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Abstract

Dusty plasma is a collection of heavily charged particles immersed in an electron-ion plasma. The dust

particles are heavy compared to ions by a few orders of magnitude. Hence, their inertia and forces around

them lead to slow modes. Also, the high charge on dust particles brings in the existence of di↵erent

phases of the dust system. In a fluid regime, plasma supports the dust acoustic wave (DAW) due to the

balance between dust inertia and the background plasma pressure. However, a two-dimensional monolayer

lattice, formed due to strong Coulomb coupling between the dust grains, supports the longitudinal dust

lattice waves (DLWs). This thesis provided a theoretical model for the nonlinear mixing of DLWs and

synchronization of DAWs. While the mixing is studied using a forced Korteweg-de Vries (fKdV) model,

the synchronization is explored using a forced Korteweg-de Vries-Burgers (fKdV-B) model. The results

from the thesis work are in excellent agreement with dusty plasma experimental observations based on

the mixing of DLWs and synchronization of DAWs.

The nonlinear dynamical evolution of dusty plasmas as charged fluid is usually represented by fluid-

Poisson equations. In the weak nonlinear dynamical regime, these coupled fluid-Poisson equations reduce

to KdV and KdV-B equations with and without the viscous damping mechanism. These one-dimensional

models are convenient to solve and provide good visualization of nonlinear longitudinal collective acoustic

modes with reasonable accuracy.

Nonlinear mixing is a collective phenomenon in which the nonlinear interaction of two or more modes in

the presence of a nonlinear medium generates a cascade of coherent modes. The characteristic features of

the mixed-mode spectrum primarily depend on the nature of nonlinearity and dispersion in the medium.

Using the fKdV model, we theoretically model the nonlinear mixing in dusty plasma. The nonlinear

mixing features captured from the fKdV-based model remarkably resemble the dusty plasma experiment

on mixing compressional acoustic waves in a dusty plasma. The origin of modes in the spectrum is due to

the three-wave mixing confirmed using the bispectral analysis—the bispectral profiles of the fKdV model

capture features of the bispectral profiles of the dusty plasma experiment.

Synchronization is also a collective nonlinear phenomenon in which a weak nonlinear interaction

between the natural mode and an external driver adjusts the natural mode’s rhythms. We have established

that the fKdV-B equation provides a realistic theoretical framework for explaining synchronization in

dusty or other dispersive systems. The synchronization domains are delineated as Arnold tongue in

the two-dimensional parametric space of the forcing frequency and forcing amplitude. Results from the

fKdV-B equation-based model showed excellent quantitative agreement with the dusty plasma experiment

based on the synchronization of DAWs.

This thesis provides a simple, e�cient, and accurate theoretical description of the mixing and synchro-

nization of nonlinear waves in agreement with previous experiments. The presented model is extendable

to similar nonlinear waves in plasmas at other lengths and time scales and in fluid-like mediums governed

by convective nonlinearity and dispersion. The models may also have applicability in understanding the

dynamical evolution of space junk or space debris and the nonlinear plasma excitation in the lower earth

orbit.
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Chapter 1

Introduction

This thesis provides theoretical models for nonlinear mixing and synchronization in dusty plasma. This

chapter introduces these phenomena and delineates their widespread applicability to physical systems. It

also introduces dusty plasmas and acoustic waves supported in their fluid and solid phases, an application

test-bed for studies of the above nonlinear phenomena. Thesis briefs about the previously used oscillator-

based qualitative model. It motivates the need for a new theoretical model with an appropriate form

of nonlinearity supported in dusty plasmas. We discuss the full-fluid model for dusty plasma and the

reduced Korteweg-de Vries model in the weak nonlinear dynamical regime. Including driving and damping

e↵ects associated with dusty plasma medium, we propose forced KdV and forced KdV-Burgers models for

nonlinear mixing and synchronization. The chapter concludes with a summary of all upcoming chapters

of the thesis.

1
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1.1 Nonlinear mixing and synchronization

We commonly observe the transition of water flow turning from streamlined to turbulent as we increase

the flow rate in the sink tap; we also observe the transition from laminar to turbulent flow in a plume of

smoke [1]. Likewise, we observe the rhythmic chirping of birds in the morning and the rhythmic flashing

of fireflies in the evening [2]. Each of these is an outcome of some physical process; while the former

two are caused due to the turbulent mixing, the latter is due to the ability of birds and fireflies to work

in unison. More specifically, turbulent mixing is an outcome of “nonlinear mixing,” and the ability to

work in unison is due to “synchronization”. With scientific advancements, we can explain these two

physical phenomena through nonlinear mathematical models. The presence and form of nonlinearity are

significant in both phenomena’ existence and characteristics.

Figure 1.1: (A) The transition from laminar to turbulent flow of plume of smoke Credit: https://www.bronkhorst.com. The
basic principle behind the turbulent nature is the nonlinear mixing of modes. In a typical gas, the Navier-Stokes equations
govern the complex nonlinear dynamics of turbulent mixing, in which nonlinear interaction between the modes leads to
generating a cascade of modes [3]. (B) Synchronization of fireflies via rhythmic flashing Credit: https://www.123rf.com.
Theoretically, the Kuramoto model provides insights into the dynamics of the synchronization of fireflies, in which each
firefly is mimicked as a nonlinear oscillator with an intrinsic rhythm [4].

The above two examples are among a huge number of physical processes that, for understanding, require

some nonlinear modelling. Some widely used models include Navier-Stokes equations, Coupled oscillators,

Schrodinger equations and kinetic models with an ensemble of particles interacting through pairwise

interaction. All these models utilize di↵erent nonlinear mechanisms (explicitly or implicitly) to explain

collective dynamical phenomena in di↵erent physical paradigms. Also, a single physical process, such

as propagation and dispersion of longitudinal waves, requires di↵erent models relevant to given physical

systems. In a nonlinear dynamical regime, various mediums, such as optical fibres, water surfaces, plasmas

etc., support solitons whose behaviour strongly depends on the nature of the medium’s nonlinearity.

Nonlinear mixing (NLM) occurs whenever two or more modes interact through a nonlinear medium

and generate a cascade of modes via a three-wave or higher-order mixing mechanism. Synchronization,

on the other hand, is an adjustment of rhythms in two are more systems due to their weak nonlinear

interaction. The features of both phenomena depend on the characteristic nonlinearity of the medium.



1.1. NONLINEAR MIXING AND SYNCHRONIZATION 3

Figure 1.2: Collective phenomenon observed in nature and their representative mathematical models. (A) The flocking
of birds is reasonably understood through the Vicsek model [5] Credit: UCDAVIS/College of Biological Sciences. (B)
The Hurricane Jeanne in which the vortex formation is governed by Navier-Stokes equations [6] Credit: NASA’s Aqua
satellite. (C) The dynamics of Bose-Einstein condensate [7] is governed by nonlinear Schrödinger equation (Gross-Pitaevskii
equation) [8] Credit: NASA/JPL-Caltech.

Based on our theoretical understanding of physical phenomena, a few systems with di↵erent characteristic

nonlinearity are optical systems, fluid flows, quantum collective dynamics and waves in solids. This thesis

proposes a theoretical model for both phenomena in fluid and fluid-like nonlinear mediums. A convective

spatio-temporal nonlinearity supports the nonlinear interaction in these systems. We have adopted the

dusty plasma as a test bed because the available experimental observation makes it easy to validate the

proposed theoretical models.

The phenomenon of nonlinear mixing and synchronization of waves are ubiquitous. Nonlinear mixing

of waves have been observed in plasmas [9–15], acoustics [16, 17], plasmons [18–20], meta-materials [21,

22], nonlinear optical systems [23–27] and nonlinear dispersive fluid media [28]. Synchronization has

been found in biological systems like rhythmic processes in physiology [29], cardiac pacemaker cells [30,

31], chemical systems [32, 33], and in physical systems like quantum mechanically entangled systems [34,

35], laboratory plasmas [36–42], and nonlinear optical systems [43, 44]. The nonlinearity involved in the

aforementioned systems di↵ers for di↵erent physical systems. Our goal in this thesis work is to understand

the mixing and synchronization of nonlinear waves in systems where the source of nonlinearity is spatio-

temporal convective nonlinearity of the mathematical form (~v ·r)~v, where ~v is the velocity field.

In this thesis, we have established one-dimensional theoretical models for NLM and synchronization

based on the Korteweg-de Vries (KdV) equation, a weakly nonlinear dynamical model representation

of fluids and plasmas. This model retains the dispersion and fluid-like convective nonlinearity and has

exact analytical solutions in a particular physical regime. We have proposed and established that a

forced KdV (fKdV) model can explain nonlinear mixing [45] and the fKdV model with viscous damping

also known as fKdV-Burgers (fKdV-B) model can explain synchronization [46]. The nonlinear mixing of

waves is explored on the fKdV model by solving it analytically for time-dependent force and numerically

for travelling wave forcing. On the other hand, the synchronization of waves is explored in the fKdV-B

model through its numerical solution.

The proposed models in this thesis are theoretically derived and validated in a dusty plasma. The

framework choice is due to two primary reasons 1) the models can be exactly derived from dust fluid

dynamical equations, and 2) the outcomes from our models could be compared with available experimental
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observations. The mixing profiles from the fKdV model [45] are in excellent agreement with those obtained

from the interaction of two lattice waves in a dusty plasma experiment [15] barring minor di↵erences due

to simplified model choice. The fKdV-B model [46] for synchronization of nonlinear dust density waves

agrees with the synchronization experiment in dusty plasma [36]. There is still a scope to improve both

models further to capture all the possible experimental findings of the dusty plasma experiments based

on the mixing [15] and synchronization [36] of nonlinear waves.

1.2 Dusty plasma

A dusty (complex) plasma is composed of four components and is formed when nanometer to micrometre

particles are immersed in a typical electron-ion plasma [47–51]. The dust grains acquire a high negative

charge due to the high mobility of electrons compared to ions over the surface of dust grains. Dusty

plasmas are not only artificially prepared in the laboratory. However, they are ubiquitous, like planetary

rings, comet tails, interstellar clouds, and earth’s ionosphere [51–56]. The dusty plasmas in such systems

have orders of magnitude di↵erences in mass, charge, grain size and density [51, 52].

Table 1.1: Various physical parameters of a wide range of dusty plasmas [51, 52]. ne, and Te is electron
density and temperature, respectively. nd, and rd is dust density and dust grain radius, respectively. nn

is the neutral density.

ne

(cm�3)
Te

(K)
nd

(cm�3)
rd

(µ m)
nn

(cm�3)

Discharge dusty plasma 108 � 1012 103 � 104 103 � 105 0.1� 10 �
Noctilucent clouds 103 150 10 0.1 1014

Saturn’s rings 10 105 � 106 10 1 �
Rocket exhaust 1013 103 108 0.1 1018

Halley’s comet 102 � 104 0.1� 1 103 � 108 0.01� 10 1010

Figure 1.3: A wide range of dusty plasmas exists in nature. (A) The glowing eye Crab nebula Credit: NASA, (B) Saturn’s
rings Credit: NASA, (C) the comet Hale–Bopp with white dust tail Credit: Wikipedia, and (D) the Noctilucent clouds
Credit: Wikipedia.

According to the kinetic model, the dust particles are treated as an ensemble of charged particles which

interact via screened Coulomb (Yukawa) potential given by

�
Y (r) =

Q
2
d

4⇡✏0r
exp(�r/�D). (1.1)
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Figure 1.4: Wide variety of physical phenomena observed in laboratory dusty plasmas experiments. (I) The quasi-planar
dust acoustic waves, and cylindrical dust acoustic waves and shocks [57], (II) Vortex formation in a strongly coupled dusty
plasma [58], (III) Excitation of precursor solitons in dusty plasma [59], (IV) phase separation processes in binary dusty
plasmas in parabolic flights[60], and (V) the void formation in dusty plasma under microgravity [61].

Where Qd is the dust grain charge, �D is the Debye screening length and ✏0 is the electrical permittivity

of free space. The background electrons and ions provide the shielding between the dust particles, which

is quantified by the Debye screening/shielding parameter given by

D = a/�D. (1.2)

Where a is the average inter-particle separation or the Wigner-Seitz radius. The dusty plasma shows

the dynamics both of a normal fluid and a crystalline state, which is governed by the Coulomb coupling

parameter � defined a the ratio of average Coulomb potential energy hECi to average thermal kinetic

energy hET i

� =
hECi
hET i

=
Q

2
d

4⇡✏0a

1

kBTd
. (1.3)

Where Td is the kinetic temperature of a dusty plasma and kB is the Boltzmann constant. The heavy

dust particles introduce new low-frequency modes due to dust dynamics and the existing modes due to

ion dynamics. Based on the dust grain charge, the average inter-particle separation between the dust

grains and the temperature of the dusty plasma, dusty plasmas are mainly categorised into two regimes,

namely weak coupling (fluid) regime for which Coulomb coupling strength �  1 and strong coupling

(lattice) regime for which Coulomb coupling strength � � 1.

Dusty plasmas typically show phases of gas (� ⌧ 1), liquid (1  �  150) and solid (Coulomb crystal

formation) (� � 1) [47, 62–64] due to which it supports a variety of physical phenomenon like the

formation of waves [65–69], instabilities [70–73], vortices [58, 74–79], solid-liquid phase transition [47, 80–

85], phase-separation [86], shock melting [87]. It supports formation of shocks [88–93], mach cones [94–97]

and solitons/solitary waves [98, 99], and Peregrine solitons [100]. The dusty plasma medium supports

the dust density wave (DDW) or dust acoustic wave (DAW) mostly in the weak coupling regime and the
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dust lattice wave (DLW) in the strong coupling regime.

1.2.1 Dust Density Wave

The DDW is a longitudinal mode self-excited due to ion streaming, and its propagation direction is at

an oblique angle to the ion flow. The DAW is a special case of the DDW in which the propagation

direction of the wave is parallel to the ion flow direction. The DDWs/DAWs are often explored in the

dusty plasmas’ weak coupling regime (�  1), where it behaves like a charged fluid.

Figure 1.5: A cartoon representing the propagation of dust density waves at an arbitrary angle in a dusty plasma [101].
When the propagation direction is parallel to the ion streaming, it is known as a dust acoustic wave. The DDW is excited
spontaneously due to ion-streaming instability [102]. Typically, the wavelength, frequency and phase velocity of DDWs are
in the range of 1-15 mm, 10-100 Hz, and 1-20 mm/s, respectively.

In dusty plasma, the DAWs [103] are spontaneously generated due to the ion streaming instability [102],

which is assisted by the ambient electric field of the background plasma. The DAWs have been studied

in ground based experiments [104–119] and microgravity conditions using parabolic flights [101, 120, 121]

and the International Space Station (ISS) [122–128].

1.2.2 Dust Lattice Wave

The dust grains in strongly coupled regime (� � 1) form two-dimensional (2D) and three-dimensional

lattices, which is due to the fact that the dust grains attain a high negative charge of the order of tens of

thousand due to which they acquire the nature of a crystalline system due to Coulomb repulsion between

the dust grains. The background plasma’s electrons and ions contribute to the dust particles’ screening,

quantified by a Debye screening parameter D.

The dust grains form a layered structure in 3D, which forms di↵erent crystal lattices in 3D. The

strongly coupled dusty plasma has been found to form a hexagonal close packing (HCP), body-centred

cubic (BCC) and face-centred cubic (FCC) lattices in the 3D [48, 129–131]. The dust grains, often under

gravity, have an e↵ective potential that makes them settle down to a 2D monolayer. In 2D monolayer

configuration the dusty plasmas form square, pentagon and hexagon lattices [47, 131–133].

The dust lattice supports both the longitudinal and the shear (transverse) waves in a strongly coupled

regime due to its behaviour similar to solids [66, 69]. Our interest is the longitudinal mode of the dust
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lattice, known as the dust lattice wave. We will confine ourselves to the 2D monolayer, which often

supports the excited DLws due to the external forcing.

(A) (C)
L
a
s
e 
r

(B)

Figure 1.6: A cartoon of DLW propagation in a 2D monolayer dust lattice. (A) The unperturbed dust lattice, (B) localized
perturbation via a laser sheet [134, 135], and (C) the DLW excitation due to laser radiation pressure and propagation.

The DLW is a longitudinal compressional mode in a dust lattice excited by an external forcing [67, 68,

134–137]. The DLWs waves are often studied in the 2D dust lattice due to the less complexity involved

than the 3D lattices. There are a few key di↵erences between DDWs and DLWs. The first is DDWs are

excited spontaneously due to the ambient electric field from the background plasma, while the DLWs are

excited by external forcing. The DDW is often observed in dusty plasma’s fluid regime (� ⌧ 1), while

the DLW is only excited in the solid regime (� � 1) of dusty plasma. The ion-streaming instability is

the energy source for the self-excitation of DDWs, while for the DLWs, the energy is provided by the

external source. In DDWs, all three species of electrons, ions and dust play an important role in the

wave dynamics, while in the DLWs, only the dust plays an important role in the wave dynamics other

two species only shield the dust grains.

1.3 The fluid model for dusty plasma

The dusty plasma in a weak coupling regime (�  1) shows the traits of a charged-fluid [51]. The Navier-

Stokes and Poisson equations collectively govern the dynamics of charged dust fluid in an electrostatic

regime. The full fluid-Poisson set of the equation reduces to the Korteweg-de Vries equation in a weakly

nonlinear dynamical regime and, in the presence of viscous damping, to the Korteweg-de Vries-Burgers

equation. The KdV and KdV-B model keeps the essence of fluid or fluid-like systems by retaining

the spatio-temporal convective nonlinearity. We are concerned about the dust fluid dynamics, and the

background plasma is Boltzmannian due to a lack of inertia compared to dust grains.
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1.3.1 The fluid-Poisson model

The 1D fluid-Poisson model for dusty plasma comprises continuity, momentum and Poisson equations [51,

138, 139]. The continuity equation is given by

@n

@t
+
@(nv)

@x
= 0 (1.4)

is based on the conservation of mass in fluid dynamics. Here n, v represents the dust density and velocity

fields, respectively. The momentum equation is given by

@v

@t
+ v

@v

@x
=

Zde

Md

@�

@x
(1.5)

is based on the conservation of momentum in fluid dynamics. Here � is the electrostatic potential field

of the dust fluid. Qd = Zde and Md are the charge and mass of the dust grain, respectively. e is the

electron charge and Zd is a natural number indicating the number of electrons residing on a dust grain.

The Poisson equation is given by

@
2
�

@x2
= �4⇡e(ni � ne � Zdn) (1.6)

ne and ni are the electrons, and ion density fields, respectively. The electrons and ions being inertia-less

as their mass is several orders less than that of the dust particles follow the Boltzmann distribution.

ne,i = ne0,i0 exp

✓
± e�

kBTe0,i0

◆
(1.7)

where, ne0,(i0) represent the equilibrium electron (ion) density, and Te0,(i0) represent the equilibrium

electron (ion) temperature.

