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Abstract

Image Quality Assessment (IQA) is the analysis of degradation in the images and the

effect of these degradations on the overall perceptual quality. 3D views are a type of

image which are gaining popularity these days and have applications in various domains

such as Free-viewpoint Televisions (FTVs) and Virtual Reality (VR) for an immersive

experience. Subsequently, their quality assessment is an important aspect of research in

the computer vision domain. The 3D IQA methods can be divided into two categories:

Full Reference (FR) and No Reference (NR) IQA metrics are based on the amount of

information utilized from the reference image or the side images. Recent 3D synthesis

algorithms produce distortions that are not pleasant to human visual systems (HVS), such

as stretching artifacts, improper alignment, and various geometric/structural distortions.

We analyzed these new types of distortions and how these distortions are different from

distortions such as “black-holes,” which are obsolete. Building upon these observations,

we have proposed three 3D-IQA algorithms in this thesis which are explained in detail

below:

1. No Reference 3D IQA (Stretching Artifacts Identification for No Refer-

ence IQA of 3D Synthesized Images): Existing quality assessment algorithms con-

sider identifying “black-holes” to assess the perceptual quality of 3D-synthesized views.

However, advancements in rendering and inpainting techniques have made “black-holes”

artifacts obsolete. Subsequently, 3D-synthesized views frequently suffer from stretching

artifacts due to occlusion that, in turn, affects perceptual quality. Existing QA algorithms

are found to be inefficient in identifying these artifacts. We found a relationship between

the number of blocks with stretching artifacts in view and the overall perceptual quality.

With this view, in our first chapter, we propose a Convolutional Neural Network (CNN)

based algorithm that identifies the blocks with stretching artifacts and incorporates the

number of blocks with the stretching artifacts to predict the quality of 3D-synthesized

views. To address the challenge with the existing 3D-synthesized views dataset, which

has few samples, we collect images from other related datasets to increase the sample size

and generalization while training our proposed CNN-based algorithm. The proposed al-

gorithm identifies blocks with stretching distortions and fuses them to predict perceptual

quality without reference.

2. Full Reference 3D IQA 1 (Perceptually Unimportant Information Re-
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duction and Cosine Similarity based Full Reference IQA for 3D Images): All

IQA methods have their importance, whether reference-less or reference-based. The gen-

eration of 3D synthesized images produces a few pixel shifts between reference and 3D

synthesized images; hence, they are not properly aligned. And as most full reference IQA

methods start with taking the difference/residual of reference and 3D synthesized im-

age, the different image contains much perceptually unimportant information due to this

shifting. To address this, in the second chapter of the thesis, we propose to use the mor-

phological operation (opening) in the residual image to reduce perceptually unimportant

information between the reference and the distorted 3D synthesized image. The residual

image suppresses the unimportant information and highlights the geometric distortions

that significantly affect the overall quality of 3D synthesized images. We utilized the

information in the residual image to quantify the perceptual quality measure and named

this algorithm the Perceptually Unimportant Information Reduction (PU-IR) algorithm.

At the same time, the residual image cannot capture minor structural and geometric dis-

tortions due to the usage of erosion operation. We extract the perceptually important

deep features from the pre-trained VGG-16 architectures on the Laplacian pyramid to

address this. The distortions in 3D synthesized images are present in patches, and the

human visual system perceives even the small levels of these distortions. With this view,

we proposed using cosine similarity to compare these deep features between reference

and distorted images. We named this algorithm Deep Features extraction and compari-

son using Cosine Similarity (DF-CS) algorithm. Finally, the pooling is done to obtain the

objective quