avg.Precision Avg.Recall Avg.F-Measure Avg.PWC

DeepBS [101] 0.8332 0.7545 0.7458 1.9920

BSPVGAN [112] 0.9472 0.9544 0.9501 0.2272

WisenetMD [140] 0.7668 0.8179 0.7535 1.6136

Cascade CNN [103] 0.8997 0.9506 0.9209 0.4052

IUTIS-5 [141] 0.8087 0.7849 0.7717 1.1986

BSUV Net [108] 0.8113 0.8203 0.7868 1.1402

SemanticBGS [142] 0.8305 0.7890 0.7892 1.0722

FgSegNet S FPM [149] 0.9751 0.9896 0.9804 0.0461

FgsegNet v2 [109] 0.9823 0.9891 0.9847 0.0402

BSUV Net2.0 [143] 0.9011 0.8136 0.8387 0.7614

KDE [56] 0.5811 0.7375 0.5688 5.6262

GMM [55] 0.6025 0.6846 0.5707 3.7667

PAWCS [136] 0.7857 0.7718 0.7403 1.1992

SuBSENSE [72] 0.7509 0.8124 0.7408 1.6780

SOBS-CF [91] 0.5831 0.7805 0.5883 6.0709

WeSamBE [75] 0.7679 0.7955 0.7446 1.5105

Multimode Background [74] 0.7382 0.7389 0.7288 1.2614

SharedModel [137] 0.7503 0.8098 0.7474 1.4996

Spectral-360 [138] 0.7054 0.7345 0.6732 2.2722

Proposed 0.9905 0.9853 0.9878 0.0343

where many object pixels are misclassified as the background pixels. The results for the

IUTIS 5 [141] based BGS scheme are reported in Figure 5.8 (f), where mainly false de-

tections are observed. Figure 5.8 (g), shows the results of the BSUV net [108] scheme;

where a high false-positive rate is observed. Figure 5.8 (h) denotes the results obtained

by the SemanticBGS [142], which is unable to detect the shape of the objects accurately.

The results of BSUV net2.0 [143] are presented in 5.8 (i), where poor results are observed.

The results obtained by the proposed BGS scheme as shown in Figure 5.8 (j). It is found

from this figure that the proposed algorithm is able to detect both object and background

pixels with better accuracy.

The considered original frames and the corresponding ground-truth images from the

TU-VDN are presented in Figure 5.9 (a)-(b). The results on five competitive techniques:

SuBSENSE [72], LOBSTER [150], PBAS [151], KDE [56], and VuMeter [152] are shown in

Figures 5.9 (c)-(g), respectively. It may be observed that the results obtained by the SOTA

techniques have a high false-positive rate. Also, these SOTA techniques generates holes

and missed alarms in the detected results. However, the results obtained by the proposed

algorithm (shown in Figure 5.9 (h)) confirms our findings by giving better results against

the SOTA techniques.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Corridor Sequence

DiningRoom Sequence

LakeSide Sequence

Library Sequence

Park Sequence

Figure 5.8: Moving object detection for di↵erent sequences: (a) original frame (b) corresponding ground-
truth, moving object detection results obtained by deep learning based BGS schemes: (c) DeepBS, (d)
WisenetMD, (e) Cascade CNN, (f) IUTIS 5, (g) BSUV net (h) SemanticBGS, (i) BSUV net2.0 and (j)
proposed multi-scale contrast preserving deep learning architecture scheme.