In an actual dusty plasma experiment, the ion streaming, neutral drag and viscous damping are a few

important factors that a↵ect the collective dust dynamics. The KdV model is developed by neglecting all

these e↵ects and is subsequently used to understand nonlinear mixing. However, we can also get a KdV

model incorporating ion streaming. The KdV model is an excellent model where the dissipation e↵ects

don’t play an important role. The dissipation e↵ects, when considered by the fluid-Poisson model, leads

to the KdV-B model, which is an excellent model for understanding the collective dust dynamics where

dissipation plays an important role.

The current research focuses on the mixing and synchronization of longitudinal electrostatic waves in

dusty plasma. Both phenomena can be explored by considering only one dimension with infinite extension

in other dimensions. A one-dimensional model is expected to capture all the essence of compression and

rarefaction of a longitudinal wave without losing the generality. Moreover, the KdV can also be derived

from a one-dimensional fluid model.
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1.3.2 The Korteweg-de Vries model

The KdV equation is derived from the full set of fluid Poisson equations using a reductive perturbation

technique [51, 138, 140–144] for dusty plasma applications. The KdV model has been found to govern the

dynamics of the dust acoustic solitons [51, 145, 146], ion-acoustic waves [140], dust acoustic waves [138,

147] and shallow water surface waves [148], magneto-sonic solitons [149], a reflection of a dust acoustic

solitary wave [150] and the dust lattice wave [151, 152], pinning solitons [153] and precursor solitons [59,

154, 155]. The set of Eq. (1.4), (1.5), (1.6), and (1.7) when solving using the reductive perturbation

technique, we get
@n(x, t)

@t
+ ↵n(x, t)

@n(x, t)

@x
+ �

@
3
n(x, t)

@x3
= 0 (1.8)

The coe�cients ↵ and � represent the strengths of the nonlinear and dispersive contributions. The

coe�cients ↵ and � can be derived in terms of experimental plasma parameters [153, 154, 156, 157]. The

KdV equation has exact analytic solutions like the soliton and cnoidal wave solutions.

1.3.3 The Korteweg-de Vries-Burgers model

The KdV-B model is a nonlinear partial di↵erential equation incorporating dispersion and dissipation

and describes wave propagation under the weakly nonlinear dynamical regime of fluids [158]. The KdV-

B model explains the surface waves in conducting liquids [159], internal solitary waves generated by

gravitational collapse [160], ion-acoustic solitary waves [161, 162] and dust acoustic shock waves in dusty

plasmas [91, 92, 163, 164], dust acoustic waves in strongly coupled visco-elastic medium [147, 165], and

head-on collision of dust acoustic solitary waves [92]. The KdV-B model also describes the nonlinear

wave propagation in elastic tubes filled with a viscous fluid [166]. There are various damping mechanisms

present in the experiment that softens the amplitude of the wave and competes with the nonlinearity

of the medium. The viscous damping dissipates all modes in the system indiscriminately. The KdV-B

model considers the viscous damping e↵ect of the dusty plasma medium, which is important in many

dusty plasma experiments [91, 92, 162, 167]. The viscous damping is incorporated in the fluid model

through the momentum equation i.e., Eq. (1.5)

n


@v

@t
+ v

@v

@x

�
=

Zde

Md

@�

@x
+

⌘
⇤

Md

@
2
n

@x2
(1.9)

where ⌘⇤ is the viscosity of the dusty plasma fluid. The set of Eq. (1.4), (1.9), (1.6), and (1.7) when

solving using the reductive perturbation technique, reduces the model to a single partial di↵erential

equation called the Korteweg-de Vries-Burgers equation given by [159, 162, 165, 168]

@n(x, t)

@t
+ ↵n(x, t)

@n(x, t)

@x
+ �

@
3
n(x, t)

@x3
� ⌘

@
2
n(x, t)

@x2
= 0 (1.10)

Where ⌘ is the normalized viscosity that gives the strength of the viscous damping term.
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1.4 The ubiquity of nonlinear mixing

Nonlinear mixing is a phenomenon generating a cascade of waves (modes) by the interaction of two

nonlinear waves (modes) in any nonlinear medium [15, 23, 169, 170]. It’s broad domain includes optical

media [171, 172], plasmas [13, 15], fluids [28] and material science [18, 173]. A few distinct examples

include the mixing of vortices in a Kerr-like nonlinear medium [24], generation of short wavelength light

due to laser interaction [23], and nonlinear mixing in meta-materials [174, 175].

Di↵erent mathematical models have been developed to explain the mixing patterns in di↵erent physical

domains. The wave and Rayleigh-Plesset equations that couple the acoustic pressure field with the bubble

vibrations have been used for NLM in bubbly fluids [176]. The Navier-Stokes and mass-fraction equations

describe the nonlinear fluid-mixing [28]. Nonlinear Schrödinger equation is used to explain optical vortex

mixing [24]. There is a gap in the literature to understand the dynamics of the nonlinear mixing of

waves in fluid or fluid-like systems based on a single equation which incorporates the spatio-temporal

convective nonlinearity. We model nonlinear mixing based on the Korteweg-de Vries equation, which

keeps the essence of the fluid nonlinearity and dispersion of the medium and is a simplified model with

available analytical solutions. The KdV model has provided reasonable conclusive experimental validation

to explain the weakly nonlinear dynamics of dust lattice waves in the dusty plasma. The model is

a su�ciently accurate one-dimensional model, we believe that the driven KdV model can explain the

features of mixing of DLWs observed in the dusty plasma experiment [15]. The fKdV model is in general

applicable to any nonlinear dispersive medium where the di↵erent modes interact in presence of the

convective fluid nonlinearity.

Figure 1.7: Demonstration of nonlinear mixing of two waves in a nonlinear medium. (A) Two linear waves of the form
y1(t) = A1 sin(2⇡f1t) with A1 = 5, f1 = 7 Hz and y2(t) = A2 sin(2⇡f2t) A2 = 10, f2 = 17 Hz interact via a nonlinear
medium having a nonlinearity of the combination of linear and quadratic terms which leads to a resultant nonlinear profile
of form (B) yNLM (t) = y1 + y2 + (y1 + y2)2. (C) The PSD of time-series of y1, y2, and yNLM shows the generation of
addition, subtraction and harmonic frequencies due to mixing.
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1.4.1 The forced Korteweg-de Vries model of nonlinear mixing in dusty

plasma

The Eq. (1.8), when driven externally with a forcing Fs, is called a forced Korteweg-de Vries-Burgers

equation. The generalized fKdV-B equation is given by

@n(x, t)

@t
+ ↵n(x, t)

@n(x, t)

@x
+ �

@
3
n(x, t)

@x3
= Fs(x, t) (1.11)

The fKdV model that Sen et al. [140] proposed for driven nonlinear acoustic waves and subsequently

developed to study nonlinear precursor solitons in dusty plasma experiments [154, 155], pinned solitons

created by a supersonically moving object in a fluid [153] and electromagnetic pinned solitons for space

debris detection in Low Earth Orbit (LEO) region [177]. The fKdV equation has also been used to model

the electrostatic excitation of ion-acoustic precursor solitons by a charged debris object [140]. The fKdV

model also describes the excitation of long nonlinear water waves by a moving pressure distribution [178]

and is a simple mathematical model capable of describing the physics of a shallow layer of fluid driven

by external forcing [179].

1.5 The kinetic model of nonlinear mixing in dusty plasma

A kinetic approach to model dusty plasma assumes it is a collection of charged dust particles. Such a

model is primitive and realistic as the pairwise interaction potential is known as Coulomb. As electrons

and ions dynamics have fast time scales compared to the dust particles, both species mostly act as shield-

ing backgrounds to dust particles. This leads to dust particles interacting with each other with e↵ective

shielded-Coulomb potential. The system becomes a one-component plasma with Yukawa integration be-

tween the particles. Hence, the dusty plasma is treated as an ensemble of charged particles interacting

via Yukawa (screened-Coulomb) potential known as Yukawa one-component plasma (YOCP). The e↵ect

of the plasma environment is incorporated in the shielding of the dust species. Due to the high negative

charge, the dusty plasma often becomes a strongly coupled plasma (SCP). The thermodynamic equilib-

rium of Yukawa-type SCPs is governed by the Coulomb coupling parameter � and the screening/shielding

parameter D [180, 181]. Due to heavy dust mass, the motion of each particle in the ensemble is governed

by the classical Newton’s equation of motion given by

Mdr̈ = �r�Y (r) (1.12)

The particle trajectories r(t) are generated for all particles by integrating Eq. (1.12). The Yukawa

interaction neglects the boundary e↵ects and takes into consideration only the bulk properties of the

dusty plasma medium.

We performed 2D Langevin MD simulations (as explained in chapter 4) to study the mixing of DLWs

in such strongly coupled dusty plasma. We have excited two dust lattice waves by mimicking the laser
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force used to excite the same in the experiment [15]. The two DLWs interact in the YOCP, giving rise

to a rich spectrum of mixing profiles that agrees with our fKdV model [45].

1.6 The ubiquity of synchronization

The tendency to attain rhythmic synchronization (self-organization in time) has been observed in various

natural and artificial systems. Two identical clocks hung on a wooden beam and eventually followed each

other. Christiaan Huygens observed this for the first time in 1663 [182, 183]. Similarly, a swarm of fireflies

develop cooperation in their otherwise random expected flashing [184]. All these rhythmic harmonies

originate through a weak nonlinear interaction among participants, and this collective mechanism is

called “synchronization” [4, 185].

Synchronization is often studied in two di↵erent scenarios, namely partial and global synchronization.

For understanding purposes, below, we explain them with the help of nonlinear oscillators. However, many

continuum nonlinear media supporting propagating waves also show these synchronisation phenomena.

1. When a large ensemble of oscillators with random frequencies attain a synchronized phase through a

non-equilibrium phase transition in which they develop clusters that oscillate at constant frequen-

cies is called partial synchronization. The threshold nonlinear coupling for the phase transition

depends on the frequency disorder. In other words, whenever a system of nonlinear oscillators self-

organizes into di↵erent frequency clusters without any external driving source is known as partial

synchronization. That is why it is also called as frequency clustering [120, 186, 187]

2. When an external driver synchronizes a natural nonlinear oscillator or an ensemble of nonlinear

oscillators, this type of synchronization is called the global synchronization [36, 37, 41]. The os-

cillators (a natural system and an external driver) only attain the phase-locking condition if the

coupling strength is above a threshold value. This threshold nonlinear coupling increases with the

frequency detuning of oscillators. The detuning means how far from the system’s natural frequency

is driven by an external driver. The “Arnold tongue diagram” refers to the set of coupling (in

our case, the amplitude of the driver) and frequency detuning values for which phase or frequency

locking occurs.

1.6.1 The forced Van der Pol model of synchronization

The forced Van der Pol (fVdP) equation is a widely used theoretical model used to explain the global

synchronization of nonlinear point oscillators and is given by

d
2
x

dt2
� (c1 � c2x

2)
dx

dt
+ !

2
0x = Adr cos(2⇡fdrt). (1.13)

Here x is the displacement of a harmonic oscillator with a natural frequency !0. The model includes

nonlinear damping c2x
2
dx/dt, a source of energy for self-excitation c1dx/dt, and a periodic driving
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Figure 1.8: Synchronization in forced Van der Pol oscillator (i.e., Eq. (5.1)) with c1 = c2 = 1, !0 = 1, !dr = 2⇡fdr = 0.8
and Adr = 0.6 for two initial conditions x1 = 1; ẋ1 = 0 and x2 = �1; ẋ2 = 0. (A) The fVdP profile (blue solid line) for
x1 = 1; ẋ1 = 0, (red dash-dash line) for x2 = �1; ẋ2 = 0 and (black dash-dotted) for the forcing Fs(t) = Adr cos(!drt). (B)
The unsynchronized state of the fVdP oscillator and (C) the synchronized state of the fVdP oscillator by attaining a limit
cycle.

source of amplitude Adr at a frequency fdr. The fVdP oscillator exhibits “harmonic” (fdr/f0 ⇡ 1),

“super-harmonic” (fdr/f0 > 1), and “sub-harmonic” (fdr/f0 < 1) synchronization states. Harmonic

synchronization means the system is driven in the vicinity of the fundamental mode and synchronizes at

that frequency. The super-harmonic synchronization means the system is driven in the vicinity of the

first harmonic (1:2) or second harmonic (1:3) and synchronizes at half or one-third of the driver. The sub-

harmonic synchronization means the system is driven in the vicinity of one-half (2:1) or one-third (3:1)

of the fundamental frequency and is synchronised at double or thrice the driver frequency. The ensemble

of coupled VdP oscillators is a useful model to explain the cluster or partial synchronization [188, 189].

Both the partial and global synchronization of nonlinear oscillators is often modelled by the fVdP

model. Typically in plasmas, these scenarios of frequency clustering [120, 186, 187] and the global

synchronization [36, 41, 42, 190] have been studied experimentally. The investigation of the mutual

synchronization between two plasma devices [39, 40, 191] has also been explored in plasmas which have

been explained through a coupled-VdP oscillators [39]. Specifically, the global synchronization of dust

acoustic waves to an external driver has been widely studied in an anodic [41], radio-frequency (RF)

and direct-current (DC) plasmas [36–38]. Pilch et al. [41] reported the entrainment of DAWs through

a driving modulation to the anode. Ruhunusiri et al. [36] reported observation of harmonic, super-

harmonic, and sub-harmonic synchrony of self-excited cnoidal DAWs. Williams et al. [38] compared

DAW synchronization in RF and DC-generated plasmas. Deka et al. [37] observed the synchronization

of self-excited DDW and bifurcation of DDW by modulating ion streaming with an external sinusoidal

driver.
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The fVdP oscillator model has been used as a qualitative reference for characterizing synchronization

phenomena in plasmas and other media that support the propagation of waves [36, 37, 39, 192]. It also

explained frequency clustering of propagating DDWs [120] under microgravity conditions [101] through a

chain of coupled Van der Pol oscillators [193]. However, it is worth mentioning that as a point oscillator

model, its dynamics are restricted to nonlinear oscillations, and it cannot correctly represent nonlinear

waves. The VdP oscillator equation is mathematically an ordinary di↵erential equation di↵erent from a

wave or partial di↵erential equation. The nonlinearity in the VdP model is time-dependent only, which

is not a good representative of nonlinearity in fluid or fluid-like systems with spatio-temporal convective

nonlinearity.

Moreover, one must invoke a coupled van der Pol equation system for a propagating wave. This complex

procedure would require making arbitrary assumptions about the oscillators’ coupling and determining

each dust particle’s initial frequencies and phases. The inadequacy of the VdP model to describe nonlinear

waves is meant for a single VdP equation and not a system of coupled VdPs. The fKdV-B model, on the

other hand, accomplishes that through a single equation. Hence, we believe it is appropriate to use the

fKdV-B model for investigating the global synchronization of a nonlinear dispersive propagating wave,

in a medium with spatio-temporal convective nonlinearity, to an external driver.

1.6.2 The forced Korteweg-de Vries-Burgers model of synchronization in

dusty plasma

The Eq. (1.10), when driven externally with a forcing Fs, is called a forced Korteweg-de Vries-Burgers

equation. The generalized fKdV-B equation is given by
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@n(x, t)
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+ �

@
3
n(x, t)
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� ⌘
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n(x, t)

@x2
= Fs(x, t) (1.14)

The fKdV-B model was used to study temporal or spatial chaos using a randomly time-varying [194]

or randomly space-varying [195] driving term. The fKdV-B model has shown that with a spatial driver,

the system undergoes a period-doubling and shows weak chaos and developed chaos [196]; in the first

type, only a small chaotic deviation from the periodic solution occurs, and in the second type, a random

sequence of uncorrelated shocks is formed. Also, the model explains nonlinear wave propagation in an

elastic tube filled with a Newtonian fluid with variable viscosity [197].

1.7 Numerical approach

We have solved the KdV equation numerically using the pseudo-spectral method [198] and used the peri-

odic boundary conditions. We perform the Fourier transform (f(x, t) ! f̃(k, t)) of the partial di↵erential

equation in space, which converts the KdV to an ordinary di↵erential equation in time. The RK-4 method

has been used for the time integration with an accuracy of O(h4) with Richardson extrapolation.

1. Time-series collection method: The time-series collection of fluid field (density here) is the only
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Figure 1.9: Time-series collection for KdV evolution (Eq. 1.8) with initial perturbation of the cnoidal-square form. Panel
(a) shows the evolution of the density profile at times 0, 10 and 20 !�1

pd respectively. Panel (b) shows the spatio-temporal

evolution of the density perturbation. Panel (c) is the collected time-series at a specific spatial location (x = 3⇡) as marked
by the blue and white dashed lines in panels (a) and (b), respectively. The coe�cients ↵ = 2.3, � = 0.5 and simulation
system size Lx = 6⇡.

measurement during the evolution for diagnostics purposes. Figure 1.9(a) show the evolution of

cnoidal-square initial perturbation of the form n(x, 0) = A0 cn
2[2K(0){x/�0}; 0] through KdV

(i.e., Eq. (1.8)) with A0 = 40.32, 0 = 0.9 and k0 = 4 with system size Lx = 6⇡. Figure 1.9(b)

shows the complete spatio-temporal evolution, and Fig. 1.9(c) provides the collected time-series at

an arbitrary point in space (marked by the blue or white dashed vertical line in subplots (a) or (b),

respectively).

Although we have demonstrated the collection of time-series for the KdV equation (i.e., Eq. (1.8)),

the same procedure is applied for the fKdV-B model to collect its time-series for further analysis.

It should be noted that the time-series of KdV, KdV-B, fKdV and fKdV-B density profiles and

forcing profile have been time-averaged to zero i.e., n(x, t) = n(x, t) � hn(x, t)i and Fs(x, t) =

Fs(x, t) � hFs(x, t)i, respectively. This helps to remove the dc component in the time-series when

we take the Fourier transform. Once the time-series is collected at any specific location, its power

spectrum determines dominant modes. We carry out the bispectral analysis for the same time-series

to further understand the physical origin of observed modes in the spectrum. The detailed analysis

is provided in chapter 3.

2. Bench-marking and establishing the numerical accuracy of the code: We have also compared the

numerical solution of KdV and fKdV with its analytic solution [169] to establish our simulation

approach’s numerical stability and accuracy as shown in Fig. 1.10. Moreover, the code was bench-

marked by reproducing earlier results for the KdV and fKdV equations [45, 140]. To numerically

evolve the KdV equation, we have developed our own C++ code for this purpose. The post-

processing analysis of the numerical data has been done using MATLAB software to identify the

various features of the evolved system.
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Figure 1.10: Comparison of the time-series obtained numerically (solid line) and the analytically (dash-dotted line) of the
KdV (i.e., Eq. (1.8)) and fKdV (i.e., Eq. (1.11)) given in Ref [169]. (a) KdV equation with initial numerical perturbation
n(x, 0) = 0.1611+ 0.1611 sin(4x+ ⇡/2) and analytic solution with parameters µ = 0.3221 and  = 0.01. (b) fKdV equation
with initial numerical perturbation is n(x, 0) = 0.1611 sin(4x + ⇡/2) and forcing Fs = 10 sin(60t) for both the numerical
and analytic solution. The coe�cients ↵ = � = 1 and simulation system size Lx = 2⇡.

