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Abstract

Multimedia plays a crucial role in today’s digital age due to its versatility and effective-

ness in conveying information, entertainment, and communication. Multimedia enriches

learning experiences through interactive and engaging educational materials. However,

the quality of multimedia can suffer due to various reasons such as low bandwidth, poor-

quality capturing devices, transmission errors, data compression, inefficient rendering

techniques, etc. These cause the occurrence of degradation like artifacts, blurring, noise,

video freezing, etc. On the other hand, there is an increasing demand from the end users

for better Quality of Experience (QoE). This has driven the service providers and re-

searchers to cater to market needs and develop algorithms that can effectively assess and

enhance user experience.

The domain of perceptual multimedia quality assessment (QA) aims to evaluate the

subjective quality of multimedia content, such as audio, video, image, or speech, from

the perspective of human perception. Moreover, Deep Learning (DL) techniques are now

widely used due to their efficiency and ability to handle complex problems. Perceptual

loss, a result of advances in Perceptual Quality Assessment (PQA) techniques, has re-

placed conventional metrics like Mean Square Error in training DL models, capturing

high-level features to optimize results based on human perception. Consequently, on-

going research is increasingly directed towards perception-based loss functions, enabling

more precise assessments of user experiences and driving advancements in multimedia

technologies and applications.

Broadly speaking the quality assessment techniques are divided into two main cate-

gories. First is the subjective evaluation, where human beings or subjects perceive the

data and annotate its quality. Though this technique encompasses human judgment it

is time-consuming, and expensive, and can’t be used in real-world scenarios. On the

other hand, in objective quality assessment techniques automation of quality assessment

is done using different metrics. These techniques are usually used since they are cheap

and easier to use. Further, the objective quality assessment techniques are divided into

three sub-categories, namely Full-Reference (FR) or Intrusive, Reduced-Reference (RR)

and No-Reference (NR) or Non-Intrusive, based on the information used from the ref-

erence or pristine sample. In this work, we propose a series of FR and NR metrics for

objectively assessing the quality of various multimedia data (3D synthesized views and
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User Generated Audio) and try to mimic the human perception system.

The field of Image Quality Assessment (IQA) involves analyzing and quantifying var-

ious distortions present in images. In recent times, Depth Index-Based Rendered (DIBR)

views or 3D views have gained popularity due to their widespread application in Virtual

Reality, Free-viewpoint Televisions, etc., offering viewers an immersive experience. Apart

from the conventional degradations present in natural images, these DIBR views suffer

from geometric degradations caused due do poor rendering and inpainting techniques.

Thus the conventional IQAs are not effective in the quality assessment of the DIBR view.

In this regard, the researchers have come up with metrics that take the unique character-

istics of DIBR images into consideration and tailor the QA metric accordingly.

User Generated Multimedia (UGM) encompasses the multimedia data created, cap-

tured, uploaded and shared by naive or non-professional users in in-the-wild scenarios.

Such data is prone to various types of distortions caused by poor capturing devices, low

bandwidth for sharing, background noise, low bit-rate etc. Further, the UGM audio has

different acoustic characteristics as compared to plain speech content, and consequently,

the quality assessment algorithm designed for speech signals can not be directly employed

on UGM. Thus, formulating an efficient quality assessment metric for UGM is a vital

task.

As mentioned above, in this thesis, we propose different metrics for the quality as-

sessment of the two multimedia types i.e. DIBR views and UGM audio content. A brief

summary of these metrics is given below;

1. Full Reference Quality Assessment Metric for DIBR Views:

Many of the existing QA metrics make use of feature maps (such as the Laplacian

pyramid, LBP maps, and saliency maps) to highlight certain attributes in the im-

age for effective quality assessment. However, in DIBR images, texture and edge

information may be lost during the acquisition of these maps, which is crucial for

their quality assessment. In the first chapter of the thesis, a novel quality assess-

ment approach for DIBR images is proposed, utilizing Non-Subsampled Contourlet

Transform (NSCT) maps. The NSCT employs a non-subsampled pyramid struc-

ture, maintaining multi-scale characteristics, and a non-subsampled directional filter

bank for directionality. Thus, effectively capturing visually significant contours near

object edges or occlusions, which are highly perceptible to the human visual sys-
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tem. Additionally, the NSCT decomposition does not involve any down-sampling or

up-sampling operations, thereby preventing frequency aliasing in low-frequency sub-

maps. To further refine the features, a pre-trained CNN model is used to generate

compact and representative features. The final step involves finding the difference

between the feature vectors of the reference and synthesized views. The results

demonstrate high performance compared to existing quality assessment techniques

for DIBR images.

2. No Reference Quality Assessment Metric for DIBR Views:

From the literature, it was analysed that some of the existing block-based NR met-

rics typically divide an image into blocks and assign the same subjective quality

scores to each block for training a deep learning model. However, this approach is

not suitable for DIBR synthesized views, as distortions are often localized in spe-

cific areas rather than affecting the entire view. Consequently, the performance of

existing block-based deep-learning algorithms suffers due to the absence of accurate

ground truth scores for each image block. To address this limitation, this work

proposes an innovative method for determining ground truth scores for individual

image blocks. Firstly, we obtain the deep features of NSCT map of an image block

and the quality score for each block is calculated using its and the reference block’s

feature vector. These block-wise ground truth scores are used to train a deep learn-

ing model which serves as a NR metric for estimating the quality of a given test

block. Finally, the predicted block-level quality values are aggregated to determine

the overall quality of the entire image. Experimental results demonstrate that the

proposed NR algorithm outperforms existing NR objective metrics for DIBR syn-

thesized views.

3. Non-Intrusive Audio Quality Assessment Metric for User-Generated Mul-

timedia Using Deep Learning:

This work begins by conducting a comprehensive analysis of the existing audio

databases for quality evaluation and identifying their limitations. To fill the research

gap in assessing UGM audio content, we create a benchmark audio repository called

the IIT-JMU-UGM Audio Dataset along with human annotations. This dataset

comprises diverse content, context, and degrees of distortions typically present in

various real-time multimedia applications. Then, human subjective testing is con-
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ducted on the dataset to obtain ground truth on quality. Moreover, a robust end-

to-end non-intrusive metric is proposed for estimating the quality of audio. The

proposed metric is based on stacked Gated Recurrent Unit (GRU) architecture.

The “gated” mechanism in GRUs enables them to control the flow of information

through the network, making them well-suited for tasks that involve sequential

data with long-range dependencies. The proposed metric outperformed the existing

state-of-the-art intrusive and non-intrusive methods applied to the dataset.
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Chapter 1

Introduction

1.1 Multimedia Quality Assessment

In recent years, the rapid growth of communication techniques, affordable capture devices,

social media, and digital technology has led to an increase in the creation and transmis-

sion of multimedia content. This has impacted various areas, including online learning,

entertainment, information sharing, healthcare services, etc. However, challenges like

storage, limited bandwidth, device diversity, and network issues can degrade the quality

of transmitted data. Consequently, there is a need to prioritize the end user’s quality

of experience. High-quality multimedia content enhances user satisfaction, engagement,

and retention. Quality assessment (QA) techniques play a vital role in identifying and

resolving issues such as compression artifacts, distortion, color accuracy, and audio clarity,

thereby improving the user experience. These techniques also assist in optimizing encod-

ing parameters, compression algorithms, and multimedia processing methods to achieve

the best quality possible within given limitations.

Multimedia quality assessment deals with quantifying the degree of degradation that

affects the quality of multimedia data such as images, audio, video, etc. Specifically, the

perceptual quality assessment (PQA) considers the human perceptual system’s (HPS)

response to content, leading to a more realistic evaluation of multimedia quality compared

to traditional objective metrics. In this context, Wang et al. [9] investigated the limitations

of metrics like “mean square error (MSE)” in assessing image quality, as they fail to

align effectively with human perception. Instead, they introduced SSIM, a perception-

based quality metric that incorporates human perceptual characteristics, resulting in a

1
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Figure 1.1: Example highlighting the importance of perception-based quality assessment metric [1].

more accurate representation of perceived image quality. To emphasize the significance

of perceptual intuition in quality assessment tasks, an example image is presented in Fig

1.1, a clean image is altered by various degradations. Both images have significantly

different perceptual qualities, however, the same MSE of these images is the same. On

the contrary, this quality difference is efficiently captured by the SSIM metric which is

sensitive to HPS, thus giving more realistic results.

Moreover, the efficiency and ability to address complex problems have led to the use

of Deep Learning (DL) techniques for a wide range of applications. During training a DL

Model, the loss function is crucial for measuring how well a model’s predictions match

the actual target values. Initially, common metrics like MSE and Mean Absolute Error

(MAE) were used as loss functions. However, advances in PQA techniques have resulted

in the adoption of perceptual loss in training the DL models [10–14]. Perceptual loss

captures high-level features to improve the overall quality of generated data. This helps

to optimize results based on human perception. Thus, current research is inclined towards

perception-based loss functions that offer better evaluation of the user’s experience, lead-

ing to improved multimedia technologies and applications.

Two primary techniques are used to determine the quality of multimedia data. The
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first technique is subjective testing, where human subjects assess and annotate the quality

of the data. While this approach relies on human perceptual judgment, it is time-taking,

labor-intensive, expensive, and not effective in real-world scenarios. In contrast, objective

quality assessment techniques automate the assessment process and try to mimic the HPS.

These techniques are preferred due to their cost-effectiveness and ease of use, although

they may not perfectly model human perception. Objective QA techniques are classified

into:

1. Full-Reference (FR)/ Intrusive: This technique requires both a reference (clean)

sample and the distorted/test sample for comparison. While FR QA metrics provide

high accuracy, it may not be feasible when a clean reference is unavailable or in real-

life situations.

2. Reduced Reference (RR): In this technique, only selected parameters from the

reference signal are utilized for quality assessment.

3. No-Reference (NR)/ Non-Intrusive: These metrics assess quality using only

the features of the test/degraded signal, making it more realistic for practical use.

These objective QA techniques offer different trade-offs in terms of accuracy and practi-

cality, allowing for efficient assessment of multimedia quality in various scenarios.

In literature, a lot of work has been done on various types of multimedia data such

as audio, images, video, text, etc. Their quality is objectively assessed along various

dimensions, such as degradation type, degree, location of distortions, impact on HPS,

availability of reference data, sample size (pixel, block, overall), applicability, etc. With

this view, this thesis aims to propose approaches for assessing the quality of the following

two important types of multimedia;

1. Quality Assessment of Depth Image Based Rendered Views:

The 3D synthesized or Depth Image Based Rendered (DIBR) views/images repre-

sent the synthesized views (SV) of a scene or object generated using depth infor-

mation to enable virtual camera movements or produce stereo/multi-view displays.

These have recently gained popularity in various domains like augmented reality,

free-viewpoint televisions, virtual reality, and more. Conversely, current 3D syn-

thesis algorithms often generate distortions like stretching artifacts, misalignment,
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and a range of geometric and structural errors. Therefore, evaluating the quality of

these synthesized views is a significant research aspect of computer vision.

2. Audio Quality Assessment of User-Generated Multimedia

User Generated Multimedia (UGM) refers to multimedia data created, captured,

uploaded, and shared by naive/non-professional users in real-world scenarios. Such

data is often subject to various distortions caused by low-quality capturing devices,

low bandwidth, background noise, low bit rate, etc. Furthermore, the existing

metrics mainly quantify speech quality and intelligibility which has different acoustic

properties as compared to UGM audio. Thus, quality assessment algorithms for

speech signals cannot be directly applied to UGM, and developing an efficient quality

assessment metric for UGM is essential.

This thesis aims to conduct a systematic study of existing work on quality assessment

of DIBR views and UGM audio, addressing the limitations, and devising novel QA tech-

niques for improved performance. The detailed literature survey is given in the proceeding

section.

1.2 Quality Assessment of DIBR Views

Depth Image Based Rendering is a technique to create new/novel views of a scene from

existing images and their corresponding per-pixel depth information. The depth infor-

mation provides the distance of each point in the scene from the camera’s viewpoint. By

utilizing this, the rendering technique allows for the synthesis of additional views of the

scene, creating a sense of depth and perspective for the viewer. In the Free-viewpoint

video, the DIBR views can be interactively explored by changing the viewpoint which

gives an immersive effect. This helps in the creation of realistic visual experiences by

offering multiple perspectives of the same scene [15].

The DIBR process is based on the concept of 3D warping wherein the transformation

of points between 2D and 3D space is done [16]. In this process, the given image points

are reprojected into a 3D world based on their depth information. This means each pixel’s

2D position is transformed into a 3D position in space, accounting for its distance from

the camera. Next, the 3D points in space are projected onto a virtual camera at the

desired viewpoint, generating a new view of the scene [17].
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In many cases, certain objects or parts of the scene that were hidden from the camera

in the actual view might be evident/visible from the virtual camera’s viewpoint in the

synthesized view. These newly visible areas are termed dis-occlusion. Handling dis-

occlusion areas is a crucial aspect of DIBR. In this regard, image inpainting techniques

are often used to fill in the missing information in these areas.

Natural images often experience uniform, non-localized, and structural distortions like

Gaussian noise, compression artifacts, and blur. On the other hand, the process of syn-

thesizing DIBR views introduces distinct geometric distortions for example “flickering”,

“black-holes”, “cracks”, “ghosting”, “stretching”, and “crumbling” [15]. These artifacts

are different from the conventional distortions typically encountered in regular natural

images. As a result, DIBR views suffer from both geometric and traditional structural

distortions. Consequently, various studies have demonstrated that conventional quality

assessment techniques used for natural images are not efficient when applied to DIBR

views [18]. Therefore, many researchers have attempted to develop specialized techniques

to handle the unique challenges in the QA of DIBR views. Figure 1.2 illustrates several

instances of the artifacts found in DIBR views. These artifacts can be classified into

distinct categories according to their perceptual characteristics.

1. Black-hole: Presence of black patches or holes is caused due to filling of disoccluded

areas by black pixels.

2. Crumbling: The edges of the object seem to be degraded in the synthesized view,

primarily caused by artifacts in the depth maps surrounding strong discontinuities,

resembling erosion effects.

3. Stretching: Due to imperfect inpainting techniques, the textures may be repeated

or stretched over the holes causing stretching artifacts.

4. Blurry regions: In-painting methods employed to fill disoccluded areas may gen-

erate some blurry regions.

5. Incorrect rendering: Complex textured areas may exhibit rendering errors such as

information loss, which cannot be adequately reconstructed by in-painting methods.

6. Object shiftings: In the synthesized view, object regions may experience slight

shifts due to depth preprocessing techniques such as low-pass filtering or depth
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encoding methods used to smoothen object edges.

1.2.1 Benchmark QA Datasets For DIBR Views

Benchmark datasets are extensively used to provide standardized data, enabling fair com-

parisons and evaluation of techniques. Additionally, the dataset should include subjective

scores as ground truth for evaluation. Numerous benchmark datasets have been proposed

in the literature, offering comprehensive resources for evaluating QA techniques, some of

which are described below.

1. The IRCCyN/IVC Dataset: [19]

The IRCCyN/IVC Dataset was proposed in 2011 and consists of three reference

views (RV), which are used to render 84 corresponding synthesized views. Four

distinct techniques are used for image rendering. However, the resultant views

suffer from different degradations such as blur, stretching, etc. Among these, “black

holes” are the most prominent degradation characterized by empty black pixels

caused due to ineffective hole-filling methods. Initially, many QA metrics focused

on detecting and quantifying these black-hole degradations as they have a high

impact on perceptual quality.

2. The IVY Dataset [20]:

The IVY dataset proposed by Jung et al. in year 2016, consists of stereoscopic DIBR

views for QA. It consists of a total of eighty-four stereo image pairs generated from

seven reference views which were obtained from MVD sequences and Middlebury

datasets. Further, four 3D view synthesis algorithms were employed in the synthesis

namely Ahn’s [21], Criminisi’s [22], inter-view consistent inpainting method, and

MPEG VSRS. The synthesized views generated are dominated by ghosting artifacts.

3. The IETR Dataset [18]:

The IETR dataset comprises one hundred forty synthesized views generated using

ten reference views. Each image is associated with its subjective quality score.

Seven reference views are Natural, while the remaining three are Synthetic. Seven

synthesis techniques were employed in developing this dataset. The Single-view

3D methods use only one image along with its depth map to synthesise images.
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(a) Black-hole (b) Crumbling

(c) Stretching (d) Blurring

(e) Information loss (f) Ghosting

Figure 1.2: Examples of different types of artifacts and distortions present in the DIBR views.