(a) (b) (c) (d) (e) (f) (g) (h)

Rain Sequence

Lowlight Sequence

Fog Sequence

Dust Sequence

Figure 5.9: Moving object detection for di↵erent sequences: (a) original frame (b) corresponding ground-
truth, moving object detection results obtained by non-deep learning based BGS schemes: (c) SuBSENSE,
(d) LOBSTER, (e) PBAS, (f) KDE, (g) VuMeter and (h) proposed multi-scale contrast preserving deep
learning architecture scheme.
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5.3.4 Quantitative comparison of Multi-Scale Contrast Preserv-

ing Deep Learning Architecture

The evaluation of the proposed scheme is carried out using three quantitative measures:

average F-measure, average Matthews correlation co-e�cient, and average accuracy [78]

for TU-VDN database. Similarly, for a fair evaluation on changedetection.net database,

we have used four measures: average Precision, average Recall , average F-measure, and

average PWC [99]. The evaluation of the performance of the proposed scheme on TU-VDN

database is provided in Table 5.5. To evaluate the proposed scheme on TU-VDN database,

we have used fifteen SOTA BGS techniques: ViBe [70], SuBSENSE [72], LOBSTER

[150], PAWCS [136], FST [153], PBAS [151], Multicue [154], ISBM [155], MTD [156],

VuMeter [152], KDE [56], MoG V2 [157], Eigenbackground [158], Codebook [159], and

ALWBP [78]. It may be observed that except accuracy measure for fog sequence; the

proposed scheme provides a higher accuracy by all measures on di↵erent categories as

compared to other considered SOTA techniques. The results of the proposed scheme on

five thermal sequences available at changedetection.net database are provided in Table 5.6.

The proposed scheme is compared against sixteen SOTA BGS techniques: DeepBS [101],

WisenetMD [140], Cascade CNN [103], IUTIS-5 [141], BSUV Net [108], SemanticBGS

[142], BSUV Net2.0 [143], KDE [56], GMM [55], PAWCS [136], SuBSENSE [72], SOBS-

CF [91], WeSamBE [75], Multimode Background [74], Shared Model [137] and Spectral-

360[138]. It may be observed that the proposed scheme has provided a higher accuracy

in terms of all considered measures. We have also tested the proposed scheme on all the

available videos (53 videos) available at changedetection.net and found that the proposed

scheme performance is best as compared to the sixteen SOTA techniques (as provided in

Table 5.7).

5.3.5 Discussions and Future Works

Background subtraction is an essential step in any surveillance system. Here, the ultimate

goal is to detect the local changes, and the system could be employed to face many of

the real-life challenges. However, foreground and background separation is a challenging

task, as in general, a video scene is a↵ected by illumination variation, shadow, disturbed

weather, poor texture, poor resolution, camera motion (jitter, tilting, and zooming), etc.
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Table 5.5: Quantitative comparisons on all the sequences of TU-VDN database

Dust Fog Rain Low Light

Approaches
Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Avg.

F-Measure

Avg.

MCC

Avg.

ACC

ViBe [70] 0.5565 0.5823 0.9740 0.6844 0.7119 0.9921 0.7307 0.7379 0.9877 0.5738 0.5954 0.9907

SuBSENSE [72] 0.5405 0.5679 0.9722 0.8204 0.8218 0.9969 0.6112 0.6171 0.9788 0.4812 0.5091 0.9837

LOBSTER [150] 0.4967 0.5346 0.9688 0.6649 0.6769 0.9943 0.5658 0.5949 0.9793 0.5244 0.5413 0.9890

PAWCS [136] 0.2322 0.2872 0.9656 0.5176 0.5559 0.9945 0.6628 0.6752 0.9875 0.3155 0.3505 0.9870

FST [153] 0.2360 0.2564 0.7189 0.5173 0.5659 0.9677 0.6760 0.6938 0.9892 0.4061 0.4509 0.9523

PBAS [151] 0.4033 0.4311 0.9547 0.6936 0.7086 0.9952 0.7035 0.6893 0.9823 0.5668 0.5803 0.9901

Multicue [154] 0.6166 0.6345 0.9714 0.5511 0.5913 0.9717 0.5511 0.5912 0.9717 0.4961 0.5314 0.9798

ISBM [155] 0.2191 0.2443 0.7040 0.4951 0.5456 0.9501 0.2773 0.3387 0.9312 0.3594 0.4064 0.9654

MTD [156] 0.4709 0.4772 0.9729 0.5561 0.5640 0.9928 0.4843 0.4948 0.9802 0.4656 0.4927 0.9814

VuMeter [152] 0.2171 0.2578 0.9667 0.3071 0.3698 0.6083 0.6225 0.6373 0.9814 0.3336 0.3882 0.9862

KDE [56] 0.2689 0.2978 0.9453 0.5332 0.5522 0.9938 0.6198 0.6315 0.9606 0.3845 0.3996 0.9691

MoG V2 [157] 0.2208 0.2799 0.9673 0.2117 0.2509 0.9928 0.3532 0.3963 0.9651 0.3119 0.3486 0.9854

Eigenbackground [158] 0.3603 0.3996 0.9184 0.3413 0.3734 0.9629 0.2120 0.1761 0.6499 0.3695 0.4190 0.9673

Codebook [159] 0.2066 0.2245 0.6807 0.2319 0.3299 0.9111 0.2736 0.3958 0.9021 0.3093 0.3623 0.8848

ALWBP [78] 0.7002 0.6983 0.9763 0.7451 0.7456 0.9960 0.6962 0.6832 0.9877 0.6555 0.6658 0.9891

Proposed 0.8349 0.8286 0.9864 0.8589 0.8631 0.9929 0.8057 0.8036 0.9934 0.8554 0.8548 0.9908

Table 5.6: Quantitative comparison on 5 thermal sequences of changedetection.net
database

Approaches Avg.Precision Avg.Recall Avg.F-Measure Avg.PWC

DeepBS [101] 0.9257 0.6637 0.7583 3.5773

WisenetMD [140] 0.8696 0.7867 0.8152 1.8993

Cascade CNN [103] 0.8577 0.9461 0.8958 1.0478

IUTIS-5 [141] 0.8969 0.7990 0.8303 1.1484

BSUV Net [108] 0.8551 0.8739 0.8581 1.7058

SemanticBGS [142] 0.9118 0.7664 0.8219 1.3897

BSUV Net2.0 [143] 0.9359 0.8594 0.8932 1.1659

KDE [56] 0.8974 0.6725 0.7423 1.6795

GMM [55] 0.8652 0.5691 0.6621 4.2642

PAWCS [136] 0.8280 0.8504 0.8324 1.4018

SuBSENSE [72] 0.8328 0.8161 0.8171 2.0125

SOBS-CF [91] 0.8715 0.6347 0.7140 1.8021

WeSamBE [75] 0.8554 0.7727 0.7962 2.3538

Multimode Background [74] 0.8268 0.8162 0.8194 1.4289

SharedModel [137] 0.8072 0.8618 0.8319 1.8656

Spectral-360 [138] 0.9114 0.7238 0.7764 1.6337

Proposed 0.9718 0.9858 0.9787 0.5485

Table 5.7: Quantitative comparisons on all the sequences of changedetection.net database

Approaches Avg.Precision Avg.Recall Avg.F-Measure Avg.PWC

DeepBS [101] 0.8332 0.7545 0.7458 1.9920

WisenetMD [140] 0.7668 0.8179 0.7535 1.6136

Cascade CNN [103] 0.8997 0.9506 0.9209 0.4052

IUTIS-5 [141] 0.8087 0.7849 0.7717 1.1986

BSUV Net [108] 0.8113 0.8203 0.7868 1.1402

SemanticBGS [142] 0.8305 0.7890 0.7892 1.0722

BSUV Net2.0 [143] 0.9011 0.8136 0.8387 0.7614

KDE [56] 0.5811 0.7375 0.5688 5.6262

GMM [55] 0.6025 0.6846 0.5707 3.7667

PAWCS [136] 0.7857 0.7718 0.7403 1.1992

SuBSENSE [72] 0.7509 0.8124 0.7408 1.6780

SOBS-CF [91] 0.5831 0.7805 0.5883 6.0709

WeSamBE [75] 0.7679 0.7955 0.7446 1.5105

Multimode Background [74] 0.7382 0.7389 0.7288 1.2614

SharedModel [137] 0.7503 0.8098 0.7474 1.4996

Spectral-360 [138] 0.7054 0.7345 0.6732 2.2722

Proposed 0.9185 0.9197 0.9185 0.1177

In this chapter, we have proposed two multi-scale deep learning architectures for moving