1.8 Motivation of the thesis

The phenomena of nonlinear mixing and synchronization have been observed in table-top dusty plasma

experiments by multiple leading researchers in the last decade. However, the majority of these works

provided ad-hoc or qualitative theoretical support. Though these qualitative theoretical models reflected

limited agreement with experiments, they lacked the appropriate nature of nonlinearity of the medium,

an important aspect of both mentioned physical phenomena. The current thesis work is motivated to

frame such a theoretical model which can incorporate plasma dispersion and keep the essence of fluid

and fluid-like convective nonlinearity. Other than proposing a theoretical model that includes spatio-

temporal nonlinearity, another vision is to bring forward a simplified mathematical model of dusty plasma.

One benefit to looking for a simplified model is the possibility of exploring analytic solutions that are

otherwise not possible for a full set of fluid-Maxwell set of equations representing the dynamics of dust

fluid in general. As it is a well-established fact that the KdV equation represents the acoustic wave

dynamics very well in the weak nonlinearity domain, we chose to build models keeping KdV equation

as the foundation. Further, depending on the physical requirements, we incorporated the medium’s

driving mechanism and damping. Keeping all facts in view, we present fKdV and fKdV-B models to

quantitatively explain nonlinear mixing and synchronization in a dusty plasma medium.

1.9 Summary of the thesis

This thesis work develops a theoretical framework based on the fKdV [169] and fKdV-B [46] equations

for the nonlinear mixing and synchronization of waves, respectively. The nonlinear mixing patterns

from the fKdV model show agreement with nonlinear mixing of compressional longitudinal dust lattice

waves in dusty plasma experiment [15] and the synchronization of dust acoustic waves from the fKdV-B

model show excellent qualitative features as were observed in dusty plasma experiment [36]. Even though
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the findings from these models were validated with the previously done experiments in a dusty plasma

medium, however, both models have the capability they can be easily implemented in other fluid and

fluid-like mediums governed by the spatio-temporal convective nonlinearity.

1.10 Organization of the thesis

This dissertation comprises six chapters, including the current chapter, which serves as an introduction.

The organization and content of these chapters are outlined as follows:

Chapter 2: The chapter discusses the results based on the nonlinear mixing of DLWs based on

the fKdV model. In this chapter, we have derived the analytic solution of the fKdV model with time-

dependent sinusoidal forcing. The model can capture features of mixing profiles of the dusty plasma

experiment based on the analytic solution of the fKdV model. The power spectral analysis gives quick

evidence of generating the various modes due to the nonlinear interaction between the sinusoidal driver

and the natural KdV mode.

Chapter 3: The chapter can be outlined based on three things. Firstly, the NLM based on the

di↵erent sinusoidal and non-sinusoidal time-dependent and travelling wave forcing is thoroughly studied.

Second, the bispectral analysis technique used on the time-series provides evidence of the three-wave

mixing mechanism. Finally, we have studied the e↵ect of driver frequency on the mixing profiles.

Chapter 4: This chapter mainly focuses on the kinetic simulations of dusty plasma treated as an

ensemble of charged particles interacting via pair-wise Yukawa potential. The mixing of DLWs is studied

using the Langevin molecular dynamics simulations. The results based on the MD simulations show a

good agreement with the fKdV model. Power spectral and bispectral analyses capture the presence of

the excited modes and their physical origin, respectively.

Chapter 5: This chapter describes the synchronization of DAWs based on the fKdV-B model. We

have utilized the numerical solution of the fKdV-B model to explain the synchronization of DAWs. The

results from this chapter are in excellent qualitative agreement with the dusty plasma experiment. The

characterization techniques used to distinguish between the synchronized and the unsynchronized stated

are the power spectral analysis, phase-space plots and Lissajous figures. The e↵ect of amplitude and

frequency of the external forcing is captured in the famous Arnold tongue diagram, which identifies the

di↵erent synchronization domains.

Chapter 6: This chapter provides a comprehensive conclusion of the theoretical findings obtained

throughout the dissertation. The study illustrates that the fKdV model successfully explains the nonlinear

mixing of DLWs in dusty plasma experiments. In contrast, the fKdV-B model could successfully capture

the synchronization of DAWs in dusty plasma experiments. Moreover, the possible future scope of our

theoretical models and their applicability to other fluid media is also outlined in this chapter.



Chapter 2

A forced Korteweg-de Vries model

for nonlinear mixing of waves in a

dusty plasma

This chapter provides a detailed analysis of the nonlinear mixing of dust lattice waves. The analysis

includes the forced-KdV model formulation, its applicability in explaining dust lattice wave mixing, and

comparison with experimental findings in the literature. Presented results include mixing characteristics

for a dust lattice wave’s interaction with time-dependent sinusoidal external driving. An analytic solution

exists for such a system, and its power spectrum shows the existence of various modes. While the results

agree with experiments, a small deviation still exists, and the same shortcoming of the present model has

been improvised in the following chapter.

18



2.1. INTRODUCTION 19

2.1 Introduction

Nonlinear mixing (NLM) is a phenomenon found in many physical systems that can sustain waves of large

amplitudes [156, 199–201]. In a dusty plasma, compressional waves can easily attain large amplitudes,

even if the electric potential variation is only a few millivolts, and this is due to the large electric charge

of thousands of elementary charges [112, 156] residing on a dust particle.

Two kinds of compressional waves in dusty plasmas are the dust-acoustic wave (DAW) and the longitu-

dinal dust lattice wave (DLW) [104, 136, 202]. The dust-acoustic wave propagates in a three-dimensional

cloud of charged dust particles which are immersed in a mixture of electrons and ions; all three of these

charged species participate in compression and rarefaction. If there is an ambient steady electric field,

it will drive an ion current that can easily self-excite the DAW through an instability [102], which com-

monly occurs in laboratory gas-discharge plasmas [108, 203]. On the other hand, the longitudinal DLW

propagates in a di↵erent situation; while the electrons and ions fill a three-dimensional volume, the dust

particles do not; they are instead confined to a planar layer which is thin and often is just a monolayer.

Because of the paucity of dust particles, the electrons and ions are not significantly a↵ected by the dust

particles, and for the most part, they just contribute to the Debye screening of the inter-particle repulsion

among the dust particles [202]. Unlike the DAW, the longitudinal dust lattice wave is not necessarily

excited by an ambient DC electric field, so that in the laboratory, it is common to excite it by an external

forcing [67, 134].

In this work, we consider the longitudinal dust lattice wave, with two sinusoidal external excitations at

large amplitude, to cause nonlinear mixing. By perturbing a two-dimensional crystalline layer of dust par-

ticles using two laser beams of di↵erent frequencies, three-wave mixing was experimentally demonstrated

by Nosenko et al. [15]. In this work, we theoretically demonstrate the nonlinear mixing phenomenon

in a dusty plasma system using an analytic solution of a sinusoidally forced Korteweg-de Vries model

equation. The model solution can also be usefully employed to predict the existence of nonlinear mixing

in a variant of the two-dimensional experimental dusty plasma experiment reported in Ref. [15].

In their experiment, the authors of Ref. [15] used a horizontal monolayer of dust, which consisted of

precision polymer microspheres that were levitated above a lower electrode of a radio-frequency glow-

discharge plasma. Using video microscopy, they verified that the equilibrium state of this cloud of particles

was a triangular lattice with a six-fold symmetry. The charge on a microsphere was �9400 e (where e is

the charge of an electron), the crystalline lattice constant was 675 microns, and the mass of the 8 micron

microspheres was su�ciently high that the compressional sound speed in the lattice was only 22 mm/s.

The experimenters of Ref. [15] launched two longitudinal lattice waves, with sinusoidal waveforms at

di↵erent frequencies f1 and f2. Each of these two waves were propagating waves, and they were each

excited externally by the radiation-pressure force, using laser manipulation with a steady-state laser that

was amplitude modulated at the desired low frequency. The dust cloud was a horizontal monolayer. The
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excitation regions for the two waves were physically separate, which is a point that is important for the

present work. The spatial localization of the excitation regions was achieved by making the laser beams

incident on the dust layer at an angle of 10 degrees. The experimenters then observed waves at various

di↵erence and sum frequencies, including f1 + f2, f2 � f1, 2f2 � f1, and so on. They confirmed using

bi-spectral analysis that these were the products of nonlinear mixing. In this way, they provided an

experimental observation of three-wave mixing in a dusty plasma.

The physical system in that experiment can be modelled theoretically by several descriptions, including

a point-like particle description and a continuum description of the dust layer. The latter approach was

used by Avinash et al. [152], who modelled the long-wavelength compressional waves in the monolayer

triangular lattice as obeying an evolution equation described by a variant of the Korteweg-de Vries (KdV)

equation.

In this work, we predict theoretically that nonlinear mixing can occur also in a di↵erent excitation

configuration, where only one of the two excitation frequencies f1 has a propagating wave that is excited

locally, while the other frequency f2 is a non-localized oscillation. In both cases, the external forcing can

be provided by any physical force, including the radiation pressure force that was used in Ref. [15]. Unlike

Ref. [15], only the frequency f1 has a propagating wave that is excited in a spatially localized region, and

as a crucial di↵erence, frequency f2 has a spatially uniform force, varying sinusoidally in time but not in

space. This construction should be feasible simply by performing an experiment with a two-dimensional

monolayer of dust as in the experiment of Ref. [15] but with one of the two laser beams incident on the

particle cloud at zero degrees instead of ten degrees. A schematic sketch of the excitation configuration

is shown in Fig. 3.1.

y
x LASER 1

LASER 2

Figure 2.1: A cartoon representation of a proposed experimental configuration with one of the laser beams incident on the
dust at zero degrees to provide a non-localized driving oscillation. Thousands of charged dust particles, shown schematically
here as a few dots, are levitated in a single horizontal layer in an electric sheath above a powered lower electrode, shown
schematically as a disk at the bottom of this diagram.

Although we are mainly concerned here with the nonlinear mixing of the longitudinal lattice wave,

we can mention another kind of nonlinear e↵ect which has been observed experimentally, and that is

synchronization. In synchronization, there is an inherent oscillation at one frequency and an external

forcing at a second frequency. The second frequency must be close to that of the inherent oscillation,

or one of its harmonics. Although synchronization has long been understood for point oscillators, it
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can also occur in the more complicated case of propagating waves, and indeed it is known to occur

in three-dimensional dust clouds that sustain the dust acoustic wave. The DAW is self-excited at

an inherent frequency due to ion flow, and an external sinusoidal forcing can be applied, for example,

by a voltage applied to the entire cloud by an electrode so that the entire cloud experiences a global

modulation [36, 37]. The result of synchronization is that the inherent oscillation is shifted in its frequency,

for example, to match the frequency of the external forcing. This is di↵erent from the case of mixing,

where the two original waves maintain their frequencies and a third wave appears at yet another frequency.

Another distinction in comparing synchronization and mixing is that the original two oscillations can have

frequencies that di↵er greatly in the case of mixing, whereas, for synchronization, it is necessary for there

to be a small di↵erence in the two frequencies or their harmonics.

2.2 The forced Korteweg-de Vries model

Our theoretical approach relies on two basic premises - (i) nonlinear compressional waves in a dusty

plasma system can be modelled by a KdV equation, and (ii) the forced KdV equation can model their

dynamics in the presence of an external driving force. For a three-dimensional dust cloud, the KdV

equation as a model description of nonlinear DAWs is well established. It was first derived by Rao et

al. [138] using a fluid representation of the dusty plasma and has subsequently been widely used in many

theoretical and experimental studies [98, 156, 204, 205]. An fKdV model, within the fluid prescription,

was first derived by Sen et al. [140] for describing driven nonlinear ion acoustic waves. The generic form of

this model equation was subsequently shown to apply for driven DAWs as well and was successfully used

to interpret the excitation of precursor dust acoustic solitons in a laboratory dusty plasma device [59,

154].

For the dust lattice wave, the KdV model has also been shown by Farokhi et al. [151] to theoreti-

cally describe the nonlinear evolution of waves in a two-dimensional dust lattice system. Thus one can

expect the fKdV model to also successfully describes the dynamics of driven DLWs in the case of a

two-dimensional lattice system subject to external forcing. Hence as a paradigmatic model for driven

compressional nonlinear oscillations in a dusty plasma system, we adopt the generic fKdV equation given

as,
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where n is a perturbed physical quantity (representing the perturbed dust density for example) and

Fs(x, t) is the driving source term. The coe�cients ↵ and � represent the strengths of the nonlinear and

dispersive contributions, respectively. Dissipative e↵ects, such as may occur due to frictional damping

from neutral gas particles, are not included in this model so that it cannot describe phenomena such as

synchronization that need dissipation. For Fs(x, t) = 0, Eq. (2.1) represents the standard KdV equation

that has been extensively studied in the past to describe nonlinear wave propagation in neutral fluids [206,

207], plasmas [208, 209], dusty plasmas [98, 138, 145, 152, 210] and other nonlinear dispersive media [211,

212].
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The KdV equation has a variety of solutions including solitons and cnoidal wave solutions. The latter

are relevant for our present work and are given by [213, 214]

n(x, t) = µ cn
2

 p
µ↵

2
p
�(+ 2)

✓
x� + 

2 � 1

(+ 2)
↵µt

◆
; 

�
(2.2)

where cn is a Jacobi elliptic function. The parameter µ represents the amplitude, which can be chosen

to be any value (for example, in an experiment by adjusting the amplitude of an external forcing).

The elliptic parameter  indicates the response of the medium to that amplitude. The value of the

parameter  determines the shape of the cnoidal function so that it serves as a quantitative measure of

nonlinearity. For  = 0, which is the linear case, the cnoidal solution becomes a cosine function, while for

the highly nonlinear case of values close to unity, the waveform has sharp peaks and flattened bottoms.

The cnoidal solution, Eq. (2.2), was recently shown to provide an excellent fit to experimental observations

of spontaneously generated nonlinear DAWs in a three-dimensional dusty plasma cloud sustained in an

RF discharge plasma [156].

Figure 2.2: Time series and the corresponding power spectra for an arbitrary spontaneous density perturbation, n, as given
by Eq. (2.2). (a) Sinusoidal-like wave with  = 0.001, µ = 0.0318 such that f1 = 10 Hz. (b) Power spectrum of (a). (c)
Nonlinear wave form with  = 0.8, µ = 78 and f1 = 10 Hz. (d) Power spectrum of (c).

The spatial wave length � and frequency f1 of the periodic wave, Eq. (2.2), are given by
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Here, K() is the complete elliptical integral of the first kind. Expressions for the wavelength � and fre-

quency f1 are obtained by comparing Eq. (2.2) with the following form of the solution by Dingemans [215]

and Liu et al. [156]

n(x, t) = µ cn
2


2K()

⇣
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⌘
; 

�
. (2.4)
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To illustrate the nature of the solution, Eq. (2.2), and its spectral properties we will choose ↵ = � = 1

and plot the solution for several values of  and µ. In Fig. 2.2(a) we plot the time series obtained from

Eq. (2.2) at a fixed value of x for µ = 0.0318 and  = 0.001 (such that f1 = 10 Hz). The corresponding

frequency spectrum is shown in Fig. 2.2(b). For this low value of , the waveform is approximately

sinusoidal and shows a single dominant frequency f1 = 10 Hz in the spectrum. A small peak at 2f1 due

to the nonzero nonlinearity ( 6= 0) is also observed. For a higher value of  = 0.8 and µ = 78 (such that

f1 is still 10 Hz) the waveform is more nonlinear in character, as shown in Fig. 2.2(c), and the spectrum

Fig. 2.2(d) shows the appearance of higher harmonics at 2f1, 3f1 etc..

2.2.1 The exact nonlinear solution of the fKdV equation

We next examine the solution of the fKdV model equation, Eq. (2.1), with a specific form of the driving

term. For a sinusoidally time-varying driver, Fs(x, t) = As sin(2⇡f2t), Eq. (2.1) has an exact analytic

solution (derived using Hirota’s method as in Salas et al. [216]) given by

n(x, t) = �As cos(2⇡f2t)

2⇡f2
+ µ cn

2
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◆
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(2.5)

2.3 Nonlinear mixing in the fKdV model

Figure 2.3: Time series and the corresponding power spectra for a density perturbation, n, driven at f2 = 12 Hz from
Eq. (2.5). (a) Time series with weak nonlinearity ( = 0.001, µ = 0.0318, f1 = 10 Hz, As = 0.318) and (b) the corresponding
power spectra showing f1, f2 and their sum and di↵erence frequencies. (c) Time series with large nonlinearity ( = 0.8,
µ = 78, f1 = 10 Hz, As = 780) and (d) its corresponding power spectra showing f1, f2, their sum and di↵erence frequencies
and their harmonics.

To explore the phenomenon of wave mixing in various nonlinear regimes, we will use this exact solution

for di↵erent values of the parameters,  and µ. Now that we are driving not only at frequency f1, but also

at frequency f2, we see a modulation in the time series of Fig. 2.3(a) and 2.3(c), obtained from Eq. (2.5).

The corresponding spectra are shown in Fig. 2.3(b) and 2.3(d), respectively. The conditions are for a
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Table 2.1: Dominant frequencies observed in the fKdV model Eq. (2.5) as shown in Fig. 2.3(d).

Nomenclature Frequency (Hz) Nomenclature Frequency (Hz)

f1 10 P10 3f2 � f1

f2 12 P11 4f2 � 2f1

P1 f2 � f1 P12 3f1

P2 2(f2 � f1) P13 2f1 + f2

P3 3(f2 � f1) P14 2f2 + f1

P4 4(f2 � f1) P15 4f2 � f1

P5 2f2 � f1 P16 4f1

P6 3f2 � 2f1 P17 3f1 + f2

P7 4f2 � 3f1 P18 2(f1 + f2)

P8 2f1 P19 f1 + 3f2

P9 f2 + f1

weakly nonlinear amplitude in Fig. 2.3(a) and 2.3(c), with µ = 0.0318,  = 0.001 and As = 0.318. The

amplitude is greater and more nonlinear in Fig. 2.3(b) and 2.3(d), with µ = 78,  = 0.8 and As = 780.

In all cases for Fig. 2.3, f1 = 10 Hz, f2 = 12 Hz, and ↵ = � = 1. The spectrum shows peaks at f1, f2,

sum-frequency f2 + f1 and di↵erence-frequency f2 � f1.

Nonlinear mixing is revealed by the presence of combination frequencies in the spectra of Fig. 2.3.

Especially in Fig. 2.3(d) with the higher amplitude and greater nonlinearity, we see many combination

frequencies such as 2f2 � f1 which is labelled as peak P5, and 2f1 + f2 which is labelled as peak P13.

There is a rich variety of these combination frequencies, and they are listed in Table I. The presence of

peaks at harmonics such as 2f1, 3f1 and 4f1 are not attributed to mixing but rather just the presence of

nonlinearity ( > 0) in the excitation.

2.3.1 Comparison of NLM in the fKdV model with dusty plasma experiment

We will now provide experimental evidence of the nonlinear mixing of waves in a dusty plasma ex-

periment that shows good agreement with our fKdV model. The mixing spectrum of the fKdV model

shown in the Fig. 2.4(a) is quite similar to nonlinear mixing exhibited in the experimental spectrum [15]

shown in the Fig. 2.4(b). This experimental spectrum includes peaks at combination frequencies such as

2f2 � f1 and 2f1 + f2. (The experiment also has peaks at harmonics such as 2f1 and 3f1, but those can

occur in the absence of mixing due to the non-sinusoidal distortion of a periodic waveform, as is common

under nonlinear e↵ects.)

It is significant that the spectrum from our solution of the fKdV equation shows peaks at the same

combination frequencies as for the experiment of Ref. [15]. This observation gives us some confidence

that we are observing nonlinear mixing. The model, even though it is simple, adequately captures salient
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Figure 2.4: Comparison of time series power spectra for [a] obtained from the fKdV model, Eq. (2.5), and [b] we have
replotted the same experimental data points that were originally reported in Ref. [15]. Parameters used for the theoretical
model are µ = 18.5, = 0.7 (corresponds to f1 = 0.7 Hz), As = 18.5 and f2 = 1.7 Hz.

mechanisms for nonlinear mixing, yielding the same signatures of combination frequencies as in a specimen

experimental system.

Although for Fig. 2.4(a), we used the same excitation frequencies f1 = 0.7 Hz and f2 = 1.7 Hz as for

the experiment of Ref. [15], we should mention several ways that the model’s assumptions di↵er from that

of the experiment. First, there is frictional damping from gas in the experiment. This friction can inhibit

nonlinear e↵ects unless a threshold is exceeded, which would not be the case in the model where there

was no friction. Second, the experimental system was finite in size and could exhibit an overall sloshing

mode oscillation in the presence of the external confining potential, which is provided by a curved sheath

above the horizontal electrode. Thus, the experimental spectrum could potentially include the signature

of a sloshing mode oscillation or the mixing of that oscillation with the excitation at f1 or f2. This

behaviour would not be described by our model. Third, the model was constructed so that it assumes

that the excitation at one of the two frequencies is not a propagating wave but is uniformly applied

throughout the medium, as sketched in Fig. 3.1. This third di↵erence might be less substantial than one

might expect, however, because the wavelength at the low frequency f1 = 0.7 Hz in the experiment could

have been substantial as compared to the finite size of the cloud of charged dust particles.

We also note that the spectral peaks obtained from the theoretical fKdV model in Fig. 2.4(a) are

not limited to all those present in the experimental spectrum shown in Fig. 2.4(b). In Table II, we list

those peaks P1-P10 of the theoretical model that are also present in the experimental spectrum while

peaks N1-N10 are only present in the theoretical model. The latter frequency peaks represent di↵erent

combinations of the sum and di↵erence of f1, f2 and their higher harmonics. Their absence in the
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Table 2.2: Frequencies observed in the dusty plasma experiment [15] and fKdV model Eq. (2.5) as shown
in Fig. 2.4(a) and (b), respectively.

Frequency (Hz) Fig. 2.4(a) Fig. 2.4(b) Frequency (Hz) Fig. 2.4(a) Fig. 2.4(b)

f1 0.7 0.7 P10 = 2f2 + f1 X X
f2 1.7 1.7 N1 = f2 � 2f1 X
P1 = f2 � f1 X X N2 = 3f1 � f2 X
P2 = 2f1 X X N3 = 4f1 � f2 X
P3 = 3f1 X X N4 = 2f2 � 3f1 X
P4 = f1 + f2 X X N5 = 2(f2 � f1) X
P5 = 2f2 � f1 X X N6 = 3(f2 � f1) X
P6 = 4f1 X X N7 = 5f1 X
P7 = 2f1 + f2 X X N8 = 3f2 � 2f1 X
P8 = 2f2 X N9 = 3f2 � f1 X
P9 = 3f1 + f2 X X N10 = 4f1 + f2 X

experimental spectrum could be due to the e↵ect of gas friction, which can prevent weak nonlinear e↵ects

from being observed.

2.4 Summary

Finally, to conclude, we have presented a simple mathematical model consisting of a forced KdV

equation with a time-varying sinusoidal forcing term that shows the existence of nonlinear wave mixing

in a dusty plasma medium. Physically the model represents wave mixing arising from the temporal

modulation of a nonlinear dust compressional wave. This is a situation that can be easily realized in

an experiment using the radiation pressure of lasers or time-varying electric potentials to modulate self-

excited or externally driven large amplitude compressional waves.

One advantage of the present model is the existence of an exact analytic solution which can be conve-

niently used to map various parametric regimes without recourse to a numerical solution of the nonlinear

equation. This solution not only shows the existence of wave mixing phenomenon in this simple model

system but may also be useful in predicting nonlinear wave mixing for a proposed experimental configu-

ration in a two-dimensional dusty plasma medium.

The theoretical model in this chapter is primitive yet nicely shows experimental results. The model only

looks into a sinusoidal form of driving which has a benefit of an exact analytic solution. We know that

driving forces in actual experimental or natural scenarios are nonlinear and of the travelling waveform.

We also need to establish the exact origin of newly generated modes we strongly believe are an outcome

of nonlinear mixing. These two facts have been discussed in the following chapter.



Chapter 3

Bispectral analysis of nonlinear

mixing in a periodically driven

Korteweg–de Vries system

This chapter examines the nonlinear mixing of dust lattice (and dust acoustic) waves using the fKdV

model with various forms of external driving (forcing). We have used a semi-analytic model of the fKdV

equation for time-dependent forcing forms and a full numerical model for the travelling wave forcing form.

This comprehensive study is to understand the e↵ect of the nonlinear form of external forcing over the

mixing profile. Our results for the model involving the travelling wave forcing form quantitatively fit with

experimental observations, overcoming the shortcomings of only the time-dependent forcing model in the

previous chapter. Further, we analyzed the resultant time series with a bispectral analysis to confirm the

origin of new modes as an outcome of the three-wave mixing process.

27
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3.1 Introduction

The Korteweg-de Vries (KdV) model equation has served as a standard paradigm for the description of

many low-frequency nonlinear phenomena in various nonlinear dispersive media such as neutral fluids,

plasmas, optical fibres, vibrating lattices etc. [206, 211, 212, 217–221]. As a fully integrable partial

di↵erential equation, the KdV equation admits a variety of exact solutions, including solitons, cnoidal

waves, dispersive shocks etc. that have been used to describe experimental observations of nonlinear wave

phenomena in the aforementioned systems. In plasmas, the KdV equation has successfully modelled the

existence and evolution of ion and dust acoustic shocks as well as solitary waves [98, 146, 209]. More

recently, a forced KdV (fKdV) model was used to explain the emission of precursor magneto-sonic solitons,

created by a charge bunch moving in a magnetized plasma [222].

The KdV model has also been investigated in the presence of an external time and space varying per-

turbation in order to investigate the response of a driven nonlinear medium. Such a forced KdV equation

that had a travelling wave source was used to determine the conditions for the resonant excitation of non-

linear oscillatory waves in a dispersive medium by Vainberg et al. [223]. Using a chirped frequency driving

perturbation, Friedland et al. [224] studied the anomalous autoresonance threshold for the excitation of

large amplitude travelling waves in a KdV model system. Aranson et al. [225] took a similar approach of

chirping the frequency of the driver to excite solitons in the system. In particular, for plasmas, the fKdV

model predicts existence of precursor and pinned solitons [153, 154]. These nonlinear emissions can prove

useful in space awareness applications, such as in the indirect detection of charged space debris orbiting in

the earth’s ionosphere [140]. More recently, Mir et al. [169] used the fKdV model to study nonlinear wave

mixing in a dusty plasma system and related their findings to past experimental observations of Nosenko

et al. [15]. The form of the driver, in their case, was chosen to be a simple time-varying sinusoidal function

for which an exact analytic solution of the model could be obtained. Using such an exact solution, time

series data of the system response was obtained for parameters close to the experimental conditions and

the power spectrum of this model data was compared with the experimental power spectrum. Nonlinear

mixing (NLM) was revealed by the presence of the combination of frequencies of various harmonics of

the inherent mode of the system and the driving wave.

While such identification of combination frequencies provides quick first-hand evidence of nonlinear

wave mixing, it does not conclusively establish the origin of the combination due to a three-wave mixing

process. This is because the power spectrum does not explicitly provide the phase coupling information

about the interactions. A more precise tool for establishing the physical origin of the wave mixing is

a bispectral analysis [226–228] that looks at the triple-correlation of the time series of any dynamical

quantity. A finite correlation is obtained for a frequency triad F (f1), F (f2) and F (f1+f2) when they are

formed by a coherent phase coupling mechanism (where F is the discrete Fourier component at a given

frequency). There will be no correlation among frequencies if they are spontaneously excited modes,

i.e., no coherent phase coupling is involved. Bispectral analysis has been extensively used in the past to

investigate coherent nonlinear interactions in plasmas [229–231] as well as in many biomedical [232, 233]
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and engineering applications [234, 235].

In this work, we extend the earlier spectral analysis of Mir et al. [169] and carry out a bispectral

analysis to firmly establish the nature of the nonlinear mixing phenomenon. We also expand the scope

of their model calculations by going beyond the simple time-varying sinusoidal driver to examine the

influence of di↵erent functional forms of the driver on the mixing process. These di↵erent functional

forms of the driver can arise in a variety of situations. For example, in a typical experimental situation,

if the driving wave is one of the normal modes of the system, then it is likely to be of a nonlinear form,

e.g. ion acoustic waves or dust acoustic waves (DAWs) have been observed to grow nonlinearly into

cnoidal or cnoidal square waveforms in many experiments [36, 39, 107, 112]. The presence and evolution

of nonlinear modes or disturbances are, in fact, generic to nonlinear media such as cnoidal waves in

metamaterials [236], cnoidal-square waveforms of dust acoustic waves [156], and sawtooth-like shock

waves [203]. When the driving wave is applied externally, it can also take a variety of waveforms, such as

using a cnoidal waveform electrical or optical signals to generate frequency combs in Kerr microresonators

[237], use of a sawtooth wave for higher harmonic generation in a plasma [238] and the use of cnoidal

waves to generate nonlinear frequency combs in microring resonators [239]. The present work is aimed

at studying the impact of such waveforms on the nonlinear mixing phenomena in plasmas.

It is seen that changing the profile and functional dependence of the driver can significantly alter

the response pattern of the system. In particular, a travelling wave source is seen to excite additional

frequencies that are not seen in response to purely time-varying sources.This enhanced spectrum is shown

to bear a closer resemblance to the dusty plasma experimental data of Nosenko et al. [15] than the model

system studied by Mir et al. [169]. In addition to changing the functional form of the driver, we also

examine the e↵ect of changing the driver frequency relative to the natural frequency of the non-driven

system. We find a significant di↵erence in the resultant spectral patterns depending upon whether the

driver frequency is larger or smaller than the natural frequency. This asymmetry in the response pattern

is explained based on a higher-order mixing process. Our findings thereby o↵er a means of tailoring the

response patterns of driven systems that may find practical applications.

The work is organized as follows. The model fKdV equations with di↵erent forms of purely time-

dependent forcing terms Fs(t) or with a spatio-temporal forcing term Fs(x, t) are described in section 3.2.

The e↵ect of di↵erent forcing forms on nonlinear mixing is first discussed in section 3.3 in terms of the

di↵erences in the power spectral densities (PSD) of the time series data of the numerical solutions of the

fKdV model. This is followed up in section 3.4 by a bispectral analysis of the same data and its physical

interpretation. Section 3.5 is devoted to a discussion on the e↵ect of tunable drivers on the NLM process

and a discussion on the physical origin of the asymmetry in the driven response. A brief discussion and

some concluding remarks are given in section 3.6.
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3.2 The forced Korteweg-de Vries model

A generalized form of the fKdV equation for the perturbed density, n(x, t), can be written down as [169]:

@n(x, t)

@t
+ ↵ n(x, t)

@n(x, t)

@x
+ �

@
3
n(x, t)

@x3
= Fs(x, t). (3.1)

The Eq. (3.1) can be derived from the full set of cold fluid equations for the dust component in

the weakly nonlinear and weakly dispersive regime [140]. The ions and electrons, as lighter species

compared to the dust, are assumed to obey Boltzmann relations. ↵ and � are the characteristic parameters

quantifying nonlinearity and dispersion of the medium, respectively. Fs(x, t) is the external spatio-

temporal forcing. For Fs(x, t) = 0 one recovers the standard KdV equation that admits exact nonlinear

solutions in the form of solitons [98, 206, 209, 240] and periodic cnoidal waves [156, 241]. In the context

of dusty plasmas, Liu et al. [156] have shown that a cnoidal wave solution provides an excellent fit to

their experimental observations of self-excited dust acoustic waves sustained in an RF plasma [242].

3.2.1 Korteweg-de Vries model with a time-dependent forcing, Fs(t)

An analytic solution of Eq. (3.1) with a purely time-dependent sinusoidal forcing that is based on Hirota’s

approach [216] has been presented earlier in Ref. [169] and is given by:
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In Eq. (3.2), cn is the Jacobi elliptic function, µ is the amplitude of the cnoidal wave, and  is the

elliptic modulus that quantifies the nonlinear nature of the cnoidal wave. In the context of dusty plasma,

the elliptic modulus  and the total harmonic distortion of DAW [107] were used by Liu et al. [156], to

quantify the nonlinearity of their experimentally observed waveforms. With  ! 0, the wave attains a

cosine waveform, and as ! 1, the waveform becomes nonlinear with the cosine wave getting converted

to a cnoidal waveform. At  = 1 when cn2(x, t; ) = sech2(x, t) [243], the cnoidal wave takes the form of

a single soliton. Furthermore, the quantities � and  are defined as,

�(t) =

Z
Fs(t) dt and  (t) =

Z
�(t) dt. (3.3)

The �(t) and  (t) can be calculated either analytically or numerically depending on the choice of

the forcing profile. As a generalization of the work reported in Ref. [169], where only a sinusoidal

form of Fs(t) was used, we have considered a variety of functional forms for the drivers in our present

work. These di↵erent forcing terms are listed in Table 3.1. For the case of a sinusoidal forcing profile,

�(t) = � (As/(2⇡f2)) cos(2⇡f2t) and  (t) = �
�
As/(2⇡f2)2

�
sin(2⇡f2t). Here f2, As and s are the

forcing frequency, forcing amplitude and the forcing elliptic modulus corresponding to each forcing form

Fs(t), respectively.
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Table 3.1: Functional form of di↵erent forcing profiles for which NLM is explored in the fKdV model

Forcing profiles Fs(t) or Fs(x, t)

Sinusoidal
Fsin(t) As sin(2⇡f2t)

Cnoidal
Fcn(t) Ascn[4K(s)f2t;s]

Cnoidal-square
Fcn2(t)

Ascn
2[2K(s)f2t;s]

Fcn2(t) = Fcn2(t)� hFcn2(t)i
Travelling wave

Fs(x, t)
As sin(ksx� 2⇡f2t)

Solving fKdV numerically

Figure 3.1: (a) Time series of KdV for µ = 18.5,  = 0.7 (such that f1 = 0.7 Hz) with ↵ = � = 1. (b) Power spectrum of
(a). The nonlinear wave (non-sinusoidal) nature is evident from both the time series (a) and the presence of harmonics in
its PSD (b).

A truncated Fourier series expansion can approximate the non-sinusoidal forcing profiles. In the context

of dusty plasma, Merlino et al. [57] obtained excellent fit to their experimental DAW profiles by retaining

terms up to the second harmonic in the Fourier series expansion of the square of the cnoidal function,

namely,

Fs(t) = Fcn2(t) = Ascn
2[2K(s)f2t;s]
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Fcn2(t) ⇡ (As/2){cos(2⇡f2t) + 0.02As cos(2⇡(2f2)t) + 0.004As cos(2⇡(3f2)t)}. (3.4)

Such a Fourier series representation of a non-sinusoidal forcing term allows one to solve the fKdV

system analytically by using the general solution described by (3.2) and (3.3). This facilitates the study

of the nonlinear mixing phenomenon as a function of the various forms of the driver.

A nonlinear cnoidal time series solution of the KdV equation and its PSD are shown in Fig. 3.1(a) and

Fig. 3.1(b), respectively. The PSD shows a fundamental frequency at f1 = 0.7 Hz along with the even

and odd harmonics of the wave at 2f1, 3f1 and so on.

3.2.2 Korteweg-de Vries model with spatio-temporal forcing, Fs(x, t)

The KdV equation with a spatio-temporal travelling waveform of the forcing is given by:

@n(x, t)

@t
+ ↵ n(x, t)

@n(x, t)

@x
+ �

@
3
n(x, t)

@x3
= As sin(ksx� 2⇡f2t). (3.5)

We have numerically solved Eq. (3.5) using a finite di↵erence scheme. The code has been validated by

reproducing the results of Sen et al. [140]. The frequency corresponding to the forcing wave-vector ks is

chosen to satisfy the linear dispersion relation obtained by setting ↵ = 0 in the standard KdV equation,

namely f1 = ��k3s/(2⇡). Here, ks = nk0 with k0 = 2⇡/L being the minimum wavevector associated

with a system of length L. For the numerical solution of Eq. (3.5), we have taken an initial condition of

n(x, 0) = 0.

3.3 Nonlinear mixing in the fKdV model with di↵erent forcing

forms

To investigate the NLM process under various non-sinusoidal time-dependent forcing forms, we have used

semi-analytic solutions by using (3.2) and (3.3). Exact analytic forms are possible for cases when � and

 in (3.3) are exactly integrable. Sinusoidal forcing is one such example. While the solutions apply to all

nonlinearity regimes and dispersion, we have taken one parameter set throughout the work for uniformity.

We have used µ = 18.5,  = 0.7 (such that f1 = 0.7 Hz) and ↵ = � = 1 for all cases in the manuscript

unless specified otherwise.

The frequencies in the power spectrum as displayed in Fig. 3.2 are for (a) sinusoidal, (b) cnoidal wave,

and (c) cnoidal-square wave driver in the fKdV equation. Their values are tabulated in Table 3.2. All

listed frequencies match the sum and di↵erence frequencies of f1 (natural KdV mode), f2 (fundamental

forcing mode) and their harmonics. These additional modes are generated via the three-wave mixing

mechanism, which is further confirmed via a bispectral analysis described in section 3.4.

The spectrum shown in Fig. 3.2 for each non-sinusoidal forcing form is qualitatively similar to the

sinusoidal forcing case in the range of frequencies that carry significant power. A noticeable di↵erence is
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Figure 3.2: Power spectrum of time series obtained from fKdV model for (a) sinusoidal forcing Fs(t) = Fsin(t) =
As sin(2⇡f2t) , (b) cnoidal wave forcing Fs(t) = Fcn(t) = Ascn[4K(s)f2t;s], (c) cnoidal-square wave forcing
Fs(t) = Fcn2 (t) = Ascn2[2K(s)f2t;s]. Here As = µ, s = 0.9 and f2 = 1.7 Hz. (d) Travelling wave forcing
Fs(x, t) = As sin(ksx � 2⇡f2t) with no initial condition, i.e., n(x, 0) = 0. Here As = 5µ, ks = 9k0 with k0 = (2⇡)/L,
which corresponds to frequency f1 = k3s/(2⇡) = 0.7 Hz for a system of length L = 11⇡ and f2 = 1.7 Hz. Also, ↵ = � = 1
in each case.

for the cnoidal-square forcing case where we obtain an additional frequency P8 = 2f2 that also exists in

the power spectrum of the fluctuations measured in the dusty plasma experiment of Nosenko et al. [15].

However, this could be because the cnoidal-square forcing form inherently contains the frequency mode

at P8 = 2f2 in contrast to other forcing forms, as can be seen in Table 3.2.

We have also observed NLM in fKdV model with a travelling wave forcing form Fs(x, t) = As sin(ksx�

2⇡f2t). The spectrum due to travelling wave forcing is shown in Fig. 3.2(d) and is also tabulated in

Table 3.2. The spectrum obtained for this case is unique compared to all time-dependent forcing cases in

two ways. First, certain frequencies are missing in the spectrum and are named N4 and N5 in Table 3.2.

The same has been shown as red bands in Fig. 3.2(d). Second, we have also observed a frequency peak

P8 = 2f2 marked in green patch in Fig. 3.2(d). Both the missing and the extra frequency are consistent

with the observations in the dusty plasma experiment [15]. In this case, the extra frequency is not due

to the inherent property of the driver but is a genuine outcome of an NLM process.

3.4 Bispectral analysis of nonlinear mixing

The bispectral analysis is a statistical tool that provides a quantitative measure of a coherent nonlinear

interaction process. If a coherent nonlinear interaction exists between three oscillations at frequencies F1,

F2 and F1 + F2, a peak will be generated in the principal domain of the bispectrum at the intersection

between F1 and F2. The bispectrum of a dynamic process is always a complex quantity and is defined
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Table 3.2: Dominant frequencies observed in the fKdV model for various forcing forms as shown in
Fig. 3.2.

Fig. 3.2(a) Fig. 3.2(b) Fig. 3.2(c) Fig. 3.2(d)

Frequency (Hz)
Fsin(t)
As = µ

Fcn(t)
As = µ

s = 0.9

Fcn2(t)
As = µ

s = 0.9

Fs(x, t)
As = 5µ
ks = 9k0

f1 = 0.7 X X X X
f2 = 1.7 X X X X
P1 = f2 � f1 X X X X
P2 = 2f1 X X X X
P3 = 3f1 X X X X
P4 = f1 + f2 X X X X
P5 = 2f2 � f1 X X X X
P6 = 4f1 X X X X
P7 = 2f1 + f2 X X X X
P8 = 2f2 X X
P9 = 3f1 + f2 X X X X
P10 = 2f2 + f1 X X X X
N1 = f2 � 2f1 X X X X
N2 = 3f1 � f2 X X X X
N3 = 4f1 � f2 X X X X
N4 = 2f2 � 3f1 X X X
N5 = 2(f2 � f1) X X X
N6 = 3(f2 � f1) X X X X
N7 = 5f1 X X X X
N8 = 3f2 � 2f1 X X X X
N9 = 3f2 � f1 X X X X
N10 = 4f1 + f2 X X X X

by [226–228, 232, 244]

B(F1, F2) = hF (f1)F (f2)F
?(f1 + f2)i (3.6)

where h...i is the ensemble average over multiple samples, F is the Fourier transform, F ? is the cor-

responding complex conjugate and f1, f2 are the two frequencies of the triad (F1, F2, F1 + F2). The

bispectrum B(F1, F2) is a function of two frequencies and is a non-zero quantity only if a phase coupling

exists between the frequency triplet F1, F2 and F1 + F2. B(F1, F2) is identically zero for spontaneously

generated modes, i.e., the modes generated without phase coupling. The bispectrum’s ability to retain

the phase information lost by the power spectrum (the Fourier transform of a signal) makes it a useful

tool for analyzing coherent nonlinear interactions.
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The normalized bispectrum of a time series [227, 228, 231, 232, 244] gives the bicoherence and is given

by:

�
2(F1, F2) =

|B(F1, F2)|2

h|F (f1)F (f2)|2ih|F ?(f1 + f2)|2i
. (3.7)

Bicoherence gives a measure of phase coherence between the coupled modes. It is a measure of the

fraction of power retained by modes due to phase coupling. Theoretically, bicoherence is 1 for phase

coupled modes, i.e., modes generated due to coherent nonlinear interaction and 0 for uncoupled modes,

i.e., modes generated spontaneously.

Bicoherence is symmetric about the line F (f1) = F (f2) because �2(F1, F2) = �
2(F2, F1). For our

analysis, we used M = 8192 sampling data points and N = 16 time series segments so that the total

length of a time series was K = M ⇥ N . A statistically significant correlation between the coherent

modes is determined by the condition �2 >
p
6/2N = 0.433 as discussed in Siu et al. [232].

Figure 3.3: PSD (a) and bicoherence (b) of fKdV for sinusoidal forcing. Inset (a) is the PSD of fKdV for Fs(t) = Fsin(t) =
As sin(2⇡f2t) with As = 18.5 and f2 = 1.7 Hz. Initial parameters are µ = 18.5,  = 0.7 (such that f1 = 0.7 Hz) and
↵ = � = 1. The small inset within (a) shows the form of a sinusoidal forcing profile. The bicoherence map shows patches
(�2 ⇡ 1) indicating that the waves at F (f1), F (f2) and F (f1)+F (f2) are not only frequency coupled but are phase coupled
as well. This confirms coherent nonlinear interaction between the waves at F (f1) and F (f2).

3.4.1 Time-dependent sinusoidal forcing

In Fig. 3.3 we show the power spectrum (inset) and the bicoherence of the time series obtained for a

sinusoidal forcing in the fKdV model. The frequencies in the power spectrum as shown in Fig. 3.3(a)

[inset] are listed in column (II) of Table 3.2. All the listed frequencies match the sum and di↵erence
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frequencies of f1(fundamental KdV mode), f2 and their harmonics. While the power spectrum confirms

the presence of new modes, it does not confirm any frequency or phase coupling.

To confirm the origin of excited modes, we calculated the bicoherence of the same time series as in

Fig. 3.3(b). Peaks in the power spectrum map to the dark patches in the bicoherence space shown

in Fig. 3.3. For example, P4 = 2.4 Hz in the power spectrum generates a patch (P I
4 ) that is at the

intersection of F1 = f1 = 0.7 Hz and F2 = f2 = 1.7 Hz confirming a phase coupled and frequency-coupled

mode excitation. P4 = 2.4 Hz also generates another patch in bicoherence (P II
4 ) at the intersection of

F1 = 2f1 = 1.4 Hz and F2 = f2 � f1 = 1.0 Hz. Table 3.3, column (IV) lists all possible combinations of

frequencies leading to patches in the bicoherence space with P and N nomenclature. Peaks marked with

P and N are the ones that were observed and missing (not observed), respectively, in the dusty plasma

experiment [15], which was used for validating nonlinear mixing in the fKdV model [169]. Many patches

in bicoherence space suggest multiple possible combinations of sum and di↵erence of frequencies leading

to a single peak in the power spectrum. Thus the present bispectral analysis confirms the three-wave

mixing results for a sinusoidal forcing of the fKdV as presented earlier by Mir et al. [169].

It should be mentioned that some of the specific patches, marked with a ? in column (IV) of Table 3.3,

do not follow the standard sum rules but are present in the power spectrum as well as in the bicoherence

plot. We believe they represent one of the frequencies F1 or F2 that appears on the coordinate axes of

Fig. 3.3. We have independently confirmed their source and presence by constructing a frequency and

phase-coupled time series generated using all frequencies observed in the power spectrum and switching

them on and o↵ to see their impact on the bicoherence plot.

3.4.2 Time-dependent non-sinusoidal forcing

In practical scenarios, non-sinusoidal forcing patterns are more probable. The plasma-based nonlinear

dynamical study carried out by Chaubey et al. [39] is one such example, where two nonlinearly excited

ion acoustic modes interact with each other. But the studies can easily be generalized for any dispersive

media.

This section provides the bispectral analysis for the time series obtained from the fKdV model with

cnoidal and cnoidal-square forms (Fig. 3.4). Columns III-IV in Table 3.2 list frequencies observed in the

power spectra for the two cases as mentioned earlier. Similarly, columns VI-VII in Table 3.3 contains all

possible frequency combinations due to coherent phase coupling.

For all non-sinusoidal forcing cases, the general appearance of the power spectra and bicoherence di-

agrams appear nearly similar to the earlier discussed sinusoidal forcing case within the frequency range

of significant amplitudes. An exception is a cnoidal-square case (Fig. 3.4), where we notice an additional

frequency at P8 = 2f2. Such a frequency has also been observed in the referred dusty plasma experi-

ment [15]. However, it should be noted that this frequency of P8 = 2f2 is also inherently present in the

power spectrum of the driver on account of the nature of its profile. So, in this case, it is impossible
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Figure 3.4: PSD (a) and bicoherence (b) of fKdV for cnoidal-square forcing. Inset (a) is the PSD of fKdV for Fs(t) =
Fcn2 (t) = Ascn2[2K(s)f2t;s] with As = 18.5, f2 = 1.7 Hz and s = 0.9. Initial parameters are µ = 18.5,  = 0.7 (such
that f1 = 0.7 Hz) and ↵ = � = 1. The small inset within (a) shows the form of the cnoidal-square forcing profile. Both the
PSD (a) and bicoherence (b) show a peak at P8 = 2f2 (encircled), which is inherent in the cnoidal-square wave forcing.

to unambiguously assert that the appearance of this frequency in the response spectrum is a result of

three-wave mixing.

3.4.3 Travelling wave forcing

The bicoherence spectrum of the time series obtained with a travelling wave forcing is shown in Fig. 3.5

with its quantitative values listed in column VIII of Table 3.3. It shows an absence of the N4 and N5

frequencies and the presence of P8 = 2f2 frequency in agreement with the power spectrum analysis. We

reiterate that the observation is in contrast to the purely time-dependent sinusoidal forcing and agrees

with the results reported in the dusty plasma experiment [15]. Also, unlike in the case of a cnoidal-square

forcing, the presence of the P8 = 2f2 frequency is not an artifact of such a frequency being present in the

driver itself. In this case, it is a genuine result of a three-wave mixing process.

3.5 Tailoring the mixing pattern through frequency tuning of

the driver

Based on our above-discussed analysis of the influence of the functional form of the driver on the nonlinear

mixing process, as seen in the power spectra and bicoherence spectra, we now discuss a possible means

of tailoring the nonlinear mixing pattern through the driver parameters. We adopted two approaches for
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Figure 3.5: (a) PSD, and (b) bicoherence of fKdV for travelling wave forcing Fs(x, t) = As sin(ksx � 2⇡f2t) with no
initial perturbation, i.e., n(x, 0) = 0. Here As = 5µ, ks = 9k0 with k0 = (2⇡)/L, which corresponds to frequency
f1 = k3s/(2⇡) = 0.7 Hz for a system of length L = 11⇡ and f2 = 1.7 Hz. Also ↵ = � = 1. The PSD and the bicoherence
show a peak at P8 = 2f2 (encircled) generated via a coherent nonlinear interaction.

Figure 3.6: Tailoring the nonlinear mixing profiles of the fKdV model with forcing frequency f2 < f1 (left panel) and
f2 > f1 (right panel). Left panel: (a, c, and e) with f2 = 0.5 Hz, f2 = 0.3 Hz and f2 = 0.1 Hz, respectively. Right panel:
(b, d, and f) with f2 = 0.9 Hz, f2 = 1.1 Hz and f2 = 1.3 Hz, respectively. Insets in each case display the power spectrum
of the KdV equation (black bold line) and forcing form (red dash-dotted line), i.e., Fs(t) = As sin(2⇡f2t). Here ↵ = � = 1,
µ = 18.5,  = 0.7 (such that f1 = 0.7 Hz) and As = µ in each case.
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this objective.

First, we varied the driver frequency f2 towards lower or higher values than the system’s natural fre-

quency f1. Second, we added specific additional frequency signals to enhance the power in the harmonics

of the forcing profiles considered above. In the first case, we found that when the forcing frequency

f2 < f1, where f1 is the natural frequency of the KdV model, the resultant mixing pattern has a broad

spectral form. This is seen in subplots (a), (c) and (e) of Fig. 3.6 for cases f2 = f1 � 0.1, f2 = f1 � 0.3

and f2 = f1 � 0.5 respectively. On the other hand, when the forcing frequency f2 > f1, the spectrum of

the mixing pattern is sparse and contains fewer frequencies. This is shown in subplots (b), (d) and (f) of

the Fig. 3.6 for cases f2 = f1 + 0.1, f2 = f1 + 0.3 and f2 = f1 + 0.5 respectively.

Figure 3.7: Tailoring the nonlinear mixing profiles by tuning the forcing form. The approximate form of cnoidal-square
forcing as in [57] Fs(t) = (As/2){cos(2⇡f2t) + A1 cos(2⇡(2f2)t) + A2 cos(2⇡(3f2)t) + A3 cos(2⇡(fT )t)}. (a) A3 = 0, (b)
A3 = 0.01As, and fT = 1.25f2 Hz, (c) A3 = 0.01As, and fT = 1.50f2 Hz, and (d) A3 = 0.01As, and fT = 1.75f2 Hz.
Here, As = µ, f2 = 1.7 Hz, A1 = 0.02As and A2 = 0.004As for each case.

Such an asymmetry in the nonlinear response of a system to the variation of the driver frequency

towards or away from its natural frequency has been observed in other systems such as microwave mixers

[245, 246]. The underlying physical mechanism responsible for this behaviour is a higher-order wave

mixing phenomenon called inter-modulation distortion (IMD). Basically the output frequencies of the

primary three-wave mixing, namely, f1+f2, f1�f2, 2f1 and 2f2, further mix with the primary modes f1

and f2 to give rise to 3rd order inter-modulation products such as 2f1 � f2 and 2f2 � f1. The 3rd order

products may further lead to IMD if they are in proximity of the frequency of the primary modes f1 and

f2. This higher-order IMD condition is better fulfilled for the condition f2 < f1 as compared to f2 > f1.

This results in a broad mixing spectrum for the former case compared to the latter. The additional

frequency content created by the 3rd order distortion is also known as ”Spectral Regrowth” that has not
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been observed before for the forced KdV model. Controlled regulation of such spectral regrowth through

frequency tuning of the driver could prove useful in exploring the nonlinear characteristics of weakly

dispersive and small amplitude nonlinear excitations in various plasma and fluid media.

We next discuss our second approach towards influencing the nature of the system response spectra

by tuning the driver characteristics. As mentioned earlier, we had found that the e↵ects of typical non-

sinusoidal (e.g., a cnoidal wave and a cnoidal-square wave) drivers on mixing were very similar to that of

a sinusoidal driver (refer to Fig. 3.2), within a dominant frequency range. The standard driver limits both

the amplitude and frequency of their harmonics, restricting the richness of nonlinear mixing. The non-

sinusoidal drivers show dominant interactions because of their fundamental mode only, as the amplitudes

of their harmonics drop significantly. Hence, in our second approach, we considered tuning the driver

by externally pumping up the power in a frequency close to one of the harmonics of the driver. This is

done by adding an extra sinusoidal component at a specific frequency and amplitude to the Fourier series

representation of a non-sinusoidal forcing term.

Fig. 3.7(a) shows the time series spectrum obtained from fKdV with a cnoidal-square forcing. The

spectrum is similar to the pure sinusoidal forcing case with an additional frequency at P8 = 2f2 due to

the driver’s inherent profile. The power at the first harmonic (2f2) is significantly reduced and lies far

away from the natural mode (f1). Hence, the fundamental forcing mode (f2) shows more interaction

with the natural mode (f1) and inhibits the interaction of the first harmonic with the natural mode.

Figs. 3.7(b), 3.7(c) and 3.7(d) show the spectrum of mixing due to an extra tailoring mode (fT ) at

fT = 1.25f2, fT = 1.50f2 and fT = 1.75f2 respectively, each with amplitude of 50%Af2 , where Af2

is the amplitude of the fundamental mode. This results in a frequency bunching due to the fractional

frequency mode (i.e., the mode in between the fundamental mode and the first harmonic) close to the

fundamental mode leading to an altered frequency spectrum. Thus both these techniques o↵er one a

simple but e↵ective means of tailoring the response spectrum of the driven KdV system.

Table 3.3: Phase coherent modes observed in bicoherence for di↵erent forcing forms given in Table 3.1.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

F1 (Hz) F2 (Hz) F1 + F2 (Hz) Interpretation Fsin(t) Fcn(t) Fcn2(t) Fs(x, t)

f2 � f1 f1 f2 � f1 P
?
1 X X X X

f1 f1 2f1 P2 X X X X
2f1 f1 3f1 P3 X X X X
f2 f1 f1 + f2 P4 X X X X
2f1 f2 � f1 f1 + f2 P4 X X X X
f2 f2 � f1 2f2 � f1 P5 X X X X
3f1 f1 4f1 P6 X X X X
2f1 2f1 4f1 P6 X X X X
f1 + f2 f1 2f1 + f2 P7 X X X X
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3f1 f2 � f1 2f1 + f2 P7 X X X X
f2 2f1 2f1 + f2 P7 X X X X
f2 f2 2f2 P8 X X
2f2 � f1 f1 2f2 P8 X X
f2 + f1 f2 � f1 2f2 P8 X X
2f1 + f2 f1 3f1 + f2 P9 X X X X
4f1 f2 � f1 3f1 + f2 P9 X X X X
f1 + f2 2f1 3f1 + f2 P9 X X X X
3f1 f2 3f1 + f2 P9 X X X X
2f2 f1 f1 + 2f2 P10 X X
2f1 + f2 f2 � f1 f1 + 2f2 P10 X X X X
2f2 � f1 2f1 f1 + 2f2 P10 X X X X
f1 + f2 f2 f1 + 2f2 P10 X X X X
f1 f2 � 2f1 f2 � 2f1 N

?
1 X X X X

2f1 f2 � 2f1 f2 � 2f1 N
?
1 X X X X

3f1 f2 � 2f1 f2 � 2f1 N
?
1 X X X X

f2 + f1 f2 � 2f1 f2 � 2f1 N
?
1 X X X X

4f1 f2 � 2f1 f2 � 2f1 N
?
1 X X X X

2f1 + f2 f2 � 2f1 f2 � 2f1 N
?
1 X X

3f1 + f2 f2 � 2f1 f2 � 2f1 N
?
1 X X X X

3f1 � f2 f2 � 2f1 3f1 � f2 N
?
2 X X X X

f2 � f1 3f1 � f2 3f1 � f2 N
?
2 X X X X

f2 3f1 � f2 3f1 � f2 N
?
2 X X X X

f1 + f2 3f1 � f2 3f1 � f2 N
?
2 X X X X

2f2 � f1 3f1 � f2 3f1 � f2 N
?
2 X X X X

2f2 3f1 � f2 3f1 � f2 N
?
2 X X

f1 3f1 � f2 4f1 � f2 N3 X X X X
4f1 � f2 f2 � 2f1 4f1 � f2 N

?
3 X X X X

4f1 � f2 f2 � f1 4f1 � f2 N
?
3 X X X X

f2 4f1 � f2 4f1 � f2 N
?
3 X X X X

2f2 � f1 4f1 � f2 4f1 � f2 N
?
3 X X X X

f2 � f1 f2 � 2f1 2f2 � 3f1 N4 X X X
2f2 � 3f1 3f1 � f2 2f2 � 3f1 N

?
4 X X X

2f2 � 3f1 4f1 � f2 2f2 � 3f1 N
?
4 X X X

2f1 2f2 � 3f1 2f2 � 3f1 N
?
4 X X X

3f1 2f2 � 3f1 2f2 � 3f1 N
?
4 X

4f1 2f2 � 3f1 2f2 � 3f1 N
?
4 X X X
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f2 f2 � 2f1 2(f2 � f1) N5 X X X
2(f2 � f1) 3f1 � f2 2(f2 � f1) N

?
5 X X X

2f2 � 3f1 f1 2(f2 � f1) N5 X X X
2(f2 � f1) f1 2(f2 � f1) N

?
5 X X X

f2 � f1 f2 � f1 2(f2 � f1) N5 X X X
2(f2 � f1) 4f1 � f2 2(f2 � f1) N

?
5 X X X

2(f2 � f1) 2f1 2(f2 � f1) N
?
5 X

3f1 2(f2 � f1) 2(f2 � f1) N
?
5 X X X

2f2 � f1 f2 � 2f1 3(f2 � f1) N6 X X X X
3(f2 � f1) 3f1 � f2 3(f2 � f1) N

?
6 X X

2(f2 � f1) f2 � f1 3(f2 � f1) N6 X X X X
3(f2 � f1) 4f1 � f2 3(f2 � f1) N

?
6 X X X X

f2 2f2 � 3f1 3(f2 � f1) N6 X X X X
2f1 + f2 3f1 � f2 5f1 N7 X X X X
5f1 f2 � 2f1 5f1 N

?
7 X X X X

4f1 f1 5f1 N7 X X X X
f1 + f2 4f1 � f2 5f1 N7 X X X X
3f1 2f1 5f1 N7 X X X X
2f2 f2 � 2f1 3f2 � 2f1 N8 X X
3f2 � 2f1 3f1 � f2 3f2 � 2f1 N

?
8 X X X X

3(f2 � f1) f1 3f2 � 2f1 N8 X X X X
f1 + f2 2f2 � 3f1 3f2 � 2f1 N8 X X X X
2(f2 � f1) 2f2 � 3f1 3f2 � 2f1 N8 X X X X
2(f2 � f1) f2 3f2 � 2f1 N8 X X X X
2f2 + f1 f2 � 2f1 3f2 � f1 N9 X X X X
3f2 � 2f1 f1 3f2 � f1 N9 X X X X
2f2 f2 � f1 3f2 � f1 N9 X X
2f1 + f2 2f2 � 3f1 3f2 � f1 N9 X X X X
3(f2 � f1) 2f1 3f2 � f1 N9 X X X X
2f2 � f1 f2 3f2 � f1 N9 X X X X
f1 + f2 2(f2 � 2f1) 3f2 � f1 N9 X X X X
2f2 + f1 3f1 � f2 4f1 + f2 N10 X X X X
3f1 + f2 f1 4f1 + f2 N10 X X X X
5f1 f2 � f1 4f1 + f2 N10 X X X X
2f2 4f1 � f2 4f1 + f2 N10 X X
2f1 + f2 2f1 4f1 + f2 N10 X X X X
f1 + f2 3f1 4f1 + f2 N10 X X X X
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3.6 Summary

To summarize, we have carried out a detailed numerical study of the driven response of a model KdV

equation to a variety of driving sources that range from a simple time-varying sine wave to a spatio-

temporally varying plane wave to nonlinear cnoidal waveforms. One of the first objectives of this study is

to firmly establish the nature of the process underlying the wave mixing taking place in the system. An

earlier study [169], using a simple time-varying sinusoidal driver, had concluded that three-wave couplings

were responsible for the wave mixing in the system. The conclusion was based on identifying some of

the combination frequencies in the power spectrum of the nonlinear fluctuations. However, the power

spectrum information alone is not su�cient to establish the existence of a three-wave coupling event.

This is because the power spectrum does not have phase coupling information about the interactions. A

more precise tool for establishing the existence of three-wave coupling is a bispectral analysis that looks

at the triple correlation of the time series of any dynamical quantity. A finite correlation is obtained for

a frequency triad when they are formed by a coherent phase coupling mechanism. In this work, we have

subjected the earlier data of Ref. [169] to bispectral analysis and have confirmed that the mixing process

arising from a simple time-varying sinusoidal driver is indeed due to three-wave interactions.

We have next gone on to generalize the findings of Ref. [169] by changing the nature of the driving

source and studying the impact of such changes on the mixing process. In particular, we have chosen time-

varying nonlinear drivers in the form of cnoidal waves and the square of cnoidal waves and compared the

resultant power spectra and bicoherence spectra with those of the purely sinusoidal driver. The absence

of certain spectral lines or the presence of new ones in the response spectra have been identified, and their

origin is traced to the changing nature of the natural spectra of the nonlinear driving terms. We have also

considered a linear driving term with both a temporal and spatial variation and constitutes a travelling

waveform. In this case, we find an additional response frequency that was not present in the case of the

sinusoidal driver but had been experimentally observed in Ref. [15]. This is not surprising as the sine

wave driver, in the earlier model calculation, was adopted as an approximation to the long wavelength

(k ! 0) dust acoustic wave that had been excited in the experimental system by an external laser. Such

external perturbations can also give rise to a nonlinear excitation e.g., as a cnoidal wave that can then

act as a driver of the KdV system. Thus both the nonlinear waveforms and the travelling waveform

considered as drivers in our model calculation can find useful applications in experimental scenarios.

Looking at the sensitivity of the response spectra to the nature of the driver, we have further extended

our explorations to alter not just the form of the driver but also the frequency of the driver with respect

to the natural frequency of the KdV system. Our results point to a novel means of altering the spectral

density of the response spectra by manipulating the driver frequency to be smaller or larger than the

system’s natural frequency or by artificially injecting power in the driver at a frequency that is somewhat

removed from its fundamental frequency. The physical origin of these spectral changes lies in higher-order

wave interactions that can create additional frequencies and alter the spectrum’s nature.
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Finally, we would like to remark that our results have broad applicability and relevance for under-

standing nonlinear phenomena in plasmas. Nonlinear mixing is at the heart of wave-wave interactions in

plasmas [10] and is responsible for such processes as harmonic generation parametric instabilities [247], the

onset of weak turbulence, etc.. Such interactions have been widely studied in the context of laser heating

of plasmas [248], radiofrequency heating in magnetic confinement devices [249, 250], and understanding

a variety of electrostatic and electromagnetic fluctuations in space plasmas [9]. One of the principal

objectives of such studies is identifying the precise nature of the wave-wave interaction responsible for

a particular phenomenon. This becomes a challenging task because many of the nonlinear phenomena

often take place simultaneously. The bispectral analysis is a convenient and accurate tool for carrying

out such an analysis. The KdV-based model used in our analysis is a convenient semi-analytic framework

for demonstrating the power and utility of this diagnostic. The conclusions are by no means limited to

this model. They are also applicable to any physical scenario where an external (or internally generated)

wave drives the plasma and induces nonlinear wave mixing. Our present results can be the basis for un-

derstanding nonlinear mixing in plasma systems that are weakly nonlinear and weakly dispersive. Such

plasma systems are widely found in space and laboratory setups and have served as convenient media

for the study of solitons and other coherent structures. We hope that our work will stimulate further

theoretical work in extending the present studies to plasma models of higher dimensions and stronger

nonlinearities.

In this chapter, we have identified the physical origin of the modes using the bispectral analysis and

found them an outcome of three-wave mixing. We also extended the mathematical model to include any

form of periodic forcing form, sinusoidal, cnoidal, or travelling waveform. Dusty plasma, the physical

system we use as a testbed for studies, has a unique property to show traits of di↵erent phases and their

intermediate states. The present model needs more flexibility to explore all such phases to understand

nonlinear mixing comprehensively. For this purpose, we have carried out a kinetic study based on the

Langevin molecular dynamics simulation to understand the nonlinear mixing of DLWs in strongly coupled

plasma where dust particles interact via Yukawa or Debye-Hückel pair-wise interaction potential.



Chapter 4

Nonlinear Mixing of Dust Lattice

Waves in Strongly Coupled Dusty

Plasma

In this chapter, in pursuit of analyzing nonlinear mixing in dusty plasma using a kinetic approach, we treat

them as an ensemble of charged particles interacting via pairwise Debye-Hückel form of potential. This

kinetic system evolution is then studied using classical molecular dynamics simulations. This simulation

model includes viscosity as an inherent property and has the flexibility to include the neutral drag

explicitly via Langevin dynamics. The model intrinsically includes correlation e↵ects controlled by dust

species’ charge, density, and temperature. The presented results in the fluid regime of dusty plasma are in

excellent synchrony with the experimental and fKdV-based model proposed in Chapters 2, 3. As a future

scope, we plan to extend molecular dynamics model-based studies to visualize the e↵ects of correlations,

drag, and background shielding.
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4.1 Introduction

The dusty plasma medium is treated as an ensemble of charged particles interacting via a Yukawa pair-

wise potential. We have studied the nonlinear mixing of waves in such a system using kinetic simulations

based on the Langevin molecular dynamics (MD) simulations. In the present work, we have carried out

the two-dimensional classical Langevin simulations to study the nonlinear mixing of two lattice waves in

YOCP. The coherent nonlinear interaction in the excited modes is primarily due to a three-wave coupling

mechanism, confirmed using the bispectral analysis. In this chapter, we will see how the kinetic nature

a↵ects the mixing patterns in a dusty plasma medium. We will establish a link between the fluid-based

fKdV model and the kinetic approach based on the MD simulations for mixing dust lattice waves in a

dusty plasma. Interestingly, we found that the fKdV model shows a good agreement with the kinetic

simulations of the YOCP based on the Langevin MD simulations.

The strongly coupled plasmas (SCPs), in which the Coulomb interaction energy exceeds the ther-

mal energy, are often modelled as one-component plasmas, which include pure Coulomb and screened

Coulomb (Yukawa) systems [181]. The Coulomb coupling parameter � characterises the frictionless pure

Coulomb systems in thermodynamic equilibrium. In contrast, the Yukawa systems are characterised by

the Debye screening parameter D and Coulomb coupling parameter � [251, 252]. Studying the frictional

Coulomb and Yukawa systems’ thermodynamic equilibrium requires one additional parameter, the fric-

tional damping rate ⌫. The characteristic length scale of OCPs in 2D is characterised by the average

inter-particle separation or the Wigner-Seitz radius a = (⇡n)�1/2, where n is the areal number density of

particles. The time evolution dynamics of OCP in 2D is characterised by the inverse of its characteristic

frequency !pd =
p
nQ2

d/(2a✏0Md), where Qd and Md are the charge and mass of the particles. The

phase-transition in OCP is characterised by strong coupling parameter � and Debye screening/shielding

parameter  The e↵ective coupling strength �? = � exp(�D) [253] due to the screening e↵ect of charges.

The e↵ective coupling strength �? = �(1 + D + 
2
D/2) exp(�D) was also proposed [254] and whose

value alone determines the location of melting line in dusty plasma. The limit D ! 0 represents a pure

Coulomb system while the limit D ! 1 represents the hard-sphere-like interactions.

A rich variety of Yuwaka/Debye-Hückel systems exists in nature that includes soft-matter systems like

colloid suspensions [255–257], charged colloids [258–262] and bio-molecules [263, 264]; plasmas like quark-

gluon plasma [265, 266], dusty plasma [267], and ultracold plasma [268, 269]; and many ionic-liquids [270,

271]. A vast literature is available where di↵erent collective phenomena observed in dusty plasma are

often modelled using the Yukawa potential [15, 131, 272, 273]. Recently, the KdV-type solitons in dusty

plasma modelled by Yukawa interaction are revealed using MD simulations [274, 275]. We will also model

the dusty plasma using kinetic simulations in which the particles interact via Yukawa pair-wise interaction

and try to figure out the resemblance of the mixing profiles in YOCP as were found in the fKdV model.

The work is organized into three sections. The Langevin MD simulations are discussed in section 4.2.

The PSD and bispectral analysis of the velocity-squared times series is explained in section 4.3. Finally,
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the work done in this chapter is summarized in section 4.4.

4.2 Langevin molecular dynamics simulations

The 2D Langevin MD simulations [15, 276–279] have been performed using open-source Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) [280] code to study the dynamics of parti-

cles in strongly coupled Yukawa fluids. The Langevin dynamics models collisions with neutral atoms,

providing frictional drag and random kicks. The Langevin simulations consider the dissipation due to

frictional gas damping, which is evident in experimental scenarios. To model the experimental configura-

tion, we suppose that the wave is excited by a localized external perturbation force FL and the particles

are confined by an external confinement force FC at the boundaries in the x-direction. The Langevin

equation of motion, which mimics the dynamics of each particle in frictional Yukawa fluids along with

laser external excitation and confinement forces, is given by

Mdr̈ = �r�Y �m⌫̄ṙ+ ⇠(t) + FL + FC . (4.1)

The particle trajectories r(t) are generated for all particles by integrating Eq. (4.1) using standard

Langevin dynamics [281]. The repulsive Yukawa/Debye-Hückel [282, 283] interaction potential, which

is the only source of nonlinearity, between the particles of mass Md and charges Qd separated by a

distance r and is given by

�
Y (r) =

Q
2
d

4⇡✏0r
exp(�r/�D). (4.2)

The system is confined on the left and right boundaries by the Gaussian profile force of the form [284,

285]

F
Left
C = A

Left
C exp(�(x� x

Left
C )2/�2); (4.3)

A
Left
C = 100 ma!

2
pd, x

Left
C = 0,� = 2a.

F
Right
C = A

Right
C exp(�(x� x

Right
C )2/�2); (4.4)

A
Right
C = 100 ma!

2
pd, x

Right
C = Lx,� = 2a.

The wave is excited by laser force by taking a Gaussian profile of the form [286]

F
f1
L = A

f1
L exp(�(x� x

f1
L )2/�2) [1� cos(2⇡f1t)] ; (4.5)

A
f1
L = 0.25 ma!

2
pd, x

f1
L = 0.2Lx,� = 2a.

F
f2
L = A

f2
L exp(�(x� xLf2)

2
/�

2) [1� cos(2⇡f2t)] ; (4.6)

A
f2
L = 0.25 ma!

2
pd, x

f2
L = 0.8Lx,� = 2a.

The term m⌫̄ṙ is the neutral drag force with neutral drag coe�cient ⌫̄ and ⇠(t) is the random Brow-

nian/Langevin force due to random kicking of neutral gas molecules [276, 278]. We assume that the

random force ⇠(t) has Gaussian distribution with zero mean i.e., h⇠(t)i = 0. In the Langevin simulation,
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Table 4.1: Particle parameters for the Langevin MD simulations.

Particle parameter
Rectangular configuration

(Lx = 10Ly)

No. of particles, N 104

Number density, n 2.923⇥ 106 m�2

Charge of particle, Q
16⇥ 103 e

e = Electron charge

Mass of particle, m 6.9⇥ 10�13 kg

the heating quantified by temperature Td and friction quantified by friction coe�cient ⌫̄ is explicitly

coupled by the fluctuation-dissipation theorem. In other words, the frictional drag and Langevin kick in

combination act as a heat bath and are coupled through the fluctuation-dissipation theorem.

According to the fluctuation-dissipation theorem, the magnitude of random force, characterized by the

width of force, helps to achieve the desired temperature Td [287–289]

h⇠i↵(0)⇠j�(t)i = 2kBTdm⌫̄�(t)�ij�↵� , (4.7)

where the Dirac delta function �(t) indicates localized nature of the random force ⇠(t) in time. �ij and

�↵� are the Kronecker delta symbols with i, j 2 {1, ..., N} are particle indices and ↵,� 2 {x, y} denote

space-coordinates. h⇠i↵(0)⇠j�(t)i is the standard deviation of Gaussian white noise ⇠(t). Therefore in

thermodynamic equilibrium, the system is completely described by three dimensionless parameters: the

inverse Debye screening length D, the friction coe�cient ⌫ = ⌫̄/!pd and the Coulomb coupling parameter

�.

L

H

L

H

Figure 4.1: A cartoon to study NLM using the Langevin simulation in LAMMPS. The system is bound at x = 0 and x = Lx

by confining force FC . Two waves are excited by laser forces FL, each with a di↵erent frequency. Both the FC and FL are
Gaussian in nature. Periodic boundary conditions are imposed along the y-direction. The region-of-interest (ROI) used to
collect time series is the green-coloured region at the centre of the rectangular (Lx = 10Ly) simulation box.
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To carry out the Langevin MD simulations using LAMMPS, we created a rectangular box (Lx =

10Ly) with periodic boundary conditions in the y-direction and reflecting boundary conditions in the

x-direction. To begin with, we created point-charged particles homogeneously distributed inside the

box with the particle parameters given in Table 4.1. Further, we gave random velocity to the particles

corresponding to temperature Td. To study a dynamical system at a particular coupling strength �

(corresponding to temperature Td), we let it evolve along with Nosé-Hoover [290, 291] thermostat (under

NVT condition). We found that 400 !�1
pd is a reasonable time for the system to attain an equilibrium

around this temperature. As a next step, we let the system evolve freely (under NVE conditions) for

another 400 !�1
pd after detaching it from the thermostat. During this phase of evolution, we use the system

for energy conservation and its equilibrium maintenance around desired temperature Td. We found the

total energy conserved up to 10�2%. We also validate the system by calculating the RDF and comparing

it with available results in the literature for similar systems. The Langevin thermostat was also imposed

during the NVE evolution.