1.2. QUALITY ASSESSMENT OF DIBR VIEWS 8

Five Single-view 3D techniques (HHF [23], Luo’s [24], Ahn [21], Criminisi’s [22],

and LDI [25]) have been employed for synthesis. Furthermore, an Inter-view DIBR

synthesis method proposed by Zhu [26] and an additional (single-view and inter-

view) method VSRS [27] is also included for the image synthesis. Some samples of

the reference and synthesized views from the dataset are given in Fig. 1.3. The

rendered views suffer from distortions such as blur, stretching, ghosting, cracks, etc.

The subjective score is also provided for each of the views.

4. MCL-3D Dataset [28]:

In MCL-3D Dataset comprises nine reference image sequences along with their depth

maps. In this dataset, pre-DIBR synthesis distortions are explored by manually

adding various distortions to the depth and RGB images. These include “JPEG and

JPEG-2000 compression”, “additive white noise”, “down-sampling blur”, “Gaussian

blur”, and transmission error. The data comprises more than six hundred images

synthesized from the reference views along with their subjective scores.

From analyzing these repositories it was found that the datasets such as MCL-3D and

IRCCyN/IVC employ outdated synthesis methods, leading to the prevalence of distortions

such as black holes. However, the advancement of inpainting techniques has resulted in

the almost elimination of these black-hole distortions, making it advisable to employ

more recent benchmark datasets for evaluation [18]. Therefore, this thesis focuses on

using IETR and IVY datasets for assessment as they represent the current scenario in

rendering the DIBR views.

1.2.2 Existing Techniques for Quality Assessment

The DIBR views suffer from various degradations, this has prompted investigations in

QA in the field. Presented below are some of the existing QA methods which are sub-

categorized as FR and NR techniques.

1. Full-Reference Quality Assessment Techniques

The details for some of the well-known full reference image QA techniques are given

below.

• The MW-PSNR metric [29] makes use of the “morphological wavelet”

transform to get the low-level features of the images at various scales. It
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(a)

(b)

(c)

(d)

Figure 1.3: Examples of reference and synthesized DIBR views from the IETR Dataset
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calculates the PSNR between these maps and pools the values to calculate the

quality of the image.

• Tian [30] presented a method for shift compensation which is caused during

the synthesis of DIBR views. They also employed the “dis-occlusion mask”

technique to qualify the distortions present in the dis-occlusion regions using

corresponding depth maps.

• The MP-PSNR metric [31] makes use of “morphological pyramids” to ex-

tract perceptually important geometric details such as edges from the images.

Next, it calculates the PSNR between the maps of clean and the synthesized

images to calculate the quality score.

• The “LOcal Geometric distortions in dis-occluded regions and global

Sharpness (LOGS) metric” [32] is based on determining the location of dis-

occluded areas in the DIBR views and then quantifying their size and intensity.

Furthermore, it obtains global sharpness by employing a “re-blurring-based

strategy” and later merges the scores together to obtain the image quality.

• The “Instance DEgradation and global Appearance (IDEA)” met-

ric [33] is proposed by Li et al. The metric integrates the global as well as

local distortions measured using “super-pixel” representations and “discrete

orthogonal moments” respectively. To get the quality of an image, both the

scores are integrated together.

• The Shift Compensation (SC-IQA) metric [34] explores the occurrence

of shift in the synthesized views which is caused during the rendering process.

In this regard, they employed the existing SURF and RANSAC homography

techniques for “shift compensation” globally as well as in a block-wise manner.

Additionally, for determining the weighting function, a “visual saliency map”

was employed.

• The SuperPixel Difference metric (SSPD) [35] proposed by Mahmoud-

pour et al., is based on calculating the changes in global contrast and appear-

ance along with determining the local geometrical distortions in the images. It

employs the Speed Up Robust Features techniques to equate the feature points

of the synthesized and reference views and determine the distortions based on
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the corresponding descriptors.

• The Saliency-Deep Feature (Sal-DF) metric [36] employs saliency maps

to highlight the perceptually vital features such as edges and textures in the

DIBR views. To further refine the feature maps, convolution layers of a pre-

trained model are used. The aggregated quality score is obtained by calculating

the cosine similarity between the clean and degraded view.

• The “Perceptual Representations of Structural Information” (PRSI)

metric [37] is inspired by the human perceptual system. It pools task-oriented

non-natural structure descriptors along with the mid and low-level features

for quality assessment. Further, the concepts of dictionary learning, sparse

representation, and rank pooling are employed to determine the quality.

• The PUIR-DFCS [38] proposed by Sadbhawna et al. make use of Laplacian

pyramid maps as they provide a multi-scale representation of images. Differ-

ence in the deep features of the clean and distorted maps provided intuition

for the image quality. Furthermore, they made use of various morphological

operations to highlight the regions where the distortions are mainly located

and determined the degree of distortions in such regions.

• The “Elastic metric” (EM) [39] proposed by Ling et al. explores the

fact that geometric distortions in DIBR views are characterized by bending or

stretching along the object edges. This metric determines the regions where

local distortions are present and then measures the degree of stretching in the

curves to quantify the distortions.

• The“Sparse Representation” (SR-VQA) [40] by Zhang et al. proposes

a metric which is mainly used to assess the flicker distortions present in 3D

synthesized videos. The constituent spatial and temporal domains of the video

are first decomposed along two planes. Further, the edges of the depth map

and the gradient features are analysed for detecting flicker. Finally, sparse

representation, dictionary learning, and rank-pooling techniques are applied to

determine the quality score.

• The “Context Identification” metric [41] relies on an observation that

the perceptual quality of DIBR views is greatly dependent on the context
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area i.e. foreground or background from which the inpainting for hole-filling

is applied. With this motivation, the authors first predict the locations where

the geometric distortions are mainly present and then quantifies the distortions

present in the region.

• The “Local and Global Geometric Distortions” metric (LGGD) [42]

proposed by Peng et al. aims at determining the geometric distortions at both

the local as well as global levels. The metric makes use of a “sketch token-

based local edge descriptor”, as most of the distortions lie along the edges of

the objects. Moreover, the spatial pyramid-improved Bag-of-Token and “pixel-

level backward registration” techniques are explored for determining the global

distortions in the images.

• The “SEmantic- and QUality-aware feature Similarity measures plus

a Salient-region detection metric (SEQUSS)” [43] is proposed by Mah-

moudpour et al.. This work makes use of CNN for shift compensation and the

generation of visual saliency masks. For quality assessment, the metric com-

putes and pools together the structural and semantic similarity of the clean

and distorted views.

• The “Adaptive- Deep Image Structure and Texture Similarity (A-

DISTS) metric” [44] proposes a technique for determining the “locally adap-

tive structure and texture similarity index” between the reference and synthe-

sized image. It makes use of the dispersion index for obtaining single statistical

features at various scales. The metric is used in the QA of super-resolution as

well as synthesized images.

• The Wang’s metric [45] proposes to quantify the geometric and texture

degradations by extracting relevant features from course to fine level. The

techniques used in this metric involve DCT-based texture similarity, color co-

occurrence matrix, edge-based region similarity, etc. The features are then

learned using a machine-learning model to determine the quality of the syn-

thesized view.

2. Reduced-Reference Quality Assessment Techniques

These techniques require some information from the clean sample. Some of the RR
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IQA are given below:

• The “Reduced Reference Entropic Differencing (RRED)” metric [46]

is based on deriving the “ Wavelet Coefficients (WC)” of the given images.

The quality value is obtained by determining the mean difference between the

“scaled entropies” of the WC. Further, they proposed a series of measures based

on the quality subband taken into consideration and the amount of information

required from the clean signal. The metric is parameter-free and is used in

applications related to quality monitoring in networks for visual multimedia.

• Mahmoudpour et al. [47] proposed a technique to determine the quality

of images corrupted by various types of degradations. This technique employs

the “internal generative mechanism” for decomposition along with the entropy

calculation. The difference calculation in the clean and distorted feature vectors

is followed by training a regression model for the final quality prediction.

• The “Spatial Efficient Entropic Differencing (SpEED)” metric [48]

is based upon the techniques of NSS modelling. For quality prediction, the

difference in the local entropy of the two images in the spatial domain is taken

into account. Its usability has been extended to the domain of video QA also.

• Jinjian et al. [49] proposed to make use of the concept of change in the

saliency of an image for QA. In this process, initially, the saliency regions are

identified which is followed by obtaining the vital features using the “local

saliency weighted histogram” and “global saliency-based histogram”. These

features are then combined together to determine the quality.

3. No-Reference Quality Assessment Techniques:

The details of some of the SOTA NR IQA metrics available are given below.

• The “Auto-regression Plus Thresholding (APT) metric” [50] anal-

ysed that though the existing “NSS models” are capable of quantifying the

distortions in natural images, these may not be usable for DIBR views. In

this regard, the work proposes to exploit the “local image description” in the

images to describe the similarity among the pixel in a patch. It further deter-

mines the difference in the DIBR view and the “auto-regression-based map”

to represent the image quality.
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• “Blind Image Quality Indices (BIQI)” metric [51] is a two-step tech-

nique for QA. Initially, it measures the probability of a particular distortion

(like “Gaussian Blur”, “compression” etc.) in the image using a machine learn-

ing model. This is followed by mapping these scores to their individual quality.

The final quality of the images is calculated as a weighted sum of these indi-

vidual quality values.

• The “Kernel-Ridge Regression” metric (KRR) [52] is based on using

the “global kernel ridge regression” technique for quality prediction. The met-

ric determines the boundaries of the areas affected by geometric distortions

followed by quantifying the degree of degradations in these regions. It also

makes use of the NSS model to determine structural degradations. The image

quality score is calculated by aggregating these values together.

• The “No reference Image Quality assessment method for 3D Synthe-

sized Views (NIQSV+)” [53] proposed by Tian et al. It relies on quanti-

fying the most prominent distortions in the DIBR views like; stretching, blur,

crumbling, and black holes. These are determined by gradient calculation, lu-

minance measurement, difference calculation in colour components and finally

pooling these scores together.

• The “Multiscale Natural Scene Statistical (MNSS)” metric [54] is a

combination of a number of NSS models specifically designed for 3D views. It

measures the damage caused by geometric distortions to the basic characteristic

of natural images and quantifies the statistical irregularity at different scales

of the image.

• The “No-Reference Morphological Wavelet with Threshold (NR-

MWT)” metric [55] relies on the assumption that due to distortions, the

amount of “high-frequency” content gets increased in 3D synthesized views.

It identifies the regions in the high-high wavelet subband using morphological

wavelet transformation and thresholds these to determine the areas with the

highest distortion sensitivity.

• The “Geometric Distortions and Image Complexity (GDIC)” met-

ric [56] suggested by Wang et al. employs “discrete wavelet transform” to

decompose the images into wavelet sub-bands. Next, the edges detection tech-
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nique is used followed by measuring the similarity between high and low fre-

quency subbands. The quality is measured by normalizing geometric distor-

tions through image complexity.

• The Wang’s metric [57] proposes a QA metric based on pooling the image

complexity, global sharpness, and geometric distortion values. This is done by

decomposing the image by discrete wavelet transform, followed by edge detec-

tion and measurement of geometric distortions. The sharpness is calculated

by “log-energies of wavelet subbands” and image complexity is computed by

bilateral and autoregressive filters.

• The “COlor Depth Image Fusion (CODIF)” metric [58] proposed by

Li et al. explores the color and depth representations of the DIBR views.

For determining the boundaries of the image, its color information is utilized

followed by a Wavelet-based technique to represent the fusion between depth

and color image. The quality score is determined by training a model using

statistical features of natural and interaction areas of the image.

• The “Local Variation and Global Change (LVGC)” metric [59] by Yan

et al. employs the “Gaussian derivatives” and LBP technique for extracting and

quantifying the local degradations in terms of chromatic and structure features.

The global degradations are sensed by assessing the degree of naturalness in the

views. Finally, by training a regression model using these features, predictions

about the quality are obtained.

• The “Generative Adversarial Networks based No Reference Quality

Assessment Metric (GANs-NRM)” [60] proposed by Suiyi et al., employs

“Generative Adversarial Network” to render mask regions in an image. After

training the network, it is assumed that the discriminator of the trained GAN

possesses the capability to assess the quality of the masked area. Thus, the

features obtained by the discriminator to learn the “Bag-of-Distortion-Word

codebook” are then used for quality measurement.

• The Yue’s metric [61] attributes the quality of the image to geometric dis-

tortions and sharpness. This is measured by analyzing local similarity while

sharpness is quantized by the deviation between the distorted and the down-

sampled image. Later the linear pooling technique is used for aggregating the
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individual scores.

• The “Synthesized views using DoG-based Edge statistics and Tex-

ture naturalness (SET)” metric [62]make use of the multiple scale Difference-

of-Gaussian representations to obtain the features pertaining to the degrada-

tions caused in the texture and the edges. These features are then learned

using the random forest regression technique.

• The “Synthesized Image Quality Assessment with Contextual Multi-

Level Feature Pooling (SIQA-CFP)” metric [63] extracts features of the

DIBR views from multiple levels of a CNN model. These high and low-level

features are then aggregated using a warping technique. This is followed by

contextual pooling using a deep learning model for determining the quality

scores.

From the literature analysis, some of the shortcomings of the existing work are sum-

marized below.

• The DIBR views exhibit distinct characteristics as compared to natural 2D images.

This can be validated from the performance of the existing metrics (e.g., Lao’s [64],

SSIM [9], Cheon’s [65], GMSD [66], PSNR, FSIM [67]), which work well for natural

images but exhibit low performance when applied to DIBR views. This highlights

the importance of developing a dedicated metric specifically tailored for evaluating

the quality of DIBR views.

• Many of the existing QA metrics such as [32, 37, 50, 52] primarily focus on detect-

ing black-hole distortions in DIBR views (IRCCYN/IVY dataset). However, due

to technological advancements, black-hole distortions have nearly eradicated from

current DIBR views. Consequently, these metrics are no longer able to achieve high

accuracy when applied to the latest benchmark DIBR datasets, such as the IETR

and IVY which exhibit other types of distortions.

• In 3D synthesized views, there is a misalignment between the synthesized image and

the reference image, which occurs due to the rendering processes. As a consequence,

many FR techniques struggle to perform effectively, as they rely on pixel-level com-

parisons. Some metrics have attempted to mitigate the problem, for instance, the
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SSPD algorithm [35] involves feature matching using the SURF technique. Other

approaches such as SC-IQA [34] utilize SURF and RANSAC homography while [68]

uses BRISK for shift compensation. However, incorporating an explicit shift com-

pensation step introduces additional computational complexity, potentially posing

challenges to their efficiency and overall effectiveness.

• Despite the advancements in inpainting techniques that have removed degrada-

tions like black holes, imperfect rendering processes still lead to the introduction

of various distortions in images. These include stretching artifacts, blurring, block-

iness, shifting, and more. Several existing techniques [6, 61] have been developed

to address specific distortion types, for instance, focusing on detecting stretching

artifacts. While these metrics perform reasonably well for their intended purpose,

there remains a need for an algorithm that would provide a holistic quality score,

taking into account the diverse range of distortions affecting the images.

• Moreover, the restricted availability of a sufficiently large dataset with subjective

annotations has hindered the adoption of direct deep-learning techniques for the

QA of DIBR images.

• Additionally, the existing no-reference quality assessment methods such as DSCB

[69], Wang’s [70], Yan’s [59], NRMWT [55] still struggle to perform well on DIBR

views as they are not able to mimic the HPS efficiently. An efficient NR QA metric

could have otherwise been an ideal solution for real-world scenarios where reference

data is unavailable.

Based on this analysis, it becomes evident that the development of a new metric specif-

ically designed for the QA of DIBR views is very important. This metric should possess

simplicity and efficiency while addressing the challenges posed by the distortions present

in existing databases.

1.3 Audio Quality Assessment

In recent years, there has been an increase in digital technology, leading to the rapid

generation and distribution of User Generated Multimedia content. Given this context,

the assessment of UGM data quality becomes crucial as it empowers service providers,
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device manufacturers, and streaming platforms to deliver a better quality of experience to

end-users. This section provides detailed insights into the available datasets and existing

metrics used for audio quality assessment.

1.3.1 Existing Audio Datasets

This section presents several datasets that have been utilized in diverse audio applications.

The details of these repositories are presented below.

• The International Telecommunication Union (ITU) recommended the [71]

database for speech assessment, it contains clear and distorted signals along with

their subjective quality scores. The distortions are caused by narrowband speech

degradation, environmental noise, audio encoding, and channel degradation. The

dataset is available under licence.

• Fazenda et al. in their work [72], explored UGM audio quality estimation, wherein

clean samples were acquired from YouTube, which was later corrupted by back-

ground noise. However, the repository is not openly available for use, and the

number of samples is 128.

• The NOIZEUS database [2] designed for the assessment of speech enhancement

algorithms includes speech samples with thirty standard sentences [73], distorted by

different real-world noises at different Signal to Noise Ratios.