object detection: modified ResNet-152 network with hybrid pyramidal pooling and multi-
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scale contrast preserving deep learning architecture. The proposed algorithms results are

evaluated qualitatively as well as quantitatively by comparing the results obtained by it

with those of the di↵erent SOTA techniques that incorporate various deep learning and

non-deep learning existing techniques. For empirical analysis, all these existing techniques

are considered without altering the parameters. It may be noted that the proposed

schemes surpasses, most of the existing state-of-the-art BGS techniques and also provides

better accuracy.

To know the e�cacy of the proposed algorithms, we have performed a quantita-

tive comparison among them on five thermal sequences available at changedetection.net

database are provided in Table 5.8. It may be found that the proposed modified ResNet-

152 network with hybrid pyramidal pooling BGS scheme has provided a higher accuracy

in terms of all considered measures against the proposed multi-scale contrast preserving

deep learning architecture. Also, we have tested the proposed schemes on all the available

videos (53 videos) available at changedetection.net and it may be observed from Table 5.9

that the proposed modified ResNet-152 network with hybrid pyramidal pooling scheme

performance is better as compared to the proposed multi-scale contrast preserving deep

learning architecture. Further, we have evaluated the proposed schemes on all the videos

available at TU-VDN database are presented in Table 5.10. It may be found that the

proposed modified ResNet-152 network with hybrid pyramidal pooling scheme attained

better e�ciency as compared to the multi-scale contrast preserving deep learning archi-

tecture.

Table 5.8: Quantitative comparisons on 5 thermal sequences of changedetection.net
database

Quantitative measurements
Modified ResNet-152 network

with hybrid pyramidal pooling

Multi-scale contrast preserving

deep learning architecture

Avg.Precision 0.9958 0.9718

Avg.Recall 0.9912 0.9858

Avg.F-Measure 0.9935 0.9787

Avg.PWC 0.0564 0.5485

The proposed modified ResNet-152 network with a hybrid pyramidal pooling scheme

and contrast preserving deep learning architecture yields better results for the test se-

quences. However, the proposed modified ResNet-152 network with hybrid pyramidal

pooling BGS technique provides marginal outcomes if small moving objects are in exces-

sive dynamism scenes. In such a scenario, spatial and temporal inter-dependency among
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Table 5.9: Quantitative comparisons on all the sequences of changedetection.net database

Quantitative measurements
modified ResNet-152 network

with hybrid pyramidal pooling

multi-scale contrast preserving

deep learning architecture

Avg.Precision 0.9905 0.9185

Avg.Recall 0.9853 0.9197

Avg.F-Measure 0.9878 0.9185

Avg.PWC 0.0343 0.1177

Table 5.10: Quantitative comparisons on all the sequences of TU-VDN database

Dust Fog Rain Low Light

Proposed algorithms
Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Avg.

F-Measure

Avg.

MCC

Avg.

ACC

Modified ResNet-152 network

with hybrid pyramidal pooling
0.9131 0.9093 0.9926 0.8706 0.8745 0.9937 0.8792 0.8817 0.9959 0.8681 0.8709 0.9919

Multi-scale contrast preserving

deep learning architecture
0.8349 0.8286 0.9864 0.8589 0.8631 0.9929 0.8057 0.8036 0.9934 0.8554 0.8548 0.9908

the video frames can be used to identify small moving objects precisely. In the proposed

multi-scale contrast preserving deep learning architecture, it may be observed that the

use of a max-polling layer keeps the detail with maximum activation while discarding the

information in di↵erent elements in a pooling area. In such a case, ordinal pooling may

produce adequate results by considering all the elements in the pooling area with learning

weights.

5.4 Conclusions

In this chapter, two multi-scale deep learning architectures for moving object detection

are addressed for local change detection. In the proposed modified ResNet-152 network

with hybrid pyramidal pooling scheme, a modified ResNet-152 network is induced on the

multi-scale features extraction (MFE) block which is a hybridization of pyramidal pooling

architecture (PPA) and various atrous convolutional layers for moving object detection.

The encoder is configured using a modified ResNet-152 network to extract deep features

from the video scenes where an image in RGB space is projected to a high dimensional

feature space. In this work, we have proposed multi-scale features extraction (MFE) block

integrated with the encoder network to enhance the feature learning capabilities that

preserve sparse and dense deep features from challenging scenarios. We have explored

PPA in the MFE block, which is a suitable contextual prior. Finally, we have proposed

an adequate decoder network where up-sampling is performed to project the deep multi-

scale features space to image-frame space. Again, in the multi-scale contrast preserving
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deep learning architecture, a novel encoder network that deeply learned and extracted

the sparse and dense features from the thermal input sequences. The proposed multi-

scale contrast preservation (MSCP) block can precisely retain the contrast details of the

in-depth features and act as a better feature representation block. The decoder network

e↵ectively classifies each pixel of the target scene to either foreground or background. For

both the proposed algorithms, an end-to-end training mechanism is adapted to train the

model, and a few input-ground-truth pair samples are used for the same. The proposed

schemes are provided better-segmented results without utilizing any pre-or post-processing

strategy.

The performance of the proposed algorithms is tested on benchmark databases: changede-

tection.net, and Tripura University Video Dataset at Night Time (TU-VDN) consisting

of various outdoor and indoor image sequences. The proposed techniques are found to be

robust against several real-life challenges, including irregular shades, higher dynamism in

the background, camera jitter, thermal and illumination variations. The results obtained

by the proposed modified ResNet-152 network with hybrid pyramidal pooling technique is

validated against thirty-one state-of-the-art techniques, and the e�cacy of the proposed

multi-scale contrast preserving deep learning architecture is corroborated against twenty-

eight existing techniques and found to be e↵ective. To confirm our findings, we have used

qualitative as well as quantitative analysis. It can be noted that the proposed schemes

can detect the shape of the moving objects accurately and give higher values of evaluation

measures for most of the considered experiments.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

This thesis presents few new algorithms of image fusion to enhance the visual contents

and few background subtraction scheme to detect the moving objects in the thermal

video scene captured in a challenging indoor and outdoor scenarios. The challenging

conditions considered are: low resolution (or) missing information, lack of structure such

as shape and textural information, dynamic background, heat reflection from the surface,

adverse weather conditions, etc. In this regard, the following contributory works have

been proposed.

• In Chapter 2, we have proposed two contrast preservation with intensity variation

approach for pixel level image fusion: fuzzy edge preserving intensity variation ap-

proach and weighted combination of maximum and minimum value selection strat-

egy. In the proposed fuzzy edge preserving intensity variation approach, we have

analyzed the spatial inter-dependency among the visible and thermal images to gen-

erate the salient feature map with reduced artifacts. However, the salient feature

map cannot preserve su�cient edge details. Therefore the concept of the fuzzy edge

is investigated in the visible image to obtain its edge. The fused image is generated

by combining the salient feature map and edges of the visible image. Again in the

proposed weighted combination of maximum and minimum value selection strategy,

the detail feature map is generated using a maximum selection strategy in the source

images that provide details of the object. However, the detail feature map cannot

118
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preserve the subtle details from the source images. Therefore, the minimum selec-

tion strategy is used between the source images to produce the intermediate feature

map with subtle details. A weighted-average fusion approach is explored to fuse

the detailed and intermediate features. Both the proposed techniques produce the

fused image with significant contrast and required details. The proposed schemes

are tested on TNO benchmark database. The e�cacy of the proposed fuzzy edge

preserving intensity variation approach is validated against eight state-of-the-art

schemes, and the e�ciency of the proposed weighted combination of maximum and

minimum value selection strategy is corroborated against the seven existing SOTA

techniques. The performance of the proposed techniques is validated qualitatively

and quantitatively in order to justify our findings. It is found that the proposed

schemes provide better results compared to the state-of-the-art techniques.

• In Chapter 3, we have proposed two multi-scale features with deep learning architec-

tures for feature level image fusion. In the first instance we proposed an integration

of bi-dimensional empirical mode decomposition with two streams VGG-16 tech-

nique. The proposed bi-dimensional empirical mode decomposition (BEMD) strat-

egy is integrated with a pre-trained VGG-16 network that can e↵ectively handle the

vagueness of infrared and visible images and can retain deep multi-layer features at

di↵erent scales on the frequency domain. A fusion strategy is proposed to analyze

the spatial inter-dependency between the deep features and preserve the comple-

mentary information from the source images precisely. Further, we proposed a non-

subsampled contourlet transform induced two streams ResNet-50 network algorithm

for image fusion. The non-subsampled contourlet transform (NSCT) geometrically

transforms both the visual and the thermal images to get a shift-invariant, multi-

direction, and multi-scale decomposition output. Two streams of parallel ResNet-50

networks: one for the low frequency and another for the high-frequency components

of the NSCT are used here. A weighted combination strategy is proposed here to

fuse the information from both visual and thermal image features output using the

spatial inter-dependency among the pixels and precisely retain the correlative de-

tails from both the source images. Both the proposed techniques are found to be

propagated lesser artifacts with rich edge details into the fused image. The e�ciency

of the proposed schemes is evaluated on the benchmark TNO database. The e�-
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cacy of the proposed integration of bi-dimensional empirical mode decomposition

with two streams VGG-16 scheme is corroborated against fifteen existing fusion

schemes. Also, the performance of the proposed non-subsampled contourlet trans-

form induced two streams ResNet-50 network algorithm is demonstrated against

ten existing fusion schemes. We have used qualitative and quantitative analysis to

ensure our findings and is found to be e↵ective.

• In Chapter 4, we have proposed a kernel induced possibilistic fuzzy associate back-

ground subtraction to detect the moving objects from video scene. The proposed

scheme follows two stages: background training and foreground segmentation. In

the background construction stage, each pixel is modeled using a possibilistic fuzzy

cost function in kernel induced space. The use of the induced kernel function will

project the low dimensional data into a higher dimensional space and the use of the

possibilistic function will construct a robust background model based on the den-

sity of the data in the temporal direction avoiding the noisy and outlier points. The

performance of the proposed scheme is tested on the database: changedetection.net.

The e↵ectiveness of the proposed scheme is evaluated on di↵erent performance eval-

uation measures. The investigation is corroborated by comparing the results against

twenty-nine existing state-of-the-art techniques and is found to be better.

• In Chapter 5, we have proposed two multi-scale deep learning architectures for mov-

ing object detection: modified ResNet-152 network with hybrid pyramidal pooling

and multi-scale contrast preserving deep learning architecture. In the proposed

modified ResNet-152 network with hybrid pyramidal pooling BGS technique, a pre-

trained modified ResNet-152 network is adhered to as an encoder with a transfer

learning mechanism to preserve the in-depth features against variation in grey value

in the video scene. We have proposed a multi-scale features extraction block, a

hybridization of pyramidal pooling architecture, and various atrous convolutional

layers to extract multi-scale and multi-dimensional features at various levels. We

have also proposed an e�cient decoder network that uses low-level features from

the encoder network and high-level features from the multi-scale features extraction

block and up-scale the essential features into image space. In the proposed multi-

scale contrast preserving deep learning architecture, we have developed an encoder

network with skip connection to retain spatial information by considering the dis-
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tinct neighborhood pixels in-depth at various levels. The proposed multi-scale con-

trast preservation block can precisely retain the contrast details of the deep features

and act as a better feature representation block. The decoder network projects the

extracted features at di↵erent layers into pixel-level accurately. The performance

of the proposed algorithms is tested on benchmark databases: changedetection.net,

and Tripura University Video Dataset at Night Time (TU-VDN). The e↵ectiveness

of the proposed modified ResNet-152 network with hybrid pyramidal pooling tech-

nique is validated against thirty-one state-of-the-art techniques, and the e�cacy of

the proposed multi-scale contrast preserving deep learning architecture is corrobo-

rated against twenty-eight existing SOTA techniques and is found to be e↵ective.

To confirm our findings, we have used qualitative and quantitative analysis.

6.2 Future Works

The proposed techniques for thermal video surveillance are adequately able to address the

image fusion and object detection tasks. However there are plenty of scopes in the field

of thermal surveillance systems for establishing a robust automated surveillance system.

Thermal video processing plays a massive role in an automatic thermal surveillance

system. The major drawback of most thermal video processing systems is their incapabil-

ity to handle scenes with objects having the same temperature or the object’s temperature

same as the surface temperature. In such cases, there is substantial degradation of per-

formance in terms of the separation of objects is observed. It may be noted that the

proposed techniques are also unable to generate better results in such scenes. In this

regard, some albedo analysis on visual images may be combined with the thermal image

may improve the performance of the image fusion scheme.

One of the primary challenges in recently, deployed thermal surveillance system is

developing distributed and collaborative sensing systems for providing the constituent

sensors with the means to interpret each other’s observations and measurements. The

absence of global or even pairwise reference information e↵ectively, isolates the individual

sensors, leaving them unable to determine the meaning or relevance of other sensors’

observations. While such reference information can be provided manually to systems

comprised of a mere handful of sensors, systems deployed with hundreds and thousands
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of sensors necessitate the development of automated approaches.

The common weakness of the proposed object detection techniques is their inability to

handle densely crowded scenes. As the density of moving objects in the scene increases, a

significant degradation in the performance in terms of object detection is observed. View

variations and varying density of people as well as the ambiguous appearance of body

parts, e.g. some parts of one object in the scene may be similar to another near-by object.

This inability to deal with crowded scenes represents a significant problem. Solving such

task is a very di�cult task. Computing the tracks for multiple object with parallel

computation is again more di�cult. The future work may concentrate on developing

some algorithms which may learns from a set of collective patterns of individuals from a

specific testing scene. Some similar behaviors amongst crowd motion patterns combined

with the features of the target candidates will be used for object tracking and behaviour

analysis.
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vol. 42, no. 7, pp. 1063–1082, 2017.

[24] Y. Liu, S. Liu, and Z. Wang, “A general framework for image fusion based on

multi-scale transform and sparse representation,” Information Fusion, vol. 24, pp.

147–164, 2015.

[25] H. Xu, Y. Wang, Y. Wu, and Y. Qian, “Infrared and multi-type images fusion

algorithm based on contrast pyramid transform,” Infrared Physics & Technology,

vol. 78, pp. 133–146, 2016.

[26] P. Jagalingam and A. V. Hegde, “Pixel level image fusion: A review on various

techniques,” in Proceedings of the 3rd World Conference on Applied Sciences, En-

gineering and Technology, 2014, pp. 1–8.

[27] P. Hill, M. E. Al-Mualla, and D. Bull, “Perceptual image fusion using wavelets,”

IEEE Transactions on Image Processing, vol. 26, no. 3, pp. 1076–1088, 2016.

[28] F. Nencini, A. Garzelli, S. Baronti, and L. Alparone, “Remote sensing image fusion

using the curvelet transform,” Information Fusion, vol. 8, no. 2, pp. 143–156, 2007.

[29] Q. Zhang and B. l. Guo, “Multifocus image fusion using the nonsubsampled con-

tourlet transform,” Signal Processing, vol. 89, no. 7, pp. 1334–1346, 2009.

[30] S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE Transactions

on Image Processing, vol. 22, no. 7, pp. 2864–2875, 2013.