4.3 Bispectral analysis of NLM in strongly coupled dusty plasma

The Langevin molecular dynamics simulation has been carried out to study NLM in strongly coupled

YOCP. We have excited two waves of frequency f1 = 0.7 Hz and f2 = 1.7 Hz with laser forces modelled

theoretically. The Langevin dynamics is used to maintain the temperature of dust species and include

the e↵ects of dust-neutral collisions. The speciality of MD simulations is that we can know the complete

information about the phase-space of the system by solving Newton’s equation of motion for each particle

in the ensemble.

The system is equilibrated under the Langevin dynamics till it attains the desired temperature and

maintains the thermal equilibrium corresponding to a chosen strong coupling parameter �. Then we

performed the non-equilibrium simulations to study the mixing of waves in the ensemble of particles. We

created three regions in a rectangular box with confined boundaries in the wave propagation direction

and periodic boundary conditions at other boundaries. Two regions were used for wave excitation by

laser force, and one region was used to download the velocity time-series of the evolution called the

region-of-interest (ROI) shown in Fig. 4.1.

As a benchmark test, we first excite one wave to find out the nature and frequency of the wave by

turning on only one laser beam and running the simulation for a su�cient time. After validation, we

turned on both lasers to study mixing due to the two waves simultaneously at two locations shown in

Fig. 4.1. The time-series of the system’s evolution was collected in the ROI. The PSD was used to study

the mixing frequency spectrum, and bicoherence was calculated to establish the physical origin of di↵erent

modes in the mixing profiles.

Figure 4.2 shows the PSD (a) and bicoherence (b) of mixing of lattice waves using Langevin MD

simulations with two laser wave exciter in Yukawa fluids. The nonlinear interaction is due to the three-
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Figure 4.2: NLM in strongly coupled YOCP using the Langevin MD simulations. (a) PSD and (b) bicoherence of the
time-series obtained in YOCP for � = 100,  = 0.1 and damping rate ⌫ = 100 !�1

pd . The small insets show the PSD of
individual waves with frequency f1 = 0.7 Hz and f2 = 1.7 Hz.

wave mixing mechanism, confirmed using bispectral analysis. The Langevin MD simulations show an

excellent agreement with our earlier proposed fKdV model [45] in a weak screening regime ( = 0.1).

Table 4.2 show the dominant frequency spectrum observed in the YOCP and the fKdV model [45].

Table 4.2: Dominant frequencies observed in the fKdV model [45] and the Langevin MD simulations of
YOCP.

Frequency (Hz) fKdV [45] YOCP Frequency (Hz) fKdV [45] YOCP

f1 0.7 0.7 P10 = 2f2 + f1 X X
f2 1.7 1.7 N1 = f2 � 2f1 X X
P1 = f2 � f1 X X N2 = 3f1 � f2 X X
P2 = 2f1 X X N3 = 4f1 � f2 X X
P3 = 3f1 X X N4 = 2f2 � 3f1 X X
P4 = f1 + f2 X X N5 = 2(f2 � f1) X X
P5 = 2f2 � f1 X X N6 = 3(f2 � f1) X X
P6 = 4f1 X X N7 = 5f1 X X
P7 = 2f1 + f2 X X N8 = 3f2 � 2f1 X X
P8 = 2f2 X X N9 = 3f2 � f1 X X
P9 = 3f1 + f2 X X N10 = 4f1 + f2 X X
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We have used M = 4096 sampling data points and N = 8 time-series segments so that the total

length of a time series was K = M ⇥ N to get the bicoherence of the times series obtained from the

MD simulations. A statistically significant correlation between the coherent modes is determined by the

condition �
2
>

p
6/2N = 0.6124 [232]. The fKdV model shows a similar frequency and bicoherence

with the same two frequencies f1 = 0.7 Hz and f2 = 1.7 Hz. Table 4.2 shows the dominant frequencies

obtained in the fKdV model [45] and the current Langevin MD simulations for YOCP.

We have found an excellent agreement between the Langevin simulations and the fKdV model. The

Langevin MD simulations show an excellent agreement with our earlier proposed fKdV model [45]. How-

ever, there is a di↵erence between the fKdV model and the Langevin MD simulations, possibly due to

the neutral gas damping in the latter case.

4.4 Summary

We have reported nonlinear mixing in strongly coupled Yukawa one-component plasma using two-

dimensional classical Langevin molecular dynamics simulations. The Langevin dynamics relaxes all modes

indiscriminately regardless of their wavelength. The mixing patterns observed in the Langevin MD sim-

ulations in weak screening regime ( = 0.1) are in agreement with the fKdV model [45]. A cascade of

modes generated by the nonlinear interaction of two DLWs in the YOCP is revealed through the PSD

of the times-series obtained from the Langevin simulations. Also, the coherent nonlinear interaction is

primarily due to the three-wave mixing mechanism, confirmed using the bispectral analysis. The kinetic

origin of the nonlinear mixing lie in the nonlinear pair-wise Yukawa interaction, which is the only source

of nonlinearity at the kinetic level.

In this chapter, we extended nonlinear mixing studies from the fluid-based model to the kinetic model

of dusty plasma that includes the e↵ect of viscosity, neutral drag, and correlations. The study has much

of future scope and will be worked upon separately. In the next chapter, we return to the fluid-based

model and study characteristic synchronization features in dusty plasma by including viscous damping.

The model we present is the first to include fluid-like nonlinearity e↵ects.



Chapter 5

Synchronization of dust acoustic

waves in a forced Korteweg–de

Vries–Burgers model

In this chapter, we formulate a theoretical model based on the fKdV-B equation to model the synchroniza-

tion of dust acoustic waves. Previous experimental investigations use the Van-der-Pol oscillator model to

explain results qualitatively. The oscillator-based model does not include convective nonlinearity in its

mathematical formulation. To bridge this gap, we propose the fKdV-B model, which includes convective

nonlinearity, dispersion, and dissipation, all three essential components to explain dusty plasma dynam-

ics. Results from the fKdV-B model closely agree with experiments and include 1:1 and 1:2 synchronized

states. Finally, an Arnold tongue diagram consolidates all observed synchronization features from the

proposed model.
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5.1 Introduction

The nonlinear phenomenon of frequency synchronization is ubiquitous in many physical, chemical, and

biological systems and has been the subject of a large number of studies over the past several years [4, 185,

292]. The simplest mathematical model describing this phenomenon consists of an ensemble of globally

coupled nonlinear point oscillators that adjust their intrinsic frequencies to a common collective frequency

as the coupling strength is increased [2, 32, 293, 294]. Such a nonlinear phenomenon can also be observed

in a continuum medium (a fluid) where a self-excited oscillation or a wave can interact with a driving

force and adjust its oscillation or wave frequency [190, 295–299]. A plasma system, with its wide variety

of collective modes and complex nonlinear dynamics, provides a rich and challenging medium for the

exploration of synchronization phenomena. A number of past experimental studies have examined the

driven response of plasma to an external frequency source [36, 38, 41, 42, 190, 296, 297, 300–305]. These

studies include the synchronization of waves and oscillations at ion and dust dynamical scales as well as

chaos and wave turbulence. A few studies have also been devoted to investigating mutual synchronization

between two plasma devices [39, 40, 191].

More recently, synchronization phenomena have been experimentally explored in dusty plasma devices

where it is easy to visualize the low-frequency wave activity using fast video imaging. A dusty plasma is a

four-component plasma of electrons, ions, neutral gas atoms, and micron-size particles of solid matter [51,

56, 131]. It can be produced in a laboratory device like a glow discharge plasma, by introducing micron-

sized solid particles [104, 105, 111, 203]. These small solid particles (dust) get negatively charged by

absorbing more electrons which have higher mobility than ions. Such a charged medium consisting of

dust, ions and electrons can sustain a variety of collective modes [51, 98, 108, 306]. The dust acoustic

wave (DAW) or dust density wave (DDW) first theoretically predicted by Rao, Shukla and Yu [138] is one

such well-known low-frequency compressional mode that is analogous to the ion acoustic wave [51, 156].

A DAW can be spontaneously excited due to the onset of an ion-streaming instability. The DAW has a

very low frequency (typically 10–100 Hz) [36, 105] due to the large mass of the dust particles and can

consequently be visually observed; through its images and video recording [111, 307–309]. The term ‘dust

density wave’ originated as a generalization of ‘dust acoustic wave’, after observing wavefronts (visible in

the dust cloud) that appeared to be oblique with respect to the ion drift direction [101]. Two key factors

led to the use of the term DDW: the presence of ion drift and an oblique orientation of the wavefront and

its propagation with respect to the ion drift. Since then, many research groups have used the term ‘dust

density wave’ and ‘dust acoustic wave’ synonymously [36, 108, 111, 112, 116, 128]. The present work

focuses on the synchronization of DAW using the forced Korteweg-de Vries-Burgers (fKdV-B) model.

Synchronization of dust acoustic waves has been studied in an anodic plasma [41], radio-frequency

(RF) and direct-current (DC) plasmas [36–38]. Pilch et al. [41] reported the entrainment of DAWs

through a driving modulation to the anode. Ruhunusiri et al. [36] reported observation of harmonic,

super-harmonic, and sub-harmonic synchrony of self-excited cnoidal DAWs. This was achieved through

the driven modulation of the streaming ions in the dust cloud. Their experiments showed parametric
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regions for the occurrence of such synchrony in the form of Arnold tongue diagrams in the state space

of the driving frequency and driving amplitude. They also observed features like the branching of the

tongues and the existence of an amplitude threshold for synchronization to occur. Williams et al. [38]

compared DAW synchronization in RF and DC-generated plasmas. Their results suggested that in an

RF plasma, synchronization was restricted to a part of the dust cloud volume, unlike the complete dust

cloud synchrony in a DC discharge plasma. Deka et al. [37] observed the synchronization of self-excited

DDW, through the suppression mechanism, by modulating ion streaming using an external sinusoidal

driver. Recently, Liu et al. [187] carried out experiments in the Plasma Kristall-4 (PK-4) device on

board the International Space Station (ISS) under micro-gravity conditions and reported phase locking

for harmonic synchronization. The present work is motivated by Ruhunusiri et al. [36] experiment on

global synchronization of a DDW driven by an ion flow. Unlike the DDW in some experiments [101,

310], the wavefronts were not obliquely propagating, as the experiment was designed to have a planar

symmetry, provided by proximity to a planar electrode, so the wavefronts were nearly perpendicular to

the ion flow direction.

Theoretical e↵orts towards interpretation and physical understanding of these experimental results

have so far been limited to providing qualitative comparisons with results obtained from very simple

dynamical models. One of the commonly employed mathematical model is the periodically forced Van

der Pol (fVdP) oscillator [4, 185, 311],

d
2
x

dt2
� (c1 � c2x

2)
dx

dt
+ !

2
0x = Adr cos(2⇡fdrt) (5.1)

which describes the displacement x of a harmonic oscillator with a natural frequency !0, with terms for

a nonlinear damping c2x
2
dx/dt, a source of energy for self-excitation c1dx/dt, and a periodic driving

source of amplitude Adr at a frequency fdr. The fVdP oscillator can exhibit synchronization not only

at fdr/f0 ⇡ 1, which is called “harmonic” synchronization but at ratios that are rational numbers.

If fdr/f0 > 1, the synchronization is said to be “super-harmonic”, whereas if fdr/f0 < 1 it is “sub-

harmonic”. Although the VdP oscillator model has been used in the past as a reference for characterizing

synchronization phenomena in plasmas and other media that support the propagation of waves [36, 37, 39,

190, 192, 297, 300]. It should be pointed out that as a point oscillator model, its dynamics is restricted

to nonlinear oscillations, and it cannot correctly represent nonlinear waves. This is also evident from

the fact that the VdP model is an ordinary di↵erential equation in time and therefore has no spatial

dynamics that characterize a propagating wave. In addition, for nonlinear dust acoustic or dust density

waves, dispersion plays an important role in defining their propagation characteristics and this is not

built into the VdP model. As a promising step in capturing spatial properties of a wave, one modelling

approach to explain cluster or partial synchronization of propagating DDWs [120] under microgravity

conditions [101] used a chain of coupled Van der Pol oscillators [193]. As a further advance, however,

there remains a need to develop a simple theoretical model based on a wave equation that successfully

describes the global synchronization of waves exhibiting both nonlinearity and dispersion in a plasma

medium.
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In this work, we present such a model and use it to demonstrate the synchronization of nonlinear dust

acoustic waves to an external driver. The fKdV-B model is a generalization of the fKdV model that was

developed by Sen et al. [140] for driven nonlinear acoustic waves and subsequently extensively used to

study nonlinear precursor solitons in dusty plasma experiments [154, 155]. For our study, we include

viscous dissipation in the model, an important feature of most laboratory studies of dusty plasmas [161,

162], which converts the fKdV to a fKdV-B model. Such a model provides a proper theoretical framework

for the study of synchronization in a realistic dispersive plasma system that includes natural growth and

dissipation of waves. The driving term is chosen to have an oscillatory form that has both a temporal

and spatial periodicity. Our numerical solution of the model equation shows clear signatures of harmonic

(1:1) and super-harmonic (1:2) synchronization. The characteristic features of the synchronization are

delineated using power spectral density (PSD) plots, phase space plots and Lissajous plots obtained

from the time-series data collected at one spatial location. A parametric plot in the form of an Arnold

tongue diagram shows multiple tongues, each corresponding to the existence region of a harmonic or a

higher-order super-harmonic synchronized state. The harmonic tongue also shows a branching behaviour.

The rest of the work is organized as follows. Section 5.2 briefly describes the fKdV-B model and

the numerical approach adopted to solve it. The section also presents some numerical results for the

undriven KdV and KdV-B equations as background information on the characteristic nonlinear features

of the waves. It describes the diagnostic tools to be used for identifying synchronization phenomena.

Section 5.3 presents our main results on harmonic and super-harmonic synchronization using the fKdV-B

model. A brief summary and some concluding discussion are provided in section 5.4.

5.2 The forced Korteweg-de Vries-Burgers model

The fKdV-B equation, a one-dimensional driven nonlinear partial di↵erential equation, is of the form:

@n(x, t)

@t
+ ↵n(x, t)

@n(x, t)

@x
+ �

@
3
n(x, t)

@x3
� ⌘

@
2
n(x, t)

@x2
= Fs(x, t). (5.2)

Here n(x, t) is the dependent variable (the perturbed density in this case) and Fs(x, t) is an external

spatio-temporal forcing term. ↵, �, and ⌘ are positive quantities representing the strength of nonlinearity,

dispersion, and viscous damping, respectively. The spatial coordinate x and time t are normalized by the

plasma Debye length �D and the dust plasma period !�1
pd , respectively.

It should be mentioned that the KdV equation (i.e., Eq. (5.2) in the absence of the viscous damping

and driving term) has been shown to model the evolution of weakly nonlinear waves in dusty plasmas

both in the presence [156] and in the absence [138] of ion-streaming. Hence it can correctly represent

both nonlinear dust density and dust acoustic waves. Recently Liu et al. [156] showed that the cnoidal

solution of the KdV shows excellent agreement with the DDW profiles observed in the dusty plasma

experiments [107, 242]. Theoretically, the experimental DDW evolution was modelled by the KdV model

in which the ion-streaming was taken into consideration [156]. Earlier, a theoretical model based on the
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fKdV equation [169] was used to explore the nonlinear mixing of longitudinal dust lattice waves observed

in the dusty plasma experiment [15]. Nonlinear mixing means the natural mode and the external forcing

mode retain their identity after interaction and excited frequencies are di↵erent combinations of addition

and subtraction of the natural and forcing mode. The present theoretical fKdV-B model is proposed to

understand the global synchronization of the dust acoustic wave as was observed in the dusty plasma

experiment [36]. Synchronization means the natural mode loses its identity and the system is controlled

by the external driver. Here, we model synchronization by incorporating the viscous damping instead

of nonlinear mixing as was done in Ref. [169]. The fKdV-B equation can be derived from the full fluid-

Poisson set of equations in the weakly nonlinear, dispersive and dissipative regime by using a reductive

perturbation method [162, 165]. Such a derivation in the absence of the viscosity term has been given in

detail by Sen et al. [140]. The KdV-B equation (i.e., Eq. (5.2) in the absence of the driving term) is well

known in the literature [161, 162, 165] and has been employed in the past to model oscillatory shocks

in dusty plasmas [162, 312]. The model has also been used to study temporal chaos or spatial chaos by

using a randomly time-varying [194] or randomly space-varying [195] driving term. In earlier work by

Sen et al. [140], the source term was taken to be a constant, while in this work, we use a spatio-temporally

varying periodic source and carry out a numerical investigation of Eq. (5.2) to study the synchronization

of DAWs based on the fKdV-B model.

The driving source is taken to be in the form of a cnoidal-square travelling wave,

Fs(x, t) = Ascn
2[2K(s){x/�s � fst}; s] (5.3)

where cn is the Jacobi elliptic function, As is the driving amplitude, �s is the spatial wave length and fs

is the driving frequency. K() is the complete elliptic integral of the first kind, and the elliptic parameter

 is a measure of the nonlinearity of the wave. The cnoidal-square travelling wave is an exact solution of

the KdV equation. It can therefore mimic the driving of the system by a DAW arising from an external

(coupled) plasma source. For the numerical solution of Eq. (5.2), the initial waveform is also taken to be

of the form,

n(x, t = 0) = A0cn
2[2K(0){x/�0}; 0], (5.4)

with the values of A0, f0 and �0 di↵erent from those of the driving source. The idea is to see whether

the final driven modes of the system synchronize to the frequency of the driver. Equation (5.2) is solved

for various values of fs and As in order to find the regions of synchronization in the parameter space of

(As, fs).

5.2.1 The numerical solution of the fKdV-B equation

Our numerical investigation of the fKdV-B equation is based on the pseudo-spectral method [198] and

uses periodic boundary conditions. The code is first bench marked by reproducing earlier results [45, 140]

obtained for the fKdV equation. The various parameter values associated with the model are taken to

be as follows: The Jacobi elliptic parameters 0 = s = 0.98 for Eqs. (5.3) and (5.4). The wave vector of



5.2. THE FORCED KORTEWEG-DE VRIES-BURGERS MODEL 57

the initial perturbation i.e., k0 = 12km where km = (2⇡)/Lx being the minimum wave vector associated

with a system of length Lx = 6⇡. The corresponding wavelength i.e., �0 = (2⇡)/k0 and amplitude

A0 of the initial perturbation (i.e., Eq. (5.4)) are kept fixed throughout the analysis. We have taken

ks = 12km and ks = 2 ⇥ 12km for studying harmonic (1:1), and super-harmonic (1:2) synchronization

states. The corresponding forcing wavelength is �s = (2⇡)/ks. Throughout the analysis, we have only

varied the forcing amplitude, As and forcing frequency, fs. The coe�cient ↵ in Eq. (5.2) is given by

following expression ↵ =
⇥
�
2 + (3� + �)� + (�/2)(1 + �

2)
⇤
/(� � 1)2 [154] and � = 0.5. We evaluate

↵ = 2.3 with � = Ti0/Te0 = 0.0036 where electron and ion temperatures are Te0 = 7 eV and Ti0 = 0.025

eV, respectively and � = ni0/ne0 = 3.4 where electron and ion densities are ne0 = 2 ⇥ 1014 m�3 and

ni0 = 6.8 ⇥ 1014 m�3, respectively. The nonlinearity parameter ↵ was measured from experimental

parameters reported by Flanagan et al. [107] for a wave experiment using a setup similar to that of

Ruhunusiri et al. [36]. Since there is no measurement of the viscosity parameter in Flanagan et al. [107]

and no value is reported for the experimental setup of Ruhunusiri et al. [36], we treat the viscosity

coe�cient to be a free parameter, which we adjust to obtain a good quantitative agreement with the

signatures of dissipation in the experimental data of Ruhunusiri et al. [36], namely the Arnold tongues.

A value of ⌘ = 0.0025 best fits the experimental data. Using the experimental plasma parameters [107]

and assuming dust temperature Td = 2 eV, we calculate Coulomb coupling strength � = 92 and Debye

screening parameter D = 2.8. Referring to molecular dynamics simulations for dusty plasmas for the

corresponding closest � = 100 and D = 3, the value of normalized viscosity is ⌘⇤ = 0.04 [273, 313]. This

value of viscosity translates to ⌘ = 0.0027 as per the KdV-B equation normalization, which is fairly close

to our chosen value of viscosity for the simulations of the fKdV-B model. Furthermore, we take the same

experimental values of the natural and driver frequencies as reported in the experiment [36] to carry out

numerical solutions of the fKdV-B model i.e., Eq. (5.2). Also, based on the chosen parameters ↵, �, 0

and k0, the initial perturbation has amplitude A0 = 46.32 and frequency f0 = 22 Hz, which is derived

using the relationship provided in Mir et al. [169]. The amplitude of the initial perturbation chosen in

this fashion will be governed by the exact solution of the KdV and will be a stable solution of KdV for

this particular amplitude.

We evolve the initial perturbation in Eq. (5.2) over long times for these various di↵erent parameter

values. During the spatio-temporal evolution, we collect a time series of the density field at a fixed

spatial location and use it to calculate the power spectral density. The PSD provides a useful tool for

distinguishing between synchronized and un-synchronized states.

As an illustrative example, we show in Fig. 5.1 the PSD, the time-series and the phase space plot of the

solution, obtained for a KdV (solid line) equation (Eq. (5.2) for ⌘ = As = 0). The time-series data has

been collected up to tmax = 80 !�1
pd with a time step dt = 10�5

!
�1
pd . The maximum sampling frequency

fS = 1/dt and the Nyquist frequency is fN = fS/2. This leads to a frequency resolution of df = 1/tmax for

the collected time-series. The time-series data corresponding to the first few tens of periods is discarded

to remove transient e↵ects while constructing the PSD. In Fig. 5.1 the nonlinear character of the mode

is evident from the presence of the higher harmonics in the PSD and from the shape of wave form in the
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time-series. The natural mode of KdV has a frequency f0 = 22 Hz. The single cycle phase space plot

(solid line) with its form resembling a separatrix curve indicates an undamped nonlinear periodic wave, in

this case, the exact cnoidal-square wave. Also, for comparison, we present in Fig. 5.1 the corresponding

results for the undriven KdV-B (dash-dotted) equation (Eq. (5.2) for ⌘ = 0.0025 and As = 0) on top

of the KdV (solid line) equation. The e↵ect of viscous damping is seen in the frequency shift of the

fundamental component in the PSD towards a lower value of f⌘
0 = 15 Hz, the reduced amplitude in the

time-series and the spiralling of the phase space plot (dash-dotted) towards the origin. It is clear that in

Figure 5.1: PSD for the times-series of KdV (solid line) and KdV-B (dash-dotted line) equations with initial perturbation
Eq. (5.4). Insets (I) and (II) show the phase space plots and time series, respectively for KdV (solid line) and KdV-B
(dash-dotted line) models.

the presence of finite viscosity the cnoidal-square wave can no longer be sustained as a nonlinear solution

of Eq. (5.2) with Fs = 0 and the initial perturbation decays in time. The question is whether by driving

the system with a periodic source one can revive and sustain a nonlinear solution that is also synchronized

with the driver. The answer is in the positive and we next present our results on such a phenomenon.

5.3 Synchronization in the fKdV-B model

Here, we present the main results of our work, namely, the synchronization of the solutions of Eq. (5.2) to

an external driver of the form given by Eq. (5.3). We begin by discussing harmonic (1:1) synchronization

for which we choose the driving frequency to be slightly away from the fundamental frequency of f0 = 22

Hz that is characteristic fundamental frequency of the undriven system. Two cases are considered, namely,

fs = 21 Hz and fs = 23 Hz. The driving amplitude in both cases is taken to be As = 0.40A0. Figure 5.2

shows the attainment of harmonic (1:1) synchronization for both these cases with subplots (a, b) devoted

to fs = 21 Hz and (c, d) to fs = 23 Hz, respectively. As can be seen from the time-series plots in (a) and

(c) the driven solutions are indeed locked to the driver. This is also clearly seen in the PSDs where the

fundamental frequencies of the driven solutions are indeed at the frequency of the driver. Furthermore,

the phase space plots in (b) and (d) show that these solutions constitute undamped nonlinear periodic

waves that are maintained by a balance between the nonlinear steepening, dispersive broadening, viscous

damping and amplification due to the external pumping by the driving term. The resultant phase space

curve, that has the characteristic shape of a separatrix, represents a stationary cnoidal wave solution.

The presence of dissipation seems to be necessary for sustaining this synchronized driven solution. We
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Figure 5.2: The harmonic (1:1) synchronization in the fKdV-B model with fs < f0 and fs > f0. The time-series of the
fKdV-B model (solid line) and the forcing (dash-dotted line) at driver frequency (a) fs = 21 Hz with threshold amplitude
As = 0.40A0 and (b) fs = 23 Hz with threshold amplitude As = 0.40A0. (c) PSD of times-series (a). (d) PSD of time-series
(b). The inset (I) is the phase space plot, and the inset (II) is the Lissajous figure which reflects the frequency locking at
the driver frequency.

Figure 5.3: The super-harmonic (1:2) synchronization in the fKdV-B model with fs < 2f0 and fs > 2f0. The time-series
of the fKdV-B model (solid line) and the forcing (dash-dotted line) at driver frequency (a) fs = 43 Hz with threshold
amplitude As = 0.60A0 and (b) fs = 45 Hz with threshold amplitude As = 0.50A0. (c) PSD of times-series (a). (d) PSD
of time-series (b). The inset (I) is the phase space plot and the inset (II) is the Lissajous figure which reflects the frequency
locking at half of the driver frequency.

have found that in the partial di↵erential equation Eq. (5.2), including not just nonlinear and dispersive

terms, but also a linear dissipative term, allowed achieving synchronization of a wave. When we turned

o↵ dissipation, by setting the viscosity coe�cient to zero in Eq. (5.2), we did not observe synchronization

of the wave, for the conditions that we studied here. This is di↵erent from the case of a point oscillator,

as described by the Van der Pol oscillator Eq. (5.1), which requires a nonlinear dissipation term to obtain

synchronization. In the absence of viscosity, one only gets nonlinear mixing from the model as has been

reported earlier in Mir et al. [45, 169]. The amount of viscosity also determines the threshold condition
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Figure 5.4: The Arnold tongue diagram for harmonic (1:1) and super-harmonic (1:2) synchronization states in the fKdV-B
model. The amplitude is varied from As = 0.10A0 to As = 0.70A0 for 1:1, and As = 0.20A0 to As = 0.70A0 for 1:2
synchronization.

for the driver amplitude.

To explore super-harmonic (1:2) synchronization, we again consider two cases of fs = 43 Hz and

fs = 45 Hz, which are slightly below and above the first harmonic frequency 2f0 = 44 Hz of the undriven

system. The results are shown in Fig. 5.3 where the subplots (a,c) are devoted to fs = 43 Hz and

(b,d) to fs = 45 Hz, respectively. As in the previous case of harmonic synchronization, we see clear

evidence of super-harmonic (2:1) synchronization in the time-series plots, the PSDs and the phase space

plots. The Lissajous figures have a figure eight-like trajectory which is indicative of a (1:2) synchronized

state. One significant di↵erence from the harmonic synchronization case is that the minimum threshold

amplitude for the driver to achieve a (1:2) state is di↵erent for the cases fs < 2f0 and fs > 2f0. They

are As = 0.60A0 and As = 0.50A0, respectively.

Finally, in Fig. 5.4, we present a consolidated picture of the existence domain of these synchronized

states in the parameter space of the driver frequency fs and driver amplitude As in the form of an Arnold
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tongue diagram. To obtain the Arnold tongue diagram, As is varied in steps of 4.63 (which is 0.10A0)

from 0 to 32.42 (which is 0.70A0) while fs is varied in steps of 0.5 Hz for harmonic synchronization and

1.0 Hz for the super-harmonic case. Fig. 5.4 shows the (1:1) and (1:2) entrained state tongues in the

fKdV-B model.

We observe several interesting features in the Arnold tongue diagram. To start with, there is always a

threshold amplitude As below which no synchronization occurs. For the harmonic (1:1) synchronization

it is As = 0.10A0 for ⌘ = 0.0025. This is unlike the harmonic synchronization phenomenon observed

in a driven Van der Pol model where no such threshold is found [314]. Another important feature

is a distinctive branching of the Arnold tongue that is clearly seen for the (1:1) states at low forcing

amplitudes marked with arrows. The branching gives rise to a non-synchronized region between the

frequencies fs = 22 Hz to fs = 18 Hz at driver amplitude As = 0.10A0. This branching narrows down

with the increase in As. Another branch is seen in between fs = 18 Hz and fs = 16.5 Hz, which also

narrows down with increase in As. A third feature is the asymmetric nature of the tongue structures

about f0. The frequency width over which synchronization can be obtained is much broader for fs < f0

compared to fs > f0.

5.4 Summary

To summarize, we have studied the phenomenon of synchronization of dust acoustic waves to an external

periodic driver in a model system described by the forced Korteweg-de Vries-Burgers equation. This

equation provides a proper theoretical framework and a better physical model compared to the Van der

Pol oscillator model for studying the dynamics of nonlinear dust acoustic waves by properly accounting

for nonlinear, dispersive and dissipative influences on the waves. Using the model, we have successfully

demonstrated harmonic (1:1) and super-harmonic (1:2) synchronization states of DAWs for the experi-

mental values reported by Ruhunusiri et al. [36]. In particular, a comparison of our theoretical Arnold

tongue diagram with their experimental one shows the following common features. As in the experimen-

tal Arnold tongue diagram, we see the existence of amplitude thresholds as well as clear evidence of the

branching phenomena. However, there are also important di↵erences. With our model, we have not been

able to obtain the sub-harmonic synchronization that has been observed in the experiment. Furthermore,

our model uses an external driver that closely resembles a nonlinear natural mode of the system whereas

in the experiment, a purely time-varying external sinusoidal driver has been used. However, it is not clear

what form this driver takes inside the plasma system and whether it manifests itself as a spatio-temporally

varying perturbation. These and other questions, such as the absence of sub-harmonic synchronization

in the equation, and the neglect of dissipation arising from gas friction on the dust particles, remain to

be explored in the future in order to further improve the model.



Chapter 6

Conclusion and Future Outlook

In this chapter, we enlist the primary findings of this thesis work and their future scope. We propose

an alternate and comprehensive theoretical model to represent nonlinear physical processes that can

reasonably be represented via a one-dimensional mathematical model. This fKdV-based model description

is more quantitatively agreeable than typical oscillator-based model descriptions. Inclusion of e↵ects due

to correlation, full nonlinearity and higher dimensionality are domains for extending present dusty plasma

studies. Further, the current models can be helpful to di↵erent media governed by the characteristic

spatio-temporal convective nonlinearity.

62
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6.1 Conclusion

This thesis contributes a set of theoretical models to study the nonlinear phenomena of mixing and

synchronization in dusty plasma. Both models are built upon the forced-KdV equation incorporating the

convective nonlinearity, a feature of fluids. The proposed models reasonably represent the dynamics of

charged dust fluid in the weakly nonlinear regime. Besides dusty plasma, the models have applicability

and extendibility to other fluid mediums. This thesis advances the theoretical understanding of nonlinear

mixing and synchronization-like collective phenomena in dusty plasma experiments. Previously, driven

nonlinear oscillator models only provided qualitative theoretical support and did not appropriately include

the medium’s nonlinearity. The broad observations of this thesis are as follows:

1. We observe nonlinear mixing of the natural dust acoustic and dust lattice modes with a) time-

dependent oscillations and b) sinusoidal travelling wave. While former mixing had good agreement

with the experimental findings by Nosenko et al. [15], the mystery of missing harmonic mode and

some other modes was resolved with the latter case making it a more appropriate model close to

experiments.

2. The power spectral analysis is used to capture the presence of individual modes in the mixing

profiles. We have used the bispectral analysis to explore the origin of these modes further. The

bispectral technique provided conclusive evidence that each generated mode constituting the time-

series from the fKdV model is due to three-wave mixing that leads to generating modes having a

frequency at an addition or subtraction of the original two modes.

3. The kinetic simulations of dusty plasmas treated as one component strongly coupled plasma based

on the Langevin molecular dynamics has shown excellent agreement with the fluid-based fKdV

model. The power spectral and bispectral analyses confirmed the modes’ presence and physical

origin. The kinetic picture of dusty plasmas confirmed our fluid-based simulations.

4. We have demonstrated, for the first time, the synchronization of nonlinear waves using the fKdV-B

model. The proposed model showed an excellent quantitative agreement with the synchronization of

dust acoustic waves done by Ruhunusiri et al. [154]. The model helps us understand the contribution

of the damping mechanism in achieving the synchronization of nonlinear propagating waves. The

features of harmonic and super-harmonic synchronization in the fKdV-B were captured using the

spectral diagrams, Lissajous figures and the Arnold tongue diagram.

5. The thesis provided the theoretical model for nonlinear mixing and synchronization of waves in

nonlinear dispersive systems with experimental validation from the dusty plasma experiments. The

fKdV model, which doesn’t incorporate any dissipation mechanism, showed the nonlinear mixing

of waves. While the fKdV-B model, which incorporates the dissipation mechanism, showed the

synchronising propagating waves. The fKdV and fKdV-B models apply to other driven charged or

neutral fluid or fluid-like systems governed by spatio-temporal convective nonlinearity.
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6.2 Future Outlook

The two fKdV-based models we presented in this thesis were derived from the full set of fluid-Poisson

equations. We could simplify the mathematical model as a single partial di↵erential equation using the

reductive perturbation approach. Yet, the model retains the essence of the nonlinearity and dispersion

of the medium. Also, the simplification helped in finding exact analytic solutions in certain parameter

regimes. While results from the simplified models show excellent agreement with experiments, there is

a scope for improvement by studying collective dynamics with the help of full-fluid modelling. With

full model equations, we will not only have access to a full nonlinear medium but also can access the

e↵ect of dimensionality. The transition from weakly nonlinear to fully nonlinear dynamics of the medium

e↵ects may significantly di↵er for mixing and synchronization processes. We also expect the possibility

of transition to bifurcation, chaos, and driven turbulence in this regime.

The fKdV model found its applicability to space debris-related problems in recent studies. It includes

understanding the nonlinear plasma excitation by space junk or space debris in LEO and helps predict

and control the threat due to the space debris to future space missions [140, 177]. We may also utilize

the fKdV model to study the e↵ect of external sources on the precursor solitons created due to a charged

bunch moving in a plasma [222]. Another important aspect of the KdV-based model description is its

applicability to other fluid-like physical systems. The nonlinear mixing and synchrony of surface, internal,

and strain waves are a few topics where present studies are readily extendable.

Dusty plasmas have a unique property to exist in di↵erent phases of matter depending on the back-

ground plasma environment and the charge over dust grains. Mostly they reflect traits of the intermediate

phase of fluid and solid. The standard fluid-Poisson model can not represent the medium’s dynamics

in strong coupling regimes. The dusty plasma is phenomenologically closer to the visco-elastic fluids in

intermediate coupling regimes. It will be interesting to see how nonlinear mixing and synchronization

responses alter in these regimes using a phenomenological visco-elastic model. The generalized hydro-

dynamic (GHD) visco-elastic model [147] can be the initiation point for such studies. A quantitatively

appropriate approach is to model the dusty plasma at a kinetic level using classical molecular dynamics

simulation. It is because the pair-wise interactions for charged dust particles are the form of shielded

Coulomb potential. This model intrinsically includes correlation, viscosity, and neutral drag e↵ects. The

MD simulation can be utilized for a qualitative picture of correlation e↵ects. The large-angle collisions

cause these correlation e↵ects and can not be included in the standard fluid models. In the present

thesis, we initially attempted to model nonlinear mixing using MD simulations. Results align with the

fluid model in the fluid regime, i.e., weak correlation domain. Mixing and synchronization studies need

to be extended for strong correlation domains.

On the model development front, magnetized dusty plasma is an important domain with the scope for

improvement in fKdV-based models. We explore a simplified two-dimensional model using a perturbation

technique appropriate to magnetized plasma. It will be interesting to see how an external driving can
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a↵ect nonlinear physical processes such as the instabilities and localized structure evolution, especially

in the presence of two characteristic frequencies associated with the plasma and the magnetic field,

respectively.

Another related topic worth exploring is the study of coupled plasma systems with di↵erent plasma

parameters. The coupled nonlinear oscillators have shown complete, lag, phase, and generalized syn-

chronization features in the literature [315–318]. An ensemble of coupled nonlinear oscillators has shown

frequency clustering and the Chimera states [319–321]. It is an interesting domain to explore how two

coupled KdV-B systems will reflect synchronization features.
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[65] L. Couëdel et al. “First Direct Measurement of Optical Phonons in 2D Plasma Crystals”. In: Phys.

Rev. Lett. 103.11 (21 2009), p. 215001.

[66] S. Nunomura et al. “Dispersion relations of longitudinal and transverse waves in two-dimensional

screened Coulomb crystals”. In: Phys. Rev. E 65.6 (6 2002), p. 066402.

[67] S. Nunomura, D. Samsonov, and J. Goree. “Transverse Waves in a Two-Dimensional Screened-

Coulomb Crystal (Dusty Plasma)”. In: Phys. Rev. Lett. 84.5 (22 2000), pp. 5141–5144.

[68] S. Nunomura et al. “Phonon Spectrum in a Plasma Crystal”. In: Phys. Rev. Lett. 89.6 (3 2002),

p. 035001.



BIBLIOGRAPHY 71

[69] S. Nunomura et al. “Wave Spectra in Solid and Liquid Complex (Dusty) Plasmas”. In: Phys. Rev.

Lett. 94.2 (4 2005), p. 045001.

[70] S. Nunomura et al. “Instability of Dust Particles in a Coulomb Crystal due to Delayed Charging”.

In: Phys. Rev. Lett. 83.9 (10 1999), pp. 1970–1973.
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