• Creusere et al. in their work [74], compiled a data set with clean samples and dis-

torted them using various bit rates. The data was obtained from multiple sequences

ranging from rock to classical music. Each sample is of 9 to 24-sec duration.

• The TIMIT database [4] is designed to provide samples for the automatic speech

recognition task. It comprises recordings from 630 American speakers reading En-

glish sentences in numerous dialects. This corpus has been used in [75], for providing

clean speech signals.

• Li et al. [76] developed a database that contains clean and synthetically distorted

recordings belonging to various music genres and is used for quality assessment

of live music. It contains live music recordings belonging to four categories (i.e.,

country, rock, electronic, and pop).
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• Avila et al. in their work [77] estimated speech quality using a database containing

recorded speech. Home, office, and other background noises, along with reverber-

ations, were convolved with the clean samples. Online crowd-sourcing was used to

determine the subjective scores wherein ten subjects rated each sample. However,

the database is not openly available for assessment.

• The Speech in Noisy Environments Evaluation database (SPINE) [3] is

developed to facilitate robust speech recognition systems in noisy military scenar-

ios. The repository consists of recorded conversations between two participants

modelling the surrounding which depicts battleground environments.

• The CoreSV14 [78] was developed to evaluate various codecs such as AAC, Opus,

Ogg Vorbis, and MP3 and find out which among these produces the best sound

quality. It contains five speeches and thirty-five music excerpts.

• The EQ-SQAM database [79] contains about seventy high-quality sounds from

music, speech, orchestra, etc. However, no subjective scores and degradations are

present in the database.

• The ACE Challenge [80] was developed as a blind metric for the determination

of acoustic parameters i.e. Direct-to-Reverberant Ratio and Reverberation Time

from speech. The data set consists of clear speech sample recordings convolved with

noise and acoustic impulse response measures from rooms of various sizes.

• Bs1387Conform dataset [81] is a small dataset consisting of about thirty-two

instrumental sounds and speech samples. It has been used to validate the imple-

mentation PEAQ QA metric.

• The UnbAvq2013 dataset [82] comprises a total of twenty-four audio clips ex-

tracted from six audio-video samples. The clean files are corrupted by various codecs

and bit rate compressions which are subjectively evaluated.

• Besides the datasets mentioned, researchers have utilized several other audio databases

[83–87] spanning various sound domains.

From the literature survey above, we can iterate that most of the repositories consist

of speech data. However, the UGM audio signals have different acoustic characteristics
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as compared to plain speech content, and consequently, the quality assessment algorithm

designed for speech signals can not be directly employed on UGM. In order to verify

this argument, we carried out a spectrogram analysis of speech signals and UGM clips.

The spectrogram aids in analyzing the range of frequency and amplitude present in a

given signal. It visualizes a signal on two perpendicular axes representing the time and

frequency, while the colour intensity represents the amplitude. Given a signal s[m] with

window w, such that Ω is the frequency and m is the discrete-time index. The Short-Time

Fourier Transform (STFT) is expressed as:

STFT{s[m]}(n,Ω) = S(n,Ω) =
∞∑

m=−∞

s[m]w[m− n]e−jΩm. (1.1)

Squaring the magnitude of the resultant STFT renders the spectrogram display of the

power spectral density of the function as given by;

spectogram{s(t)}(τ,Ω) = |S(τ,Ω)|2. (1.2)

where τ is the time axis.

Figure 1.4 represents the spectrogram of samples obtained from the three datasets

NOIZUS [2], SPINE [3], and TIMIT [4] containing speech samples, respectively. It can be

observed from the spectrograms that speech is represented by a restrained spectrum along

with precisely defined predictable perceptual components. Additionally, the presence

of phonemes is quite evident from the discontinuities (dark areas) present in the plots.

Further, it can be observed that the spectrograms depict a restricted range of frequencies,

due to the presence of the human voice, which encompasses a limited frequency span.

The heat map depicting amplitude variation is quite constrained for the given samples.

Thus, giving us the intuition that speech samples have limited diversity in frequency and

amplitude. On the other hand, we find that the spectrograms of UGM audio 1.4 (d) and

(e), are highly scattered. They do not contain only speech but there is music or other

background sounds also present. Which makes the spectrograms different from those of

the speech.

In consideration of the elaborate discussion, the following analysis can be derived:

1. Most of the existing datasets are designed for speech quality assessment and intel-

ligibility analysis. These datasets lack other sounds that are dominant in UGM.
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2. The existing datasets lack context diversity. Even though the datasets proposed

in [72,78,82] consists of a combination of a few audio types, the amount of diversity

in all these repositories is minimal.

3. The limited availability of a sufficiently large UGM dataset with subjective annota-

tions has impeded the adoption of direct deep-learning techniques for UGM AQA.

1.3.2 Existing Audio Quality Assessment Techniques

Audio quality techniques can be divided into two main types: intrusive and non-intrusive.

Intrusive metrics analyze the differences in the degraded and reference samples to calculate

the perceptually weighted distance or error. On the other hand, non-intrusive metrics do

not require the reference signal. Instead, they analyze only the degraded audio signal to

estimate the quality score. A detailed study of the existing intrusive and non-intrusive

quality assessment metrics is discussed below.

1. Intrusive Quality Assessment Metric:

• “Perceptual Evaluation of Speech Quality (PESQ)” [88] is an intrusive

metric used to estimate the quality of narrow-band speech samples. It involves

aligning corresponding excerpts of the reference and test signals temporally

and then analyzing them sample by sample. PESQ is used as a QA metric for

a network or to evaluate the performance of specific network components.

• “Perceptual Objective Listening Quality Assessment (POLQA)” [89]

metric used to evaluate the quality of both narrow-band and super-wide band

signals. This metric applies masking functions to the signals and conducts

frequency domain analysis. The distortions, represented by the unmasked dif-

ferences between the two signals, are aggregated and mapped to a quality score

varying from 1 to 5.

• “The Virtual Speech Quality Objective Listener (ViSQOL)” metric,

proposed in the [90], relies on spectro-temporal analysis to assess the similarity

between reference and distorted signals. This metric is specifically designed to

handle quality issues commonly encountered in Voice over IP (VoIP) transmis-

sion and ensures robustness in evaluating VoIP-related quality problems.
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(a) (b)

(c)

(d) (e)

Figure 1.4: Spectrogram of the samples from (a) NOIZUS [2] (b) SPINE [3] (c) TIMIT [4], and (d), (e)
are two random instances from IIT-JMU-UGM Audio Dataset.



1.3. AUDIO QUALITY ASSESSMENT 23

• “The Short-time Objective Intelligibility (STOI)” [91] measure, is an

intelligibility technique that utilizes DFT-based time-frequency decomposition

to calculate an intermediate intelligibility measure. This approach allows for

the assessment of intelligibility in a short-term context, enabling a more de-

tailed analysis of speech signals.

• “The Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)” technique

proposed by Jonathan et al. [92], introduced an enhanced technique for qual-

ity assessment in single-channel scenarios. Their approach is based on the

“scale-invariant signal-to-distortion ratio” and is mainly developed for evalu-

ating speech enhancement and source separation algorithms.

• “The NISQA metric” [93], introduced by Gabriel et al., utilizes a mix of

Convolutional Neural Networks with self-attention networks for speech quality

assessment. This metric employs a multi-task neural network to get both the

overall subjective score and the four speech quality dimensions.

• The ViSQOL-v3 [94]metric utilizes gammatone spectrogram and neurogram

similarity index measure for determining audio quality.

• In [95] the authors proposed a metric for identifying the just-noticeable dif-

ference between a given pair of audio samples. This metric is then mapped

to provide a value of the perceptual distance between the samples. The audio

samples considered in this metric encompass perturbations, including noise,

reverberation, and compression artifacts.

• The SESQA metric [96] is a semi-supervised speech QA technique. It learns

from existing labelled data, along with unlabeled or programmatically gener-

ated data to predict the quality of speech.

2. Non-Intrusive Quality Assessment Metrics:

• “The Speech-to-Reverberation Modulation Energy Ratio (SRMR)”

is proposed by Falk et al. [97] for assessing the quality of de-reverberated and

reverberant speech. SRMR utilizes spectral modulation analysis to quantify

the “energy ratio” between the speech and reverberation components.

• “The MOSA-Net metric ” [98] evaluates speech quality and intelligibility
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using deep learning architecture together with cross-domain features to esti-

mate PESQ, STOI, and SDI scores.

• In the “Deep Noise Suppression Mean Opinion Score (DNSMOS)”

metric [99], Log power Mel spectrogram features are utilized to train a “multi-

stage self-teaching-based” metric. This technique is specifically developed to

assess the performance of noise suppression algorithms.

• “The NIST Signal to Noise Estimation Utility metric ” [100] computes

the energy histogram to determine noise elements in a given signal.

• The SNRVAD metric [101] proposes to estimate the signal-to-noise ratio

of speech signals by evaluating their amplitude distribution.

• The MOSNet metric [102] proposed by Chen et al. utilizes magnitude

spectrogram of the voice samples as inputs to train convolution and Recurrent

Neural Network inspired model for assessing voice conversion.

• In the HPSSN [103] metric, the authors investigate hierarchical and con-

volutional neural network approaches for predicting speech quality. These ap-

proaches are specifically applied to determine both the utterance-level and

system-level quality scores for synthetic speech.

• The MTF metric [104], suggested by Zhang et al. proposed a non-intrusive

metric wherein they trained a CNN along with a pyramid BiLSTM-based ar-

chitecture to perform the assessment. This architecture enables the model to

capture temporal dependencies and learn relevant features directly from the

time-domain speech signals.

• In MBNet [105], a combination of a bias subnet and a mean subnet is pro-

posed for accessing the opinion scores at an individual judge level and their

average predictions. The model makes use of convolution layers with batch

normalization to train the network.

• The S3PRL metric [106] , employs self-supervised pre-trained based models

for predicting system and utterance-level quality. It also explores the use of

range clipping, attention pooling, and segmental embedding modules in an

end-to-end fashion to predict quality in data related to voice conversion.
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• The MetricNet [107] employed label distribution learning along with speech

reconstruction learning for speech quality assessment. It makes use of an En-

coder architecture to obtain spectrograms using 1-D convolution layers. It

further consists of blocks containing a series of dilated convolutional layers.

The model predicts the PESQ as the ground-truth quality score.

• Apart from the above-described work, other quality metrics include [108–115].

Based on the literature analysis, it can be inferred that significant efforts have been

dedicated to speech quality assessment and speech intelligibility. However, there has been

considerably less focus on UGM audio quality assessment. As discussed earlier the UGM

audio has different characteristics than speech data, thus the metrics do not perform well

on the UGM samples.

Moreover, some existing metrics [93, 102] rely on spectrograms as input for the CNN

model. However, due to the diverse nature of UGM audio, spectrograms are not suitable

for UGM Quality Assessment. As a result, many of these techniques do not perform

effectively when applied to UGM audio data. This can be inferred from the result analysis

presented in Chapter 4.

Based on the analysis presented, it can be concluded that there is indeed a necessity

for a QA metric specifically designed for UGM audio. This will enable better evaluation

and enhancement of UGM audio content to meet the demands and expectations of users

within the domain.

1.4 Performance Evaluation Metrics

In order to evaluate the performance of QA metrics, mainly four methods are used; Root

Mean Square Error, Kendall rank correlation coefficient, Spearman Rank Correlation Co-

efficient, and Pearson Linear Correlation Coefficient. Each of these techniques is described

below.

1. “Pearson Linear Correlation Coefficient (r)”:

It is a statistical technique to measure the direction and strength of the linear

relationship between two variables. The range of the “r” coefficient is from -1 to

1. The 1 and -1 values represent a perfectly positive and negative correlation while

zero represents no correlation. It is calculated as:
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r =

∑
(ai − ā)(bi − b̄)∑
(ai − ā)2(bi − b̄)2

(1.3)

where, ai and bi are the individual data points of a and b, respectively.

ā and b̄ are the means of a and b, respectively.∑
denotes the summation operator.

2. “Spearman Rank Correlation Coefficient ”:

The Spearman Rank Correlation Coefficient (ρ) is a statistical measure used to as-

sess the strength and direction of the monotonic relationship between two variables.

It is particularly useful when the relationship between variables is not necessarily

linear but can be described by a monotonic function. The value of the coefficient

ranges from -1 to 1, where 1 and -1 represent a perfect positive monotonic and per-

fect negative monotonic relationship respectively, and zero represents no monotonic

relationship. SRCC is measured as:

ρ = 1− 6
∑

(d2i )

n(n2 − 1)
(1.4)

where di is the rank difference for each pair of data points.

n is the number of data points.

3. “Kendall Rank Correlation Coefficient”:

Also called Kendall’s tau (τ), is a statistical technique used to determine the di-

rection and strength of the ordinal relationship between two variables. It measures

the similarity of the orderings of the data points between the two variables instead

of their specific numerical values. The coefficient ranges from -1 to 1, where 1 and

-1 indicate perfect positive and negative concordance respectively, and zero denotes

no concordance.

τ =
(A−B)

(A+B)
(1.5)

Here, B is the number of discordant pairs and A is the number of concordant pairs.

4. “Root Mean Square Error” (RMSE):

RMSE is a widely used metric to evaluate the accuracy of a model by calculating

the difference between predicted values and true values. It provides an indication
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of how well the model’s predictions align with the true values. RMSE value can be

calculated using the following formula:

RMSE =

√∑N−1
i=0 (xi − x̂i)2

N
(1.6)

Here, xi are true values.

x̂i are predicted values.

N is the number of data points.

A lower value of RMSE indicates that the predicted values of the model are closer

to the actual values. In other words, it signifies that the model’s predictions have

smaller errors or discrepancies compared to the true values.

1.5 Outline of The Thesis

Considering the motivation from the above studies, this thesis proposed various quality

assessment metrics for DIBR views and UGMAudio, which are discussed in the proceeding

chapters. The overall outline of this thesis is given below;

• Chapter 2: Full Reference Quality Assessment Metric for DIBR Views

• Chapter 3: No Reference Quality Assessment Metric for DIBR Views

• Chapter 4: Non-Intrusive Audio Quality Assessment Metric for User-Generated

Multimedia Using Deep Learning

• Chapter 5: Conclusion and Future Work



Chapter 2

Full Reference Quality Assessment

Metric for DIBR Views

2.1 Introduction

In Chapter 1, the literature analysis points out that even though substantial research has

been undertaken in the domain of DIBR QA, existing techniques are still unable to achieve

high levels of accuracy for the benchmark DIBR datasets [18,20]. The emergence of new

inpainting techniques has effectively addressed certain degradation types like black holes,

however, the imperfect rendering techniques introduce other distortions which significantly

impact the quality of the images. Furthermore, because of the rendering processes involved

in DIBR views, image misalignment occurs, posing a challenge for traditional 2D quality

metrics. Thus, many full-reference techniques to deliver satisfactory performance. Given

these considerations, there is a need for quality assessment algorithms that can effectively

handle and quantify the various types of distortions present in 3D synthesized views.

In this chapter, a comprehensive technique for quality assessment is presented which

improves upon the drawbacks of the existing work.

2.2 Motivation

The motivation behind the proposed work is elaborated below:

1. The DF-CS metric [116] proposes a full reference QA metric wherein the deep fea-

28
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(a) Reference View. (b) Cropped Views

(c) NSCT Map (d) Laplacian Map (e) Saliency Map (f) NIQSV+ Map (g) LBP Map

(h) Synthesized View. (i) Cropped Views

(j) NSCT Map (k) Laplacian Map (l) Saliency Map (m) NIQSV+ Map (n) LBP Map

Figure 2.1: Example Images from IETR Dataset, (a), (h) are the RGB DIBR reference and synthesized
views, (b) and (i) are the cropped and zoomed-in patches of these views. Fig (d), (e), (f), and (g) show
the reference’s Laplacian Map, NSCT maps, NIQSV+ Map, and the LBP Map while, (j), (k), (l), (m)
and (n) show the synthesized view’s counterparts.
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tures obtained from the Laplacian pyramids of the synthesized views and its refer-

ence view were compared to obtain the quality score. Various levels of the Laplacian

pyramid are estimated using low-pass filtering and then down-sampling of the image.

However, these two operations cause the loss of perceptually important information.

To demonstrate this, Figure 2.1 (a) and (h) represent the DIBR reference and syn-

thesized views, and the rectangular boxes 1(b) and 1(i) represent the zoomed-in view

of the images for better visualization. Figures 1(d) and (k), show the zoomed-in

patches obtained from the third level of the Laplacian pyramid of the synthesized,

and reference view. From these figures, it can be observed that due to the low-

pass filtering, texture information is lost in the synthesized view’s Laplacian image

which is vital for the identification of stretching artifacts. Thus, this information

loss causes the low performance of the DF-CS metric.