BIBLIOGRAPHY 126

[31] D. P. Bavirisetti and R. Dhuli, “Two-scale image fusion of visible and infrared

images using saliency detection,” Infrared Physics & Technology, vol. 76, pp. 52–64,

2016.

[32] V. S. Petrovic and C. S. Xydeas, “Gradient-based multiresolution image fusion,”

IEEE Transactions on Image Processing, vol. 13, no. 2, pp. 228–237, 2004.

[33] J. J. Zong and T. S. Qiu, “Medical image fusion based on sparse representation

of classified image patches,” Biomedical Signal Processing and Control, vol. 34, pp.

195–205, 2017.

[34] Y. Liu, X. Chen, R. K. Ward, and Z. J. Wang, “Image fusion with convolutional

sparse representation,” IEEE Signal Processing Letters, vol. 23, no. 12, pp. 1882–

1886, 2016.

[35] ——, “Medical image fusion via convolutional sparsity based morphological compo-

nent analysis,” IEEE Signal Processing Letters, vol. 26, no. 3, pp. 485–489, 2019.

[36] Y. Liu, X. Chen, J. Cheng, H. Peng, and Z. Wang, “Infrared and visible image fusion

with convolutional neural networks,” International Journal of Wavelets, Multireso-

lution and Information Processing, vol. 16, no. 3, pp. 1–20, 2018.

[37] Y. Liu, X. Chen, H. Peng, and Z. Wang, “Multi-focus image fusion with a deep

convolutional neural network,” Information Fusion, vol. 36, pp. 191–207, 2017.

[38] K. R. Prabhakar, V. S. Srikar, and R. V. Babu, “Deepfuse: A deep unsupervised

approach for exposure fusion with extreme exposure image pairs.” in Proceedings of

the IEEE International Conference on Computer Vision, 2017, pp. 4724–4732.

[39] H. Li and X. Wu, “Densefuse: A fusion approach to infrared and visible images,”

IEEE Transactions on Image Processing, vol. 28, no. 5, pp. 2614–2623, 2019.

[40] H. Li and X. J. Wu, “Infrared and visible image fusion using latent low-rank repre-

sentation,” arXiv preprint arXiv:1804.08992, pp. 1–6, 2018.

[41] H. Li, X. J. Wu, and J. Kittler, “RFN-Nest: An end-to-end residual fusion network

for infrared and visible images,” Information Fusion, vol. 73, pp. 72–86, 2021.



BIBLIOGRAPHY 127

[42] C. Gao, D. Qi, Y. Zhang, C. Song, and Y. Yu, “Infrared and visible image fusion

method based on ResNet in a nonsubsampled contourlet transform domain,” IEEE

Access, vol. 9, pp. 91 883–91 895, 2021.

[43] A. J. Rashidi and M. H. Ghassemian, “A new approach for multi-system/sensor

decision fusion based on joint measures,” International Journal of Information Ac-

quisition, vol. 1, no. 02, pp. 109–120, 2004.

[44] V. E. Neagoe, A. D. Ropot, and A. C. Mugioiu, “Real time face recognition using

decision fusion of neural classifiers in the visible and thermal infrared spectrum,” in

Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveil-

lance, 2007, pp. 301–306.

[45] Y. Zhao, Y. Yin, and D. Fu, “Decision-level fusion of infrared and visible images

for face recognition,” in Proceedings of the IEEE Chinese Control and Decision

Conference, 2008, pp. 2411–2414.

[46] Y. Wang, W. Chen, and S. Mao, “Multi-sensor decision level image fusion based on

Fuzzy theory and unsupervised FCM,” in Proceedings of the Remote Sensing of the

Environment: 15th National Symposium on Remote Sensing, vol. 6200, 2006, pp.

124–130.

[47] A. Wang, J. Jiang, and H. Zhang, “Multi-sensor image decision level fusion detection

algorithm based on DS evidence theory,” in Proceedings of the IEEE International

Conference on Instrumentation and Measurement, Computer, Communication and

Control, 2014, pp. 620–623.
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