2. The Saliency and Deep feature-based (Sal-DF) metric proposed in [117] is a full

reference QA method that utilizes deep features obtained from the saliency maps

of both the synthesized and reference views. The similarity value between their

respective deep features is then calculated to determine the quality score of the

view. Saliency maps highlight the most prominent or salient regions in an image

[118]. However, these maps are not effective in capturing texture information in

the synthesized views. As a result, they are inadequate in accurately predicting

perceptual quality. To demonstrate this point, Figure 2.1 (e) and (l) showcase the

saliency maps of the DIBR reference and synthesized views. As depicted in the

figures, although saliency maps can identify prominent areas and edges, they do not

provide substantial information about the texture in regions where distortions are

present. Consequently, the inability of saliency maps to include all distortion-prone

areas and low-frequency information in the distorted regions leads to a decrease in

performance.

3. Furthermore, quality assessment techniques such as NIQSV+ highlight the textures

present in an image as shown in Figures 1(f) and 1(m). Also, quality assessment

metric [119] makes use of Local Binary Pattern (LBP) to extract features. Figures

1(g) and 1(n) represent LBP feature maps that highlight textures in the images.

As depicted from these figures, extensive details are present in the feature maps,

however, all these details are not necessary for the QA of DIBR views as distortions
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are only present in a few areas. Thus, resulting in the low performance of these

metrics.

4. Conversely, the analysis reveals that the Non-Subsampled Contourlet Transform

(NSCT) maps offer feature maps of DIBR views that are rich in information. Fig-

ures 1(c) and (j) illustrate the NSCT maps, which, in comparison to other maps,

effectively preserve the texture details. These NSCT maps thus provide information-

rich feature maps that are crucial for the HVS.

Motivated by the limitations observed in the existing QA metrics, the following pro-

posed metric introduces a FR technique that takes advantage of the NSCT coefficients

for QA.

2.3 Proposed Full-Reference Quality Assessment Met-

ric

In this work, a technique is proposed for estimating the quality of DIBR/3D views by

taking into consideration the implicit frequency domain characteristics of the image using

NSCT. The capabilities of existing deep-learning models are leveraged to extract deep

features, which are then used to determine the quality of the synthesized view. The

proposed model is based on two parts: the extraction of NSCT maps and the subsequent

extraction and comparison of deep features. The detailed architecture of the model is

depicted in Figure 2.2.

2.3.1 Extraction of NSCT Maps

In recent years, various image transformation techniques have emerged to highlight dif-

ferent image features in different transform domains. Among these techniques, the Non-

Subsampled Contourlet Transform has proven to be a powerful method for 2D image

representations [5]. In the context of 3D synthesized images, distortions primarily occur

near object edges or contours due to occlusions, and these distortions are highly percep-

tible to the human visual system. The NSCT employs a dual filter bank structure that

effectively captures these visually significant contours present in an image. Unlike the

Laplacian Pyramid used in other methods, the NSCT utilizes a non-subsampled pyramid
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structure to maintain multi-scale characteristics, while a non-subsampled directional filter

bank (NSDFB) is employed for directionality. Consequently, the NSCT exhibits proper-

ties such as multi-resolution, directionality, and shift-invariance. These transforms have

utility in various domains, such as texture classification and image enhancement. Addi-

tionally, the NSCT decomposition does not involve any down-sampling or up-sampling

operations, thereby preventing frequency aliasing in low-frequency sub-maps.

Non-subsampled Pyramid Structure Filter Banks (NSPFB) followed by NSDFB, form

the basis of NSCT decomposition (Fig. 2.3) [5]. For i number of decomposition levels,

i + 1 sub-bands consisting of one low and i high-frequency sub-bands are obtained by

Non-subsampled pyramid (NSP). Further, these high-frequency sub-bands at each level

are then decomposed by NSDFB into directional sub-bands. These resultant sub-bands

have the size same as that of the original image. Finally, the resultant filters of the ith

level cascading NSP are represented as [120]:

Xn(z) =


X1(z

2n−1
)
∏n−2

j=0 X0(z
2j) 1 ≤ n < 2i

∏n−1
j=0 X0(z

2j) n = 2i

(2.1)

where, zj stands for [zj1, z
j
2]. In the proposed model, the NSCT maps corresponding to

Scale 2 and directional decomposition equal to two are used. The depiction of various

NSCT levels along with their directional decompositions for an image in the IETR dataset

is given in Fig. 2.4.

2.3.2 Deep-feature Extraction

Following the acquisition of NSCT decompositions, these features are subsequently in-

putted into a pre-trained VGG-16 neural network [121]. The use of VGG-16 offers several

advantages over other pre-trained networks, as demonstrated in various existing quality

assessment studies [116,117,122]. These deep neural networks consist of cascading convo-

lution layers capable of learning representative features from input images. Furthermore,

the DIBR synthesized views often suffer from image misalignment when compared to

reference views. In the state-of-the-art (SOTA) IQA techniques, explicit methods are

employed during image pre-processing to compensate for this misalignment. However,

CNN models also possess the capability to provide robust feature representation implic-
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Figure 2.3: NSCT Decomposition [5].

Figure 2.4: Example of NSCT Decomposition of a DIBR view.
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itly, thereby exhibiting resilience to misalignment between the synthesized and reference

views. Consequently, CNN models serve a dual purpose: efficient extraction of quality-

aware features and addressing image misalignment.

The VGG-16 architecture has gained popularity and achieved remarkable performance

in the field of computer vision. Its architecture consists of five blocks with the number of

filters within each block corresponding to 64, 128, 256, 512, and 512, respectively. The

main characteristic of VGG-16 is the repeated use of small-sized convolutional filters (3x3)

throughout the network. This design choice allows for deeper and more efficient feature

representation. An overview of the architecture is given below:

1. Input Layer: The input layer of VGG-16 takes an image as input.

2. Convolutional Layers (CL): It consists of 13 (CL) with a Rectified Linear Unit as

the activation function. These layers are trained for learning hierarchical feature

representations from the given training images.

3. Max Pooling Layers (MPL): There are 5 MPLs, which help to compress the spatial

dimensions of the feature maps and preserve vital information.

4. Fully Connected Layers (FCL): The CL and MPLs are followed by three fully con-

nected layers with the ReLU activation function.

5. Softmax Layer: The last layer is a softmax layer of 1000 units in size, reflecting the

number of classes in the ImageNet dataset [123].

In the proposed approach, the feature vector is acquired from the third convolution

layer of Block 5 within the VGG16 model. This feature vector is subsequently flattened

into a 1-dimensional representation, providing a comprehensive and quality-aware feature

vector of the image. In order to calculate the quality score, the feature vectors of both

the reference and synthesized views are normalized and then the difference between the

two vectors is determined by using the following equation:

Q′ = 0.5
K∑
k=1

R(k) ln
R(k)

T (k)
+ 0.5

K∑
k=1

S(k) ln
S(k)

T (k)
(2.2)

where, S(k) and R(k) represent the kth element of the feature vectors of the synthesized

and reference view, respectively. Also, K represents the length of the feature vector and
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T (k) = 1
2
(R(k) + S(k)). A quality score denoted as Q′, close to zero indicates high

similarity between the feature vectors of the synthesized and reference views, indicating

better perceptual quality. Whereas, a value close to 1 suggests dissimilarity between the

feature vectors, indicating poorer image quality.

Table 2.1 presents an initial quantitative performance analysis of different algorithms

applied to extract feature maps. As previously mentioned, the DF-CS and Sal-DF met-

rics employ features from the Laplacian image and Saliency Maps, respectively. In the

proposed approach, deep features from NSCT images for quality assessment are utilized.

Similarly, we make use of the NIQSV+ and LBP maps as input to VGG-16 for deep

feature extraction, followed by the calculation of quality scores using Equation 3.1. The

table demonstrates that the proposed method surpasses the other techniques in terms

of Root Mean Square Error, Pearson Linear Correlation Coefficients, Spearman’s Rank

Order Correlation Coefficients, and Kendall rank correlation coefficient. This outcome

validates our initial motivation that NSCT maps provide a rich quality-aware feature rep-

resentation for DIBR views. Furthermore, to improve the performance of our proposed

FR metric, a pooling technique with the BIQI metric [51], is also used which is explained

in detail in Chapter 3.

2.4 Result Analysis

To analyze the performance of the proposed work, various datasets, tools, and techniques

are employed. An elaborate analysis of our work is discussed in this section.

2.4.1 Evaluation Criteria

As described in Chapter 1, to assess the performance of the proposed method in compari-

son to SOTA QA algorithms, the standard correlation evaluation metrics are used, which

are; r, ρ, τ , and RMSE. An efficient metric has higher values for r, ρ, and τ , indicating

stronger correlations, while lower values close to zero are desirable for RMSE.

To decrease the non-linearity of objective prediction scores, for efficiently mapping

them to subjective ratings, a nonlinear logistic function is used [50]:

k(s) = α1(
1

2
− 1

1 + eα2(s−α3)
) + α4s+ α5 (2.3)
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Table 2.1: Performance comparison of the Proposed NSCT-FR metric when different
feature extraction algorithms are used (such as Saliency, Laplacian, NIQSV+, LBP, and
NSCT maps).

S. No. Technique r ρ τ RMSE

1. Proposed NSCT-FR 0.8207 0.8187 0.6203 0.1417

2. DF-CS [116] 0.7848 0.7676 0.5753 0.1537

3. Sal-DF [117] 0.7620 0.7513 0.5542 0.1605

4. Deep NIQSV+ 0.7238 0.7176 0.5272 0.2255

5. Deep LBP 0.3629 0.3606 0.2357 0.2325

here αy, (y ∈ 1, 2, 3, 4, 5) represents the parameters to be fitted, while k(s) depicts the

subjective score to which the objective score s is mapped.

2.4.2 Evaluation Dataset

To evaluate the proposed metric two benchmark DIBR datasets are used i.e. the IETR

dataset [18] and the IVY dataset [20] are used. The IETR dataset consists of ten reference

views, from which 140 synthesized images are generated using different rendering tech-

niques. For each view, its Differential Mean Opinion Score (DMOS) is available, which

serves as the ground truth quality score. These DMOS values provide a reliable basis for

performance evaluation of the proposed model against subjective evaluations.

The publicly available IVY dataset [20] contains stereo images and consists of seven

pairs of left and right reference views. These are accompanied by their respective syn-

thesized views, generated using various DIBR synthesizing techniques. To evaluate the

proposed metric, the quality score for both the right and left views is determined. Sub-

sequently, these scores are averaged to get the quality value for each view.

2.4.3 Performance Analysis

To assess the performance of the proposed full reference metrics on the IETR dataset,

a comparative analysis was conducted with various SOTA IQA metrics. The results are

presented in Table 2.2. These include QA metrics for 3D views as well as those applicable

to natural images. The proposed FR metric, achieved impressive results, with r, ρ, τ ,

and RMSE values of 0.8207, 0.8187, 0.6203, and 0.1417, respectively. In comparison,
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the best-performing existing metric, SEQUSS [43], attained r, ρ, τ , and RMSE values

of 0.8030, 0.8020, 0.6000, and 0.1470, respectively. This indicates that the proposed FR

metric outperforms SEQUSS, with improvements of approximately 2.2%, 2.08%, and 3.3%

in terms of r, ρ, and τ respectively. These results depict the superior performance of the

proposed FR metric, highlighting its ability to achieve higher correlation and lower error

in quality assessment compared to the SOTA metric.

The results of the proposed FR metric for the IVY dataset [20] is provided in Table

2.3. According to the table, the proposed FR metric achieves r, ρ, τ , and RMSE values

of 0.7580, 0.7375, 0.5418, and 9.4090, respectively. On the other hand, the correspond-

ing values for the best-performing FR metric i.e. SSPD are 0.6892, 0.6814, 0.4872, and

10.3210, respectively. Therefore, the proposed FR metric demonstrates notable perfor-

mance improvement compared to SSPD. Specifically, there is an increase of 9.9%, 8.2%,

and 11.2% in terms of r, ρ, and τ respectively, highlighting the superiority of the proposed

metric.

2.4.4 The Statistical Significance (SS) Test

Further, the SS-Test or F-Test is adopted for analyzing the performance of the proposed

model. The test is conducted between the quality scores acquired from the proposed

method and those acquired by employing various IQA metrics. The F score is calculated

as [116];

F =
g2β1

g2β2

(2.4)

where, (β1, β2) are the scores obtained by the objective metric and the proposed al-

gorithm that are tested and gβ1 , gβ2 represent their respective RMSE. This test works on

the variance-based hypothesis, wherein, the value ‘+1’ depicts that the proposed model is

statistically better than the other metric, ‘zero’ represents that the two methods are sim-

ilar, and ‘-1’ represents the inferiority of the proposed metric to other metrics. Table 2.4

depicts the F-score between the proposed FR and six IQA metrics. These scores are +1

for all the methods, thus depicting that our method is statistically better in comparison

to other IQA metrics (confidence interval equal to 90%).
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Table 2.4: Results of the F-Test conducted between the proposed NSCT-FR metric and
the various SOTA metrics on the IETR dataset.

Metric PUIR-DFCS SSPD LPIPS SI-DL DSCB APT

Score +1 +1 +1 +1 +1 +1

2.4.5 Scatterplot Analysis

To enhance the visual interpretation of the results, scatterplots are generated to illus-

trate the correlation between the DMOS and the quality scores obtained from various

SOTA methods. These methods include FR metrics such as SSPD [134], PUIR-DFCS,

and LPIPS [122]. As well as NR IQA metrics such as NIQSV+ [53], DSCB [69], KRR [52],

NIQE [135], BRISQUE [136], BIQI [51], Highgrade [137], and HyperIQA [138]. Figure

2.5 showcases these scatterplots. The scatterplots clearly demonstrate a strong linear re-

lationship between the proposed full-reference metric and the objective scores, surpassing

the performance of the other techniques. This observation indicates that the proposed

model exhibits a higher consistency with the HVS. The visual representation provided

by the scatterplots reinforces the effectiveness and reliability of the proposed metric in

accurately assessing image quality.

2.4.6 Ablation Study

Furthermore, a series of experiments are conducted by varying the parameters and de-

composition types to get an elaborate ablation study of the proposed model.

2.4.6.1 Analysis of NSCT Level

Firstly, the impact of using different NSCT multi-scale maps and directional decompo-

sitions on the performance of the proposed FR technique is analyzed. The results are

presented in Table 2.5. The performance analysis reveals that the NSCT maps of the

second level produced the best results, indicating the significance of both high and low-

frequency components in extracting efficient features. Furthermore, there is only a slight

variation in performance across different levels, suggesting that the model is not heavily

reliant on the specific NSCT level number. Thus, the ablation study sheds light on the

importance of the NSCT multi-scale maps and the effectiveness of the proposed FR tech-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.5: Scatter Plot of subjective score/DMOS values and objective scores of SOTA metrics on IETR
dataset.
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Table 2.5: Performance analysis of the proposed NSCT-FR model by varying the NSCT
scales and orientations on the IETR database.

S. No. NSCT layer Orientation r ρ τ RMSE

1. Layer 1 1 0.7866 0.7687 0.5770 0.1531

2. Layer 1 2 0.8014 0.7921 0.5924 0.1443

3. Layer 2 1 0.8131 0.8095 0.6132 0.1443

4. Layer 2- Proposed 2 0.8207 0.8187 0.6203 0.1417

5. Layer 3 1 0.7920 0.7919 0.5940 0.1513

6. Layer 3 2 0.7701 0.7667 0.5743 0.1581

nique. It demonstrates that the model can achieve robust performance while exhibiting

flexibility in handling different NSCT scales.

2.4.6.2 Analysis of The Backbone Deep Learning Model

An ablation study is conducted wherein, different pre-trained models are used as the

backbone neural network for the extraction of features in the proposed metric. As pre-

sented in Table 2.6, a range of well-known CNN models including VGG-16 [121], Inception

V3 [139], MobileNet [140], SqueezeNet [141], AlexNet [142], and Inception V4 [143] were

utilized. Additionally, the performance of various transformer-based models such as Vi-

sion Transformer [144], BEIT [145], Swin Transformer [146], BIT [147], and DEIT [148]

were assessed for quality assessment purposes. A brief summary of these deep learning

models is given below:

1. Inception V3 [139]:

It is a CNN proposed by Google in 2015 for image classification, it has a total of 42

layers. It features inception modules with parallel convolutions of varying sizes, for

multi-scale feature extraction.

2. MobileNet [140]:

This architecture is used for real-world applications. It leverages depthwise sepa-

rable convolutions, a technique that replaces standard convolutions used in earlier

architectures, to construct lightweight models.

3. SqueezeNet [141]:
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It is a compact CNN architecture designed to have a small model size while main-

taining competitive accuracy. It achieves this by employing “fire modules” that use

a combination of 1x1 and 3x3 convolutions, reducing the number of parameters.

4. AlexNet [142]:

This model includes convolution and fully connected layers utilizing ReLU activa-

tion, local response normalization, and dropout regularization.

5. Inception V4 [143]:

It is a CNN architecture that improves upon its predecessor, Inception V3. It

introduces enhancements such as varied kernel sizes, additional convolutional layers,

and residual connections for improved performance and gradient flow.

6. Vision Transformer [144]:

It is a DL architecture that applies the transformer model to image recognition

tasks. It treats images as sequences of patches and uses self-attention mechanisms to

capture global and local dependencies. By leveraging the transformer’s capability to

model long-range dependencies, it has achieved competitive performance on various

image classification benchmarks.

7. BEIT [145]:

Big Transfer (BEIT) is a vision transformer with improved performance and scal-

ability. It introduces the concept of ”big transfer” by pre-training the model on a

large repository, similar to BERT in natural language processing.

8. Swin Transformer [146]:

Its architecture addresses the limitations of traditional vision transformers in han-

dling large-scale image recognition tasks. It introduces a hierarchical structure that

divides the input image into smaller windows, enabling efficient processing of large

images. It utilizes shifted windows and shift-based position encoding to capture

spatial relationships effectively.

9. BIT [147]:

Big Transfer with Transformers (BIT) is a vision transformer architecture that com-

bines the hierarchical structure of CNNs with the self-attention mechanism of trans-

formers to capture global and local features.
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Table 2.6: Performance evaluation of varying the pre-trained deep learning model in the
proposed NSCT-FR metric.

S. No. Model r ρ τ RMSE

1. VGG-16 (Proposed NSCT-FR) 0.820 0.818 0.620 0.141

2. DEIT 0.721 0.721 0.532 0.423

3. Xception 0.711 0.697 0.509 0.174

4. SqueezeNet 0.687 0.742 0.559 0.376

5. Alexnet 0.615 0.708 0.527 0.462

6. Inception V3 0.703 0.686 0.512 0.176

7. Inception V4 0.702 0.682 0.499 0.176

8. Swin Transformer 0.699 0.700 0.517 0.387

9. MobileNet 0.678 0.678 0.495 0.182

10. Vision Transformer 0.668 0.647 0.471 0.387

11. BIT 0.662 0.660 0.493 0.320

12. BEIT 0.656 0.68 0.493 0.483

10. DEIT [148]:

Data-efficient Image Transformer (DEIT) is a vision transformer architecture that

introduces distillation techniques to leverage the knowledge from large-scale pre-

training datasets and transfer it to smaller datasets.

Table 2.6 clearly illustrates that VGG-16 achieves the highest performance among

both CNN architectures and transformer architectures for quality assessment. Its superior

performance aligns with existing literature [121] and further underscores its effectiveness

in feature extraction for quality assessment tasks.

2.5 Conclusion

This work introduces some of the techniques for image quality assessment, specifically

focusing on DIBR views. In this regard, a full reference QA technique is proposed.

Through the experimental analysis, it is analyzed that the maps obtained by applying the

Non-Subsampled Contour Transform offer a rich representation of quality-aware features

in DIBR views. To enhance the quality assessment process, further refinement of these
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maps is done by extracting their deep features. The results obtained from the proposed

algorithms demonstrated significant improvements over existing DIBR quality assessment

algorithms.



Chapter 3

No Reference Quality Assessment

Metric for DIBR Views

3.1 Introduction

In Chapter 2, a full reference technique for quality assessment was introduced. While FR

techniques are known for their efficiency, in certain scenarios like Free Viewpoint Video,

the reference image may not be available. In such scenarios, no-reference (NR) techniques

are often employed as an alternative approach to quality assessment. Thus, leveraging the

capability of the earlier proposed FR model, this work extends its usage to a no-reference

metric. The motivation for the proposed NR metric is listed below:

1. From the literature, it is analyzed that many of the previous studies such as [149],

[127], and [150] employ the concept of block-based deep-learning models. In this

technique, the deep learning model is trained on some patches cropped from the

image for QA. One of the limitations of such techniques is that they consider the

subjective score of the entire image as the ground truth for individual image blocks.

This assumption is valid for natural images where distortions such as blur, noise, etc.

are evenly distributed across the image. However, in the case of DIBR views, this

assumption is not applicable. This is due to the fact that the distortions in DIBR

views predominantly occur along object boundaries due to imperfect rendering and

inpainting techniques. Thus the quality of the image blocks is not uniform and the

MOS of the whole image may not be representative of the quality of each individual

block. This can be analyzed from some examples for the IETR dataset depicted

47
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(a)

(b)

Figure 3.1: Examples of a Reference and synthesized view from IETR dataset, highlighting blocks with
distortions.

in Fig. 3.1 (a) and (b). The blocks represent the zoomed-in view of some of the

areas of the images with distortions. As depicted in these illustrations, the geometric

distortions are localized and concentrated near object boundaries, rather than being

universally present throughout the image. Therefore, this reinforces our argument

that using the direct MOS of the entire image may not accurately represent the

quality score at the block level.

2. Furthermore, in SI-DL metric [6], the authors explored the relationship between the

DIBR view’s quality and the occurrence of patches containing stretching artifacts

within that view. They made the assumption that different levels of geometric

distortions have a uniform impact on image quality. To identify such blocks, they
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(a) Example View 1

(b) Example View 2

Figure 3.2: Examples of the image blocks detected as ‘distorted’ blocks by the SI-DL algorithm [6].
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employed a binary classifier based on a convolutional neural network. While this

metric successfully detects blocks with geometric distortions, it does not quantify the

severity of distortions in each block. Additionally, it is analysed this assumption does

not hold true, as the effect of geometric distortions on perceptual quality depends

on the magnitude of the distortions. To support this argument, examples of blocks

detected with geometric distortions using the SI-DL metric are illustrated in Fig.

3.2. It is evident that these blocks exhibit varying degrees of distortion, yet they are

all classified just as “distorted” without considering the severity of the distortions,

which significantly influences the overall perceptual quality.

From the aforementioned study, it can be inferred that block-based learning can be

explored for DIBR view QA. Furthermore, estimating the frequency and intensity of

distorted blocks in the image can give valuable insights into its perceptual quality. The

proposed approach provides a promising method for accurately calculating quality by

considering the distortions of individual blocks within an image.

3.2 Proposed No-Reference Quality Assessment Met-

ric

This section explains in detail the proposed NR QA metric for DIBR views based on

determining the block-level quality of the given image. The main steps in the model are

given below:

3.2.1 Block Level Ground-truth Quality Score Estimation

In Chapter 2, the NSCT-FR quality metric is introduced, which demonstrates the capa-

bility to efficiently predict the quality score of DIBR views. Given the effectiveness of the

NSCT-FR metric in assessing overall quality, it can be inferred that the algorithm also

possesses the capability to evaluate the perceptual quality of individual blocks within these

views. Thus, in the proposed work, similar to the NSCT-FR model, the non-subsampled

contourlet transform maps are extracted from the DIBR views. Next, to determine the

ground truth quality score at the block level, the DIBR view’s NSCT map is cropped into

blocks of size n×n using a sliding window technique, resulting in a total of M blocks. The



3.2. PROPOSED NO-REFERENCE QUALITY ASSESSMENT METRIC 51

workflow for this step is illustrated in Figure 3.3. The blocks from both the reference and

synthesized views are simultaneously inputted into the pre-trained CNN model (VGG-16)

to extract features. The output from the last layer of the fifth block of each network is

then flattened to obtain a 1-D feature vector. As done in the NSCT-FR, the quality score

for each block/patch is obtained by calculating using the equation:

Q′
B = 0.5

K∑
k=1

RB(k) ln
RB(k)

TB(k)
+ 0.5

K∑
k=1

SB(k) ln
SB(k)

TB(k)
(3.1)

where, SB(k) and RB(k) represent the kth element of the feature vectors of the syn-

thesized and reference image block, respectively. Also, K represents the length of the

feature vector and TB(k) =
1
2
(RB(k) + SB(k)). A quality score denoted as Q′

B, close to

zero indicates a high similarity between the feature vectors, indicating better perceptual

quality. On the other hand, a value close to 1 suggests a dissimilarity between the feature

vectors, indicating poorer quality. This score represents the level of distortion in each

block and serves as the ground truth to train the subsequent deep learning (DL) model.

To demonstrate that the block-level quality score Q′
B mimics the human visual system

for quality assessment, some examples from the IETR dataset are given in Fig. 3.4. As

observed from the figure, the blocks which have less distortions eg. Fig. 3.4 (a)-(b) have

lower Q′
B values, while more distorted blocks eg. Fig. 3.4 (c)-(i) have higher scores. This

shows that there is an inverse relationship between perceptual quality and Q′
B scores.

This quality score associated with each block is a significant contribution of the proposed

metric, distinguishing it from the binary classification of blocks in Figure 3.2. These

blocks and their respective scores are utilized to train the CNN-based deep learning model

proposed in the subsequent section.
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3.2.2 Training Deep Learning Model

In the previous step, the quality scores of the blocks in the DIBR views were obtained.

These scores, along with their corresponding blocks, are utilized in the proposed NR

algorithm. This approach allows for the determination of a ground truth score for each

block, which in turn generates sufficient training data for training a DL model at the

block level.

In transfer learning a pre-trained model is employed as a starting point for a new

application. By leveraging knowledge learned from a large dataset and applying it to a

related problem with limited data, transfer learning helps enhance the efficiency of the new

model. In the proposed NR metric, the transfer learning technique is employed wherein

a pre-trained model is concatenated with a few trainable layers. Figure 3.5 represents

the workflow of the deep learning model, i.e., Step-2 of the proposed NR IQA. To train

the model, the NSCT image blocks are fed to the proposed deep learning model along

with the block-level ground truth score Q′
B (from Step 1). The final deep learning model

consists of the backbone VGG-16 along with a series of consecutive dense layers. To avoid

overfitting, dropout layers are included after each Dense layer with a value equal to 0.3 in

the model. The ReLu activation function is employed for all the Dense layers except the

last one. Moreover, the final Dense layer has a size equal to 1, depicting regression output

with the Linear activation function. The loss function was taken as Mean Square Error,

and the ADAM optimizer is deployed. The results were obtained for the whole dataset

using the “k-fold validation technique” with k equal to five. The Early stopping strategy

is also employed to avoid overfitting. After efficiently training the model, the blocks from

the remaining 20% dataset were tested. Thus, the proposed NR model determines the

quality of each block (m) of an image given by Q′′
B(m).

3.2.3 Thresholding and Pooling

In DIBR views the prominent distortions are located in just a few blocks, and the remain-

ing blocks have less effect on the overall perceptual quality. With this context, we propose

to only select blocks that have significant distortions (i.e., poor quality) for estimating

the quality score. Next, we calculate the sum of the quality scores of these poor-quality

blocks, QS1(i) for an image i using Eq. 3.2.
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(a) Q′
B = 0.119 (b) Q′

B = 0.212 (c) Q′
B = 0.325

(d) Q′
B = 0.358 (e) Q′

B = 0.403 (f) Q′
B = 0.415

(g) Q′
B = 0.563 (h) Q′

B = 0.591 (i) Q′
B = 0.625

Figure 3.4: Examples of image blocks from the IETR dataset of different perceptual quality along with the
quality score (Q′

B) obtained by the proposed NR model. Higher values of Score indicate poor perceptual
quality.

QS1(i) =
M∑

m=1

ϕ(Q′′
B(m)) (3.2)

where,

ϕ(Q′′
B(m)) =

Q′′
B(m), if Q′′

B(m) ≥ Th

0, otherwise

(3.3)

Here, Th is the threshold value. Since the size of the images present in the evaluating

database is different, to normalize the quality score, divide QS1(i) by the total number of

blocks M in the given image to obtain the no-reference predicted score QS2(i) as given
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in the equation 3.4.

QS2(i) =
QS1(i)

M
(3.4)

In the proposed algorithm, importance is mainly given to geometric distortions. Hence,

to handle structural distortions, similar to the [6], [116], we propose to pool the scores of

the BIQI metric [51] with the proposed algorithm as:

NQi = QS2(i)
p −Bq

i (3.5)

where Bi is the quality value calculated by the BIQI metric for the image i. QS2(i) is

the initial predicted quality score from the proposed metric. Moreover, it may be noted

that there is a directly proportional relationship between the predicted QS2(i) score and

DMOS. At the same time, there is an inverse relationship between the DMOS and the B

score. A lower value of NQi indicates better quality and vice-versa. The same intuition is

reflected in Eq. 3.5. The powers p and q are used to stabilize the scores, as the values of

the proposed metric and B have different ranges. The same pooling step is also included

in the earlier proposed NSCT-FR metric to enhance its performance further.

3.3 Result Analysis

For analyzing the performance of the proposed NR quality assessment metric, a series of

experiments were conducted. The performance is evaluated on the basis of r, ρ, τ , and

RMSE for these studies. This section presents a detailed study of the results obtained for

the proposed work on two main DIBR repositories; IETR [18] and IVR dataset [20].

3.3.1 Performance Analysis

Table 3.1 shows the performance of the proposed NR metric and 15 existing no-reference

IQA metrics on the IETR dataset. These metrics include SI-DL [6], Yan’s [119], Tian’s

[30], GANs-NR [60], DSCB [69], Wang’s [57], BIQI [51], APT [50], NR-MWT [55], MNSS

[54], OMIQA [151], NIQE [135], Jakhetiya’s [151], and Yue’s [61]. As observed from Table

3.1, the proposed NR model has the values of r, ρ, τ , and RMSE equal to 0.7211, 0.7091,

0.5114, and 0.1718 for the IETR dataset [18]. In comparison to the best-performing NR
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metric SI-DL with these scores equal to 0.7087, 0.6672, 0.4726, and 0.1749, there is a

reasonable increase in the overall performance.

Likewise, the performance of the proposed NR metric with respect to various SOTA

NR IQA which include SI-DL [6], APT [50], Jakhetiya’s [151], NIQSV [152], SIQE [153],

OMIQA [151], MNSS [54], and NIQSV+ [53] for IVY dataset. The results are given in Ta-

ble 3.2. The proposed NR IQA has the r, ρ, τ , and RMSE equal to 0.6693, 0.6283, 0.4402,

and 10.5856. In comparison to the highest performing NR IQA, SI-DL, these scores are

equal to 0.5459, 0.5396, and 11.9349, there is a significant gain in performance.

In addition, a cross-dataset experiment has also been conducted for the proposed work,

where we trained the model using the IETR dataset and evaluated its performance on

the IRCCyN/IVC dataset [19]. The results were quite promising, with r, ρ, τ , equal

to 0.7709, 0.7312, 0.5341, and respectively. These findings indicate that the proposed

technique demonstrates good generalization ability across different datasets.

3.3.2 Statistical Significance Test

Table 3.3 depicts the results of the F-score/statistical test between the proposed NR and

six IQA metrics respectively. These scores are +1 for all the methods, thus depicting that

the proposed NR metric is statistically better than the various in comparison to other

IQA metrics (confidence interval equal to 90%).

3.3.3 Ablation Study

In this study, an extensive ablation analysis is performed to investigate the impact of dif-

ferent parameters on the proposed model’s performance. The ablation studies conducted

are presented below:

3.3.3.1 Analysis of the Effect of Pooling

To show the effect of the pooling step, we conducted an ablation study. The step-wise

comparison of the proposed NR metrics, with and without the pooling with the BIQI

metric for the IETR dataset, is presented in Table 3.6. From the table, it can be perceived

that the individual BIQI metric has r and ρ equal to 0.4327 and 0.4321, while, the proposed

NR metric without pooling has r and ρ values equal to 0.6637 and 0.6628. However, when
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Table 3.3: Results of the F-Test conducted between the proposed NR metric and the
various SOTA IQAs

Metric SI-DL LPIPS DSCB APT NIQSV SSPD

Score +1 +1 +1 +1 +1 +1

Table 3.4: Step-wise comparison of the performance of the proposed NR metrics on the
IETR dataset.

S. No. Technique r ρ τ RMSE

1. Proposed NR with pooling 0.7211 0.7091 0.5114 0.1718

2. Proposed NR without pooling 0.6637 0.6628 0.4738 0.1855

3. BIQI [51] 0.4327 0.4321 0.2898 0.2223

these scores are pooled with the BIQI metric score, there is a gain of about 8.6% in the

metric’s performance (in terms of ρ). Likewise, the step-by-step analysis for the IVY

dataset is given in Table 3.5. For the proposed NR technique without pooling, the r, and

ρ values are 0.5682 and 0.5252, and after pooling, this value is increased by 17.7%, and

19%, respectively.

Similar studies were conducted for the NSCT-FR metric proposed in Chapter 2. The

results on the benchmark datasets are given in Tables 3.6 and 3.7. The results show that

the pooling technique results in an increase in performance for NSCT-FR metrics also.

The study shows that while the proposed metrics are suitable for the detection of

degradation caused by geometric distortions, the BIQI metric helps in determining the

quality with respect to structural distortions, and by fusing these two together, the overall

perceptual quality is efficiently predicted.

3.3.3.2 Analysis of the Effect of Block Size

During the initial steps (1 and 2) of the proposed NR metric, the ground truth scores for

image blocks are obtained, and these blocks are subsequently utilized to train the deep

learning model. The quality score assigned to each block represents the level of distortion

present within it. Determining the appropriate block size is crucial as an excessively large

block may not accurately capture the location of distortion, while an overly small block

may fail to adequately represent the image properties.
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Table 3.5: Step-wise comparison of the performance of the proposed NR metrics on the
IVY dataset.

S. No. Technique r ρ τ RMSE

1. Proposed NR with pooling 0.6693 0.6283 0.4402 10.5856

2. Proposed NR without pooling 0.5682 0.5252 0.3547 11.3231

3. BIQI [51] 0.5308 0.5159 0.3610 12.0724

Table 3.6: Step-wise comparison of the performance of the proposed FR metrics on the
IETR dataset.

S. No. Technique r ρ τ RMSE

1. Proposed FR with pooling 0.8207 0.8187 0.6203 0.1417

2. Propose-FR without pooling 0.8113 0.8105 0.6117 0.1450

3. BIQI [51] 0.4327 0.4321 0.2898 0.2223

Table 3.7: Step-wise comparison of the performance of the proposed FR metrics on the
IVY dataset.

S. No. Technique r ρ τ RMSE

1. Proposed FR with pooling 0.7580 0.7375 0.5418 9.4090

2. Propose FR without pooling 0.7128 0.7113 0.5159 9.9912

3. BIQI [51] 0.5308 0.5159 0.3610 12.0724
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Table 3.8: Effect of varying the block size in the proposed NR metric on the IETR
database.

S. No. Block Size r ρ τ RMSE

1. 128× 128 0.6924 0.6969 0.5044 0.1778

2. 160 × 160 0.7211 0.7091 0.5114 0.1718

3. 192× 192 0.6661 0.6720 0.4740 0.1849

To assess how the size of the block impacts the effectiveness of the proposed metric,

an ablation study investigating the relationship between block size and performance is

presented in Table 3.8. Different block sizes were examined: 192 × 192, 160 × 160, and

128 × 128. As demonstrated in the table, the optimal performance is achieved when

employing a block size of 160× 160 compared to the other sizes within the IETR dataset.

3.3.3.3 Analysis of the Parameter Sensitivity.

In the pooling stage, the scores of the proposed NR metric were fused with those of the

BIQI metric using 3.5. As discussed earlier, there is a direct and inversely proportional

relationship between the DMOS with the proposed metric and BIQI respectively. Further,

the range of proposed metrics is between 0 to 1 while that of the BIQI metric is much

wider (-1 to 56), it is implicit that the value p will be greater than q. We employed a

3D mesh graph in Fig.3.6 to analyze the effect of change of the two-parameter values i.e.

“p” and “q” on the performance, in terms of τ , of the proposed NR metric on the IETR

dataset. The analysis from the 3D plot in Fig.3.6 validates our intuition and depicts good

performance when the value of “p” is greater than “q”.

3.3.3.4 Analysis of the Ground-truth Generator

Furthermore, to demonstrate the effectiveness of the previously proposed NSCT-FR al-

gorithm in generating reliable ground truth values, an ablation study is conducted (see

Table 3.9) using various IQA methods for generating the ground truth scores. The results

showcased in the table reveal that when employing the NSCT-FR algorithm as the block-

level ground truth generator, the DL model outperforms other SOTA algorithms used

for the same purpose. This ablation study validates the efficiency of the earlier proposed

NSCT-FR metric and its applicability within the proposed NR metric as a block-wise
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Figure 3.6: Performance dependency of the proposed NR metric with respect to the two parameters ‘p’
and ‘q’ on the IETR dataset.

ground truth generator.

3.3.4 Scatterplot Analysis

Furthermore, to facilitate a clearer visual interpretation of the outcomes, scatterplots

illustrating the correlation between DMOS and the quality scores predicted by several

SOTA methods are generated. The NR IQA metrics analysed include NIQSV+ [53],

DSCB [69], KRR [52], NIQE [135], BRISQUE [136], BIQI [51], Highgrade [137], and Hy-

perIQA [138]. The scatterplots, as shown in Figure 3.7, reveal a strong linear relationship

between the proposed no-reference metric and the subjective scores when compared with

the other techniques. These results indicate that the proposed model exhibits a high level

of consistency with the human visual system.

3.4 Conclusion

This chapter introduces a novel NR quality assessment metric for DIBR views. The

metric utilizes a DL model trained on block-level ground truth scores. By predicting
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(b) (c)
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Figure 3.7: Scatter Plot of subjective score/DMOS and objective scores of SOTA metrics on IETR
dataset.
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Table 3.9: Ablation study when several SOTA techniques are used for the ground truth
score generation in the proposed NR algorithm.

S. No. Technique r ρ τ RMSE

1. Proposed-NR (QS2) 0.6637 0.6628 0.4738 0.1855

2. PU-IR [116] 0.6175 0.6201 0.4488 0.1950

3. DF-CS [116] 0.5248 0.5243 0.3690 0.2110

4. SSPD [35] 0.4360 0.3345 0.2382 0.2231

5. SSIM [9] 0.2220 0.1274 0.0832 0.2417

6. NIQSV+ [53] 0.1870 0.0887 0.0547 0.2439

7. APT [50] 0.0420 0.0220 0.0145 0.2477

quality scores for each block of an image and aggregating them, a final quality score

for the entire image is obtained. The proposed method showcases a unique approach to

determining the intensity of block-level quality scores, resulting in better performance

compared to existing SOTA techniques.



Chapter 4

Non-Intrusive Audio Quality

Assessment Metric for

User-Generated Multimedia Using

Deep Learning

4.1 Introduction

User Generated Multimedia refers to multimedia content created, captured, uploaded, and

shared by inexperienced or non-professional users in real-world scenarios. This kind of

data is susceptible to various distortions caused by factors such as poor capturing devices,

limited bandwidth for sharing, background noise, and low bit-rate. In this chapter, we

explore the domain of quality assessment for UGM audio and propose a novel technique

for evaluation.

4.2 Motivation

Chapter 1 provides an in-depth analysis of the literature on audio quality assessment.

The literature reveals that the majority of prevalent techniques are primarily designed for

assessing the quality of speech data. However, upon analyzing the spectrograms of both

speech and UGM audio, it becomes apparent that speech signals possess distinct acoustic

characteristics compared to UGM audio. As a consequence, the application of existing

66
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speech metrics to UGM data leads to suboptimal performance, highlighting the need for

specialized quality assessment algorithms tailored for UGM content.

Moreover, in Chapter 1, an in-depth study of the existing audio datasets is given which

is summarized in Table 4.1. The table encompasses information such as the purpose

of dataset creation, types of distortion present, size, year of creation, availability, and

whether subjective testing has been conducted or not. From the table, we can identify

the following limitations associated with the existing datasets.

• Lack of diversity in terms of magnitude and distortion types.

• Lack of subjectively annotated and openly available UGM datasets.

• Lack of diversity in terms of content and context.

Thus, to address the limitations in the existing literature on UGM audio quality

assessment, this chapter presents the following contributions:

1. A novel and comprehensive large-scale database called IIT-JMU-UGMAudio Dataset

is designed and developed, comprising 1,150 audio clips extracted from diverse UGM

sources. The dataset encompasses a vast range of contexts, content, and distortions,

and each clip is annotated with subjective quality scores.

2. A non-intrusive stacked Gated Recurrent Unit model is developed for audio quality

estimation. The model takes multiple audio features as input and emulates the

human perceptual auditory system, achieving better performance compared to ex-

isting SOTA methods. The model attains a remarkable Pearson’s Linear Correlation

Coefficient value of 0.834.

4.3 Proposed Work

The proposed work consists of two main parts. The first part involves the development

of the IIT-JMU-UGM Audio Dataset. This dataset aims to gather a diverse collection

of audio samples from various UGM sources. The second part of the work focuses on

developing a quality assessment metric to evaluate the quality of the UGM audio data.
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Table 4.1: Description of the existing audio datasets. “-” indicates unavailability of rele-
vant information. Avail. indicates the open availability of the dataset and S.T. represents
Subjective testing.

Dataset Purpose Type of Distor-
tions

Year Avail. Sample
Size

S.T.

TIMIT [4] Speech recognition
applications

None 1993 Under
Licence

5.4
hours

-

ITU-T
P Suppl.
23 [71]

Objective voice
quality assessment

Narrowband
speech degrada-
tion, environmen-
tal noise, audio
encoding, and
channel degrada-
tion

1998 Under
Licence

- Yes

SPINE [3] Speech recognition
in military setup

Noisy military en-
vironment

2000 Under
Licence

12 hours -

NOIZUS [2] Assessment of
speech enhance-
ment techniques

Various back-
ground noises

2006 Yes 960 sam-
ples

Yes

EBU-
SQAM [79]

Sound quality as-
sessment

- 2008 Yes 70 sam-
ples

-

Creusere’s
[74]

Audio quality as-
sessment

Changing bit rates 2008 - 48 sam-
ples

Yes

Live Music
dataset [76]

Live music record-
ing quality assess-
ment

Amplitude com-
pression, amplifi-
cation, band pass
filtering, white
noise, and crowd
noise

2013 - 2900
samples

Yes

ACE-
Challenge
[80]

Estimation of
acoustic parame-
ters

Reverberations,
multi-channel
noise, different
signal to noise
ratio

2015 Yes 4500
samples

-

CoreSV14
[78]

Evaluation of vari-
ous codec

Distortions due to
different types of
Codec used

2014 Yes 40 sam-
ples

Yes

REVERB-
Challenge
[86]

Evaluation of auto-
matic speech recog-
nition and enhance-
ment techniques

Reverberant room
responses and en-
vironmental noise

2016 Yes - Yes

Fazenda’s
[72]

Audio quality as-
sessment

Background noise 2016 No 128 sam-
ples

Yes

Avila’s [77] Speech quality as-
sessment

Room impulse
response, back-
ground noise

2019 - 10,000
samples

Yes
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4.3.1 Development of IIT-JMU-UGM Audio Dataset

The proposed IIT-JMU-UGM Audio Dataset consists of 1,150 audio clips paired with their

respective subjective scores. The dataset encompasses a diverse range of content, context,

and levels of distortions. The following steps were undertaken during the development of

this dataset.

4.3.1.1 Dataset Creation

For the preliminary data collection, multimedia-sharing platforms such as Flickr, YouTube,

CVDL [154], and Vimeo, among others, were identified. These platforms provide a vast

collection of UGM data uploaded by both amateur users and professionals. Initially, about

350 audio-video samples were obtained, out of which 217 clips were identified, having ap-

propriate copyright permission, an adequate amount of audio, and diverse content. Next,

the audio part of the sample was extracted from the multimedia clips while disregarding

the accompanying video. The samples were cropped to an average duration of 8 seconds,

providing a suitable length for analysis and evaluation. To simulate realistic scenarios and

create an extensive repository of audio instances, we deliberately introduced various dis-

tortions that perceptually impact audio quality. These distortions encompass a range of

factors that can affect audio perception, ensuring a diverse and representative collection.

The steps involved in the creation of the dataset are depicted in Fig. 4.1. Consequently,

we modelled the following two types of impairments in the dataset:

1. Background Noise: To capture the realistic conditions found in UGM clips and

their impact on perceptual quality, we introduced background noises and impair-

ments into the dataset. These included Gaussian noise, pink noise, as well as specific

impairments like hum, glitch, babble, microphone effects, echo, etc.

Different types and intensities of these noises were added to the clean audio samples

to create varying levels of degradation. This process allowed us to simulate the

diverse range of degradations that can affect audio quality in UGM clips.

2. Bit rate: According to Winkler [155], the audio bit rate highly affects its perceptual

quality, i.e., the lower the bit rate, the poorer the quality. Taking these findings into

consideration, the audio clips in the dataset were compressed by a range of bit rates,

spanning from very low to high values (approximately 10 kbps to 280 kbps). By
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including this variation in bit rates, we aimed to capture the diverse quality levels

that can be perceived based on the compression settings applied to the audio clips.

After a meticulous selection process and applying necessary preprocessing techniques,

we successfully curated the final version of the IIT-JMU-UGM Audio Dataset. This

comprehensive dataset consists of 1150 audio clips, specifically designed to encompass a

wide range of generalized and realistic distortions in UGM.

4.3.1.2 Subjective Testing

To facilitate the subjective evaluation of the IIT-JMU-UGM Audio Dataset, a simple

graphical user interface was designed. The Single-Stimulus Model [156] was adopted

wherein the subjects were presented with individual audio samples without any informa-

tion about the corresponding reference samples. A total of 26 volunteers participated in

the subjective testing process. The workflow of the subjective testing consisted of 4 phases;

Collection of the subject’s demographic information, general instructions about the test,

and a brief training session followed by the subjective testing phase, depicted in Fig. 4.2.

Basic demographic information such as age, gender, expertise in audio processing, and the

audio device used by each subject was collected. Furthermore, no separate hearing test

was conducted however, it was ensured that participants had an average hearing ability

and that their audio devices did not introduce any explicit sound degradation.

The subjects were provided with basic instructions about the test. Next, a short

training session was held to acquaint the participants with both the user interface and the

test procedure. During this session, a few audio samples were played to ensure participants

were comfortable with the setup after which the actual subjective test was conducted.

The database was thoroughly shuffled so as to avoid disinterest and information retention

among the listeners. In the testing phase, the subjects were instructed to rate audio

quality clips using the “5-Grade Absolute Category Rating (ACR) scale” (recommended

in ITU-T P.910 [156]). In this scale, the options for assessment range from ”Bad” to

”Excellent,” corresponding to numeric scores of 1 to 5 as shown in Fig.4.3. To mitigate

the effects of listener fatigue, only 30 clips were presented to each listener at a time,

followed by a short break before further evaluations. This approach aimed to maintain

the concentration and accuracy of the subjective evaluations.

In order to determine the final subjective rating of each audio clip, the Mean Opinion
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Figure 4.2: Workflow of the subjective testing

Figure 4.3: The ITU-T Five-point scale – ACR used during subjective testing.

Score (MOS) is computed by averaging the score given by the subjects for a particular

clip, calculated by:

MOSi =
1

Nj

j∑
1

Xij (4.1)

where Xij represents the score given by the j th subject to the ith audio clip and Nj

denotes the total number of ratings given to the clip. This operation was conducted on

the whole dataset to determine the ground truth or perceptual quality score of each audio

clip.

4.3.2 Proposed Quality Assessment Metric

In this section, a non-intrusive quality assessment metric is proposed for evaluating the

perceptual quality of audio samples. The metric consists of two main segments: the

feature extraction module followed by the deep learning module. Figure 4.4 provides an

overview of the proposed model’s architecture.

4.3.2.1 Feature Extraction Module

The proposed architecture begins with the extraction of key audio features, which play

a crucial role in representing the audio data efficiently. Feature extraction involves cap-
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Figure 4.4: The detailed architecture of the proposed metric.

turing essential and discriminative information from the input signal while reducing its

dimensionality. As a result, the subsequent learning algorithm’s computational efficiency

is improved, rendering it well-suited for real-time applications. In this work, the per-

formance of various audio features was explored which include Mel-frequency Cepstral

Coefficients, Spectral Centroid, Chroma, and Spectral Contrast. A description of each

of these features is given below. These features have also been employed in other audio

processing applications, such as speaker recognition, classification, information retrieval,

speech enhancement, and more [157].

1. Mel-frequency Cepstral Coefficient (MFCC): The MFCCs depict the short-

term power spectrum of sound instance, which is based upon a “linear cosine trans-

form of a log power spectrum on a nonlinear Mel scale of frequency” [158]. The steps

to obtain MFCC involve preprocessing the audio signal, segmenting it into frames,

computing the power spectrum, applying Mel filter banks, taking the logarithm,

and applying the “Discrete Cosine Transform (DCT)” [159].

Let the outputs of an I-channel filterbank be denoted as Z(i), i = 1, 2, ...I, the

MFCCs are calculated as:

cg =
I∑

i=1

[logZ(i)] cos

[
πg

I

(
i− 1

2

)]
, (4.2)

where g denotes the index of the cepstral coefficient. The lowest DCT coefficient

can be extracted to determine the final MFCC vector.
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These ”biologically inspired” MFCC coefficients effectively capture crucial acous-

tic characteristics in audio signals, closely mimicking human auditory perception.

These have found widespread use in a number of audio-processing applications such

as speaker recognition, genre classification, audio similarity measures, etc. [160–162].

Given their advantages and proven performance, we use the first twenty MFCC fea-

tures in our work.

2. Spectral Centroid: The spectral centroid represents the point of the “center of

gravity” i.e. the point where the energy of a spectrum is centered upon. It is used

as an indicator of “brightness” in sound and extensively employed as an automatic

estimator of timber in digital music and audio processing. Spectral Centroid (η)

is obtained by calculating the weighted mean of the frequencies extracted using a

Fourier transform, where the magnitudes are present as the weights [163].

η =

∑a2
i=a1

gili∑a2
i=a1

li
(4.3)

where a1 and a2 are the band edges, in bins, over which to calculate the spectral

centroid, li is the spectral value at bin i and gi is the frequency in Hz corresponding

to bin i.

3. Chroma: Chroma represents the intensity value of the twelve defined musical oc-

taves at each time frame [164]. In the chroma feature, the entire information re-

garding spectra corresponding to a given pitch class is accumulated into a unique

coefficient.

Let the value of chroma c ∈ [0 : 11] denote the 12 pitch attributes present in music

and pitch s ∈ [0 : 127]. Let TF : Z[0 : 127] → R≥0 be a pitch-based log-frequency

spectrogram, then the chroma representation Z × [0 : 11] → R≥0 is obtained by

aggregating the coefficients of pitch which belong to the same chroma [165]:

C(m, c) :=
∑

s∈[0:127]|s mod 12=c

TF (m, s), (4.4)

Chroma features have been also used in a number of sound-based applications such

as [166–168] and have shown good performance. In this regard, we also made use
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of chroma feature is the model.

4. Spectral Contrast: The spectral contrast consists of the spectral valley, spectral

peak, and their difference in every sub-band of the frequency. Seven of these features

were used in this work. Let the Fast Fourier Transform vector of r-th sub-band be

{yr,1, yr,2, ...yr,M}. The sorted vector can be expressed as
{
y′r,1, y

′
r,2, ...y

′
r,M

}
, such

that
{
y′r,1 > y′r,2 > ... > y′r,M

}
and neighborhood factor is represented by β. Then

the strength of spectral valleys (V), spectral peaks (P) and their difference (ST) is

expressed as [169];

Vr = log

{
1

αM

βM∑
i=1

y′r,M−i+1

}
, (4.5)

Pr = log

{
1

αM

βM∑
i=1

y′r,i

}
, (4.6)

STr = Pr − Vr, (4.7)

such that M is total number in rth sub-band.

For each audio sample, all the above-mentioned features are extracted and combined into

a single feature vector. This vector is fed to the deep learning model for training. For

feature extraction, the Librosa library in Python is utilized. The window length (fftsize)

was set to 2048, and the hop length was set to 512. Discrete Cosine Transform Type-2,

along with the default sample rate, was applied to each audio clip.

4.3.2.2 Deep Learning Module

Once the relevant features were extracted, various deep-learning techniques were explored

to determine the perceptual quality of the IIT-JMU-UGM Audio samples. Recurrent

Neural Networks (RNNs) have emerged as a pioneering technique for deep learning with

time-series-based data. Unlike regular deep neural networks and convolutional neural

networks, RNNs are specifically designed to handle sequential or time-dependent data,

such as audio and video. RNNs exhibit superior performance due to the presence of

recurrent connections, which enable them to capture temporal dependencies in the data
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Figure 4.5: Architecture of the basic Gated Recurrent Unit [7].

[170]. However, a limitation of the basic RNN model is the vanishing gradient problem,

which hampers its effectiveness in long-term dependencies. To address this issue, advanced

types of RNNs such as “Long Short Term Memory (LSTM)” [171], “Bidirectional Long

Short Term Memory (BiLSTM) ” [172], and “Gated Recurrent Units ” [7] have been

developed.

LSTM is one of the popular variants of RNN and consists of cells with specialized

gates: input, output, and forget gate. These gates regulate the information flow, allowing

the network to adaptively remember or forget specific values over time. BiLSTM, on

the other hand, employs two LSTM networks that process the input sequence in both

forward and backward directions, capturing bidirectional dependencies. GRU shares a

similar architecture with LSTM but has fewer gates and training parameters, resulting in

faster computation and lower memory requirements. Despite having fewer components,

GRU has demonstrated competitive performance in various tasks [173]. By selecting an

appropriate variant of RNN, we aim to increase the efficiency of perceptual QA for the

IIT-JMU-UGM Audio samples.

In various research studies, GRUs have been effectively applied in speech signal model-

ing, natural language processing tasks, and music modeling [174,175]. Figure 4.5, depicts

the standard architecture of a GRU. The main components of a GRU include:

1. Update Gate (zt): It determines the amount of the previous hidden state that

should be retained and the amount of new information from the current input that
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should be incorporated.

2. Reset Gate (rt): It determines the amount of the previous hidden state that should

be forgotten to incorporate new information from the current input.

3. Candidate Activation State (ĥt): This is the candidate activation that will be

added to the previous hidden state, but before applying the update gate. It is

computed using the reset gate, the previous hidden state, and the current input.

4. Hidden State (ht): This state is a combination of the previous hidden state and

the new memory content, weighted by the update gate.

Mathematically, the equations for the GRU are as follows [7]:

zt = σ(Wzxt + Uzht−1 + bz) (4.8)

rt = σ(Wrxt + Urht−1 + br) (4.9)

ĥt = ϕ(Whxt + Uh(rt ⊙ ht−1) + bh) (4.10)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt (4.11)

where zt, rt correspond to the update and the reset gate vectors at time step t. Further,

xt, ht represent the input and output vector respectively. The candidate activation vector

is given by ĥt. The parameters for the feed-forward connections are given as Wz, Wr,

and Wh. While, the parameters corresponding to the recurrent weights are given as Uz,

Ur, and Uh. It consists of trainable bias vectors bz, br, and bh, that are added before

applying the non-linearities. The Element-wise multiplication is represented by ⊙. For

both the update and the reset gates, sigmoidal activation function σ is used. While the

ϕ represents the hyperbolic tangent function for the candidate state.

Furthermore, a Stacked/Deep RNN architecture is comprised of a number of RNN

layers that are sequentially connected. The output of one layer acts as the input to the

subsequent layer. Each layer combines the learned representations from the preceding

layer and forwards them to the subsequent higher layer. Consequently, the model obtains

enhanced representations of the provided data [176,177]. Motivated by these observations,

this work uses a deep learning model using stacked GRU architecture for audio quality

assessment.
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Table 4.2: Model summary of the proposed model for audio quality assessment.

S.No Layer Hidden Units Dropout Rate Output Shape Parameters

1. GRU-1 64 − (None, 128, 64) 20160

2. Dropout − 0.2 (None, 128, 64) −

3. GRU-2 32 − (None, 128, 32) 9312

4. Dropout − 0.2 (None, 128, 32) −

5. GRU-3 8 − (None, 8) 984

6. Dropout − 0.2 (None, 8) −

7. Dense 1 − (None, 1) 9

The feature vector obtained in the first step is fed to the designed stacked GRU model.

We made use of three GRU layers (GRU-1, GRU-2, and GRU-3) stacked together, each

followed by a Dropout layer. To prevent overfitting, the Dropout layer is employed.

During training, this layer randomly sets certain input units in the model to zero at each

step. The number of hidden units in each of the GRU layers is set to 64, 32, and 8,

respectively. A Dense Layer with one output linear function is added to obtain the final

quality scores. The output value corresponds to the quality score from the range 1 to 5,

(bad to excellent). The summary of the proposed model is given in Table 4.2.

While training, the objective was to ensure that the proposed model, along with its

hyperparameters, achieved optimal performance without overfitting. To assess the model’s

training progress and evaluate its performance, two plots were generated: the plot of loss

versus the number of epochs and the plot of Pearson Linear Correlation Coefficient (PLCC

or r)versus the number of epochs as given in Fig. 4.6 and Fig.4.7 respectively. The loss

versus epochs plot shows the progression of the model’s loss function as the training

proceeds. Initially, there is a significant decrease in the loss value as the model learns

and adjusts its parameters. However, as the training progresses, the loss may reach a

plateau, indicating that the model has learned all it can from the available data. This

plateau serves as an indication of convergence, and the loss value at this point is saved

as the final model. The PLCC versus epochs plot illustrates the correlation between the

objective quality scores and the actual subjective scores as the model trains over epochs.

As the training continues, the PLCC value increases, indicating an improved alignment
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Figure 4.6: Plot between Loss and Epochs.

Figure 4.7: Plot between PLCC and Epochs.

between the predicted and ground-truth scores.

Further to prevent overfitting, early stopping was employed, which stops the train-

ing process if the loss does not decrease for a certain number of consecutive epochs. This

prevents the model from memorizing the training data excessively and helps ensure gener-

alization to unseen data. The plotted results demonstrate the gradual convergence of the

model without overfitting, indicating that the proposed model and its hyperparameters

are effective in achieving optimal performance. Also, a dropout rate of 0.2 was applied to

reduce overfitting, and the model was trained for a total of 300 epochs.

To determine the optimal loss function for this model, many experiments were con-

ducted (discussed in Results Section), employing different loss functions such as “Mean

Square Error (MSE)”, “Mean Absolute Error (MAE)”, and “Mean Squared Logarithmic

Error (MSLE)”. The final model utilized the MSE function as the loss function to de-

crease the difference between the predicted outputs and the training labels. In the process

of optimizing the model, different batch sizes were experimented with, including 8, 16, 32,

64, and 128. After evaluating the performance, the optimal batch size was determined to
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be 16. The Adam optimizer was employed with specific hyperparameters set as follows:

the value of Beta-1 and Beta-2 equal to 0.9 and 0.999, the learning rate equals 0.01,

and an Epsilon factor of 1e-8. These parameters were chosen to ensure efficient conver-

gence and optimization during training. For the dataset split, 70% of the IIT-JMU-UGM

Audio samples were allocated for training, and the remaining 15% each for testing and

validation purposes. This split allowed for robust evaluation and validation of the model’s

performance on unknown data. Furthermore, other types of RNNs were also explored and

evaluated. The details and results of these alternative RNN models will be discussed in

the subsequent section.

The implementation of the proposed metric was carried out in Python 3, leveraging

various libraries such as NumPy and Librosa. The deep learning framework utilized was

Keras with a Tensorflow backend. The model training and testing were performed on

a DELL G3 15 laptop with the 8th generation “Intel Core i7 processor” and “Nvidia

GTX GPU”. This hardware configuration facilitated efficient computation and accelera-

tion during the training process. In this environment, the feature extraction and model

training process took approximately 18 minutes to complete. For predicting the quality

of an individual audio clip with a duration of 8 seconds, the average prediction time was

approximately 0.520 seconds. This indicates that the model is capable of providing quick

quality assessments for audio samples.

4.4 Experimental Results And Analysis

This section evaluates two main aspects: the analysis of the IIT-JMU-UGM Audio

Dataset, and the performance evaluation of the proposed quality assessment model.

4.4.1 Analysis of the proposed IIT-JMU-UGM Audio Dataset

In order to show that the proposed IIT-JMU-UGM Audio Dataset is comprehensive and

can overcome the issues associated with the existing datasets, we conducted various em-

pirical studies, each of which is listed below.
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Figure 4.8: Histogram representing various categories of context and content in the IIT-JMU-UGM Audio
dataset. Content is annotated as song (SG), music (M), light music (LM), speech (S), and background
sounds (BG).

4.4.1.1 Database Diversity Analysis

To assess the degree of diversity present in the dataset, a histogram analysis was per-

formed. Figure 4.8 illustrates the distribution of the dataset across thirteen distinct

context categories, including tutorials, home videos, songs, music, sound effects, sports,

outdoor activities, and more. These samples were captured using a variety of devices such

as smartphones, handheld devices, and HD cameras, by both amateurs and profession-

als. The clips encompass a wide range of content, including music, songs, human voices,

speech from different languages, background music, sound effects, machine sounds, animal

sounds, and other ambient sounds, as indicated by the different colors in the plot. Ad-

ditionally, approximately 10% of the clips implicitly exhibit various distortions resulting

from factors such as varying capture device quality, environmental conditions, compres-

sion artifacts, and more. This characteristic makes the proposed dataset representative

of real-world scenarios, incorporating a significant degree of generality and realism.

4.4.1.2 Subjective Testing Analysis

To validate the consistency of the subjects during the subjective testing, we made use

of Fleiss’ Kappa technique [178]. This technique is a statistical measure to calculate

the degree of agreement between multiple subjects. The Kappa Score (KScore) can be

obtained as;

KScore =
M̄ − M̄a

1− M̄a

. (4.12)
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Figure 4.9: Histogram of MOS and the type of perceptual annoyance in the IIT-JMU-UGM Audio
Dataset.

The value 1−Ma determines the degree of agreement which is obtainable above

chance. M̄ - M̄a gives the amount of agreement that is actually obtained above chance.

The higher the value of KScore, the greater the degree of agreement between the sub-

jects. We carried on this inter-rater reliability test for the subjective test on IIT JMU

UGM Audio Database and found KScore to be 0.405 which is interpreted as ”Moderate

agreement among the subjects”. Thus, validating the reliability of our subjective testing.

In the subjective testing phase, the subjects/participants were not only required to

rate the audio clips based on their quality but also to identify the type of perceptual

annoyance they noticed in each clip. They could choose from three options: background

noise, distorted sound (broken), or clear (no degradation). The histogram plot shown in

Fig. 4.9, which depicts the relationship between the Mean Opinion Score and the type

of perceptual annoyance, reveals an interesting pattern. It can be observed that audio

clips with lower MOS scores had a higher number of perceptual distortions, while clips

with higher MOS scores had fewer perceptual annoyances. This finding indicates that

the participants were actively engaged in the testing process and paid attention to the

perceptual quality and presence of distortions in the audio clips. Therefore, this further

strengthens the reliability of the subjective testing procedure.

4.4.1.3 Class Balance

Figure 4.10 provides an overview of the MOS distribution across the entire dataset. It

can be observed that the plot exhibits a diverse range of quality scores, indicating that
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Figure 4.10: Overall distribution of MOS on the IIT-JMU-UGM Audio Dataset.

Figure 4.11: MOS distribution into five discrete quality classes on the IIT-JMU-UGM Audio Dataset.

the dataset comprises audio samples with varying levels of perceptual quality.

Furthermore, Fig. 4.11 presents a histogram of the mean opinion scores categorized

into five discrete quality levels ranging from 1 to 5. The plot demonstrates that the dataset

represents the different quality levels in a fairly balanced ratio. This balanced distribution

of quality levels further supports the claim that the proposed dataset is comprehensive

and generalized, encompassing a wide range of perceptual quality variations in the audio

samples.

4.4.1.4 Effect of Bit rate

Figure 4.12 illustrates a scatter plot depicting the relationship between the bit rate and

the MOS. A common perception is that higher bit rates correspond to better audio quality,

while lower bit rates result in poorer audio quality. However, the plot reveals a different

observation that challenges this notion. The scatter plot indicates that the relationship
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Figure 4.12: Scatter plot between bit-rate and MOS.

between audio bit rate and perceptual quality is not strictly linear or directly proportional.

This finding suggests that other factors, such as background sound, context, noise, and

possibly the audio encoding and compression techniques used, can significantly influence

the perceived quality of UGM audio data.

This observation underscores the need for a comprehensive and generalized quality

metric that takes into account multiple factors and their interactions to accurately assess

the perceptual quality of UGM audio. Merely relying on bit rate as a sole indicator

of quality may not capture the full complexity of the audio content and the listener’s

perception.
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4.4.2 Result Analysis of the Proposed Quality Assessment Model

In this section, we analyze the performance of the proposed method in two ways. First,

we compare the proposed model with existing SOTA techniques. Next, we perform an

extensive ablation study of various hyperparameters used in the model. For this, we

employ the standard co-relation evaluation methods, i.e. r, ρ, τ , and RMSE.

4.4.2.1 Performance Comparison

In order to assess the performance of our proposed method, we compared it with several

SOTA QA metrics, including both intrusive and non-intrusive approaches. Among the

intrusive metrics, we considered SSISDR [92], NISQA [93], ViSQOL [94], PESQ [88], and

STOI [91]. Among the non-intrusive metrics, we evaluated SRMR [97], Wawenets [179],

MOSNET [102], NIST-STNR [100], WADA [180], and SNRVAD [101]. Table 4.3 presents

the performance of these objective quality metrics on the IIT-JMU-UGM Audio Dataset.

The results show that the proposed deep learning method gives superior results compared

to existing algorithms, r, ρ, and τ equal to 0.834, 0.810, of 0.683. It outperforms all the

intrusive metrics, including ViSQOL, STOI, SISDR, PESQ, and NISQA. ViSQOL, despite

being one of the highest-performing metrics, is limited in its applicability as it is designed

for specific sample rates (48kHz). Additionally, the PESQ metric is computationally

demanding. Moreover, the proposed method surpasses all the mentioned non-intrusive

approaches, including Wawenets, SRMR, NIST-STNR, SNRVAD, MOSNET, and WADA.

Overall, our proposed model outperforms the benchmark metrics. This can be attributed

to the fact that these methods were primarily designed for speech quality assessment,

while the IIT-JMU-UGM Audio Dataset is more generalized and consists of diverse sounds

present in user-generated data.

4.4.2.2 Statistical Significance Test

In order to assess the statistical significance of the proposed metric, we conducted an

F-Test between the proposed method and the existing metrics. The results of the F-Test

are indicated in the last column of Table 4.4. It is noteworthy that the F-Score is ’+1’ for

all cases, indicating that the proposed audio quality assessment technique is statistically

superior to all the other SOTA techniques. This further validates the effectiveness of the

proposed approach.
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Table 4.4: Results of the F-Test conducted between the proposed GRU metric and the
various SOTA techniques

Metric SRMR Wavenets NIST-STNR SNR-VAD VISQOL STOI

Score +1 +1 +1 +1 +1 +1

Table 4.5: Performance comparison of the proposed stacked GRU architecture using dif-
ferent number of GRU layers.

Number of Layers r ρ τ RMSE

1 0.605 0.603 0.426 1.052

2 0.736 0.703 0.518 0.971

3 0.834 0.818 0.625 0.776

4.4.2.3 Ablation Study

This section depicts an extensive ablation study to determine the effect of various param-

eters and conditions on the results of the proposed metric.

• Analysis of Depth of the Network

The proposed model utilizes a stacked GRU architecture with three layers. The

decision to use this specific number of layers is justified in Table 4.5. The ablation

study conducted evaluates the model’s performance using varying numbers of GRU

layers. The results indicate that when using one or two layers of GRU, the model

achieves r values of 0.605 and 0.736” respectively. However, with the inclusion of

a third layer, there is a notable improvement in the r score, which reaches 0.834.

As shown in the table, the deep GRU model consistently outperforms the shallow

models on the performance parameters, indicating that the additional layers con-

tribute to better results. Based on these findings, the use of a three-layer deep GRU

architecture is justified as it yields improved results in terms of various evaluation

metrics.

• Analysis of Different Backbone Networks

In order to assess the relative performance of our proposed stacked GRU model, we

compared it with other commonly used RNN models, namely Simple RNN, LSTM,
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Table 4.6: Performance comparison of the proposed stacked GRU architecture with dif-
ferent RNN models.

S. No. Model r ρ τ RMSE

1. GRU 0.834 0.818 0.625 0.776

2. LSTM 0.801 0.778 0.595 0.816

3. BiLSTM 0.761 0.736 0.545 0.860

4. Simple RNN 0.617 0.554 0.423 1.073

Table 4.7: Performance comparison of the proposed stacked GRU architecture using dif-
ferent optimization algorithms.

S. No. Optimizer r ρ τ RMSE

1. ADAM 0.834 0.818 0.625 0.776

2. RMS Prop 0.821 0.798 0.610 0.779

3. AdaDelta 0.818 0.795 0.611 0.799

4. SGD 0.798 0.786 0.603 0.802

and BiLSTM. Each model was configured with specific parameters to evaluate their

effectiveness. For the basic RNN model, we employed three Simple RNN layers with

hidden units set to 64, 32, and 8, and dropout values of 0.4, 0.3, and 0.3 respectively.

In the stacked LSTM model, we combined three LSTM layers with sizes of 64, 32,,

and 8, and set the dropout to 0.05, and recurrent dropout values 0.35 for all layers.

The stacked BiLSTM model consisted of two layers with dropout values of 0.4 and

0.35, and recurrent dropout set to 0.35 for both layers. The final quality score

was obtained from the last Dense layer with a size of 1 for all models. To prevent

overfitting, k-fold validation, and standard measures were applied.

As shown in Table 4.6, the performance of the stacked GRU model outperformed

the other RNN models. Additionally, it was observed that the proposed GRU

model achieved convergence in approximately 18% less time compared to LSTM,

and about 23% less time compared to BiLSTM. Therefore, not only did the GRU

model exhibit superior performance in terms of r, but it also demonstrated faster

computation time compared to the other RNN architectures.
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Table 4.8: Performance comparison of the proposed stacked GRU architecture using dif-
ferent loss functions.

S. No. Loss Function r ρ τ RMSE

1. MSE 0.834 0.818 0.625 0.776

2. MSLE 0.815 0.785 0.601 0.776

3. MAE 0.796 0.768 0.588 0.858

Table 4.9: Performance of the 1-D CNN model.

Technique r ρ

1D CNN 0.556 0.541

• Analysis of Optimizers

To assess the effect of different optimizers (Adam, RMS Prop, AdaDelta, and SGD)

on the results of the proposed model, an ablation study is conducted. As depicted in

Table 4.7, the Adam optimizer exhibits the highest performance, closely followed by

RMSProp. The Adam optimizer combines the advantages of the gradient descent

with the momentum algorithm and the Root Mean Square (RMS) Prop algorithm.

It possesses favorable characteristics such as computational efficiency, easy conver-

gence, simplicity of implementation, and low memory requirements.

• Analysis of Loss Function

Furthermore, the performance of many loss functions, such as “Mean Squared Log-

arithmic Error (MSLE)”, “Mean Absolute Error (MAE)”, and “Mean Square Error

(MSE)” was analyzed. The results in Table 4.8 point that MSE exhibits better

performance compared to the other techniques. MSE calculates the square of the

difference between the actual and predicted values. Its simplicity and efficiency

make it a preferred choice for this task.

• Analysis of CNN based Model

In the study, we conducted experiments using a combination of 1D CNN, Max-

Pooling, Dropout, and finally Dense layer on raw audio samples. However, the

obtained results, as presented in Table 4.9, were unsatisfactory. One possible ex-

planation for this outcome is the limited kernel size of 1D CNNs, which primarily
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focus on capturing local dependencies and fail to consider the influence of nonad-

jacent features. Consequently, the overall performance of the models is adversely

affected. Thus, in contrast to the CNN model, the Recurrent Neural Networks excel

at capturing temporal relationships in time-series data and demonstrate superior

efficiency during both the training and inference phases.

• Analyis of Spectrogram Based Model

We also explored Spectrogram images to train a CNN-based deep learning model

as done in [181]. However, due to the inherent diversity and variation in the user-

generated audio clips, it was observed that there was a minimal correlation between

the spectrograms. As a result, the obtained results were not satisfactory. The lack

of consistent patterns or relationships in the spectrograms made it challenging for

the CNN model to efficiently learn and obtain meaningful features from the audio

data.

4.4.2.4 Scatterplot Analysis

Figure 4.13 shows the scatter plots depicting the objective scores obtained by various

quality assessment metrics, including STOI, SISDR, PESQ, SNRVAD, SRMR, NIST-

STMR, NISQA, and the corresponding subjective scores (MOS). For better visualization,

a subset of three hundred samples was randomly selected and plotted. It is evident from

the scatter plot that the proposed model exhibits a higher degree of linearity and better

convergence compared to the other metrics. Such high linearity and efficient mapping

between objective and subjective scores further validate the efficiency of the proposed

model in accurately assessing audio quality.

In summary, the conducted experiments clearly demonstrate that the existing qual-

ity assessment metrics do not effectively correlate with subjective evaluations for a wide

range of distortions in UGM audio samples. In contrast, the proposed QA metric out-

performs these existing algorithms and exhibits a strong correlation with human auditory

perception. By developing a deep learning-based model specifically designed for UGM

audio data and utilizing the comprehensive IIT-JMU-UGM Audio Dataset, the proposed

metric successfully captures the perceptual quality of diverse audio samples. The model’s

performance surpasses that of both intrusive and non-intrusive metrics, indicating its

efficiency in evaluating UGM audio quality.
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(a) Proposed Model (b) STOI [91]

(c) SISDR [92] (d) PESQ [88]

(e) SNRVAD [101] (f) SRMR [97]

(g) NIST-STNR [100] (h) NISQA [93]

Figure 4.13: Scatter plot between MOS and objective scores of different quality assessment metrics.
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4.5 Conclusion

To facilitate the assessment of quality in user-generated multimedia audio, a novel dataset

called IIT-JMU-UGM Audio Dataset was developed. This dataset encompasses diverse

content, context, and degrees of distortions commonly found in real-time multimedia ap-

plications. Human subjective testing was conducted on this dataset to obtain ground

truth information about quality. The investigation revealed that while low bit rate degra-

dations significantly affect perceived audio quality, the relationship between bit rate and

quality is not necessarily linear. Other factors such as context, content, and background

sounds also have a profound impact on overall quality. To address these various factors,

a robust non-intrusive quality metric was proposed, utilizing a stacked Gated Recurrent

Unit architecture. The metric takes into account perceptually important audio features

like MFCC, spectral centroid, chroma, and spectral contrast. When applied to the IIT-

JMU-UGM Audio Dataset, the proposed metric outperformed existing SOTA intrusive

and non-intrusive methods.



Chapter 5

Conclusion and Future work

5.1 Conclusion

This thesis aims to explore and propose quality assessment techniques for multimedia

data. The thesis explores two important streams of multimedia, one is the DIBR view

QA, and the other is the domain of UGM audio QA. The importance and necessity

of quality assessment metrics are initially discussed, supported by a detailed literature

review. Moreover, each of the chapters presents some drawbacks of the existing techniques

and the motivation for carrying out the proposed work.

In the first chapter, an extensive literature review is presented, exploring the need,

application, and scope of quality assessment metrics. Existing quality assessment methods

for DIBR views are examined, and their drawbacks and limitations are highlighted. The

study also delves into existing datasets and metrics for quality assessment of audio present

in user-generated multimedia.

In the second chapter, a full-reference metric for the quality assessment of DIBR

images is proposed. This work involves analyzing maps generated by the Non-Subsampled

Contour Transform, which offers valuable quality-related features in DIBR views. A

backbone CNN model is used to extract deep features from these maps. The image

quality score is computed by comparing the features of the synthesized with its reference

views. The results of this proposed metric outperform existing QA metrics. The main

contribution of this work is the introduction of NSCT as a quality-aware feature extractor.

It highlights both the edge details as well as the relevant texture information which is

important in DIBR view quality assessment.

93
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In the third chapter, a no-reference quality assessment metric is introduced. This

work proposes a novel method for calculating ground truth scores for individual image

blocks in an image. The predicted block-level quality values are then aggregated to deter-

mine the overall quality of the entire image. Experimental results demonstrate that the

proposed algorithm outperforms existing objective metrics for DIBR synthesized views.

The main contribution of this work is exploiting the fact that the human perceptual sys-

tem is very sensitive to the high-intensity degradations which are specifically localized

in DIBR images. Thus, by identifying and measuring these distortions, valuable insights

into perceptual quality can be gained.

A summary of the results obtained by the proposed FR and NR assessment metrics

is given in table 5.1 for the IETR DIBR dataset. Similarly, the results of the metrics for

the IVY DIBR dataset are shown in Table 5.2. As mentioned earlier, both the proposed

metrics perform much better than the existing techniques for quality assessment.

Table 5.1: Summary of results of the proposed metrics on the IETR dataset.

Technique r ρ τ RMSE

Proposed FR metric 0.8207 0.8187 0.6203 0.1417

Proposed NR metric 0.7211 0.7091 0.5114 0.1718

Table 5.2: Summary of results of the proposed metrics on the IVY dataset.

Technique r ρ τ RMSE

Proposed FR metric 0.7580 0.7375 0.5418 9.4090

Proposed NR metric 0.6693 0.6283 0.4402 10.5856

Furthermore, Figure 5.3 showcases several examples extracted from the IETR dataset.

It includes the subjective scores as well as the normalized predicted scores obtained by

the application of the proposed FR and NR metrics. These examples demonstrate the

robust correlation between the proposed method and the subjective scores.

Chapter four focuses on the quality assessment of audio present in user-generated mul-

timedia. It begins by addressing the limitations of existing audio databases and the need

for a new database. With this motivation, a novel repository is developed consisting of
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DMOS: 0.908
Proposed NSCT-FR: 0.907

Proposed NR: 0.960

DMOS: 0.754
Proposed NSCT-FR: 0.724

Proposed NR: 0.839

DMOS: 0.993
Proposed NSCT-FR: 0.919

Proposed NR: 0.878

Table 5.3: Examples from the IETR dataset showing a comparison of the subjective score
(DMOS) and the predicted scores obtained by the proposed metric.
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diverse UGM audio data. The clean reference signals are subjected to various distortions

to mimic the degradations present in real-world scenarios. The proposed audio database

incorporates samples with implicit distortions, and diverse contexts, content, distortion

types, and intensities. To establish ground truth scores, an extensive subjective assess-

ment test is conducted. Next, the work delves into the utilization of a deep learning model

for QA. It explores various techniques for assessing audio quality, specifically the use of

Recurrent Neural networks is capitalized which yields significantly improved results when

compared to existing techniques for audio quality assessment.

5.2 Future Work

In the future, this work can be extended in various directions of quality assessment and its

applications. Some of the domains in which the work may be extended are listed below.

1. Joint DIBR quality assessment and enhancement model:

A possible domain for exploration is a joint quality assessment and enhancement

which is an integrated framework that simultaneously evaluates the quality of data

while enhancing it. By combining both evaluation and enhancement processes, this

unified approach aims to optimize the overall image quality, ensuring superior results

for a wide range of applications and datasets. The workflow of a comprehensive

quality enhancement and assessment model can be outlined in Fig. 5.1. In this

approach, the predicted quality score of the enhanced image serves as a loss function

during the training of the corresponding enhancement model. Thus the process aims

to replicate the enhancements based on the preferences of the human perceptual

system.

2. Advancements in AQA for UGM data:

Chapter 4 introduced the IIT-JMU-UGM Audio Dataset as a benchmark for UGM

AQA. Although it served as a successful benchmark, the dataset has some limita-

tions. Firstly, it mainly focused on only two explicit distortion types: low bit rate

and background noise. Additionally, only about 10% of the samples included real-

world degradations, thus limiting diversity for quality assessment. In this regard, in

our next work presented in [8], a few improvements are introduced.
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Figure 5.1: The proposed joint DIBR quality assessment and enhancement model.

First, an enhanced version of the earlier proposed dataset called IIT-JMU-UGM Au-

dio Dataset-2 is developed. This repository includes a wider range of real-world sce-

narios by incorporating audio clips with diverse contexts, content, distortion types,

and intensities. It also incorporates implicitly distorted audio alongside the original

dataset. The final dataset consists of more than two thousand audio samples, each

accompanied by their respective subjective scores.

Next, the proposed work also incorporates the concept of Transformer-based learning

(Fig. 5.2, which provides an efficient and non-intrusive technique for evaluating the

quality of UGM audio. This novel approach surpasses the performance of existing

SOTA algorithms by achieving a performance improvement of over 4%.

Along the same lines, other powerful and advanced deep learning concepts can be

explored in the future for developing enhanced audio quality assessment techniques

for UGM data.

3. Video quality assessment metric:

As video data is an extension of images, the future methods for assessing DIBR im-

age quality can be extended and made more efficient for video quality assessment.

This would entail evaluating both traditional (static) distortions and temporal dis-

tortions present in the video data. A more precise evaluation of such datasets can be

achieved by combining local and global quality scores and incorporating temporal

quality cues.
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Figure 5.2: Architecture of the Transformer-based quality assessment metric proposed in [8].

4. A comprehensive multimedia quality assessment metric:

An additional area worthy of exploration is the development of a perceptual quality

metric that holistically evaluates the overall quality of multimedia clips, encompass-

ing video, audio, images, 3-D views, graphics, and screen content. Such a metric

would take into account real-world scenarios where end-users seek a satisfying qual-

ity of experience. The effect on content and context may also be explored in such

studies. This comprehensive metric may find utility in various domains, including

movie theatres, gaming, Over-the-top (OTT) media, and other immersive applica-

tions that involve the integration of multimodal media elements.

5. Furthermore, potential improvements in model architecture such as Transformers,

and Diffusion models can be pursued, potentially leading to enhanced performance

in DIBR view quality assessment.
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[29] D. Sandić-Stanković, D. Kukolj, and P. Le Callet, “Dibr synthesized image quality

assessment based on morphological wavelets,” in 2015 Seventh International Work-

shop on Quality of Multimedia Experience (QoMEX), 2015, pp. 1–6.

[30] S. Tian, L. Zhang, L. Morin, and O. Deforges, “A full-reference image quality

assessment metric for 3-d synthesized views,” Proc. Image Quality Syst. Perform.

Conf., IST Electron. Imag., Soc. Imaging Sci.Technol., vol. 12, p. 3661–3665, 2018.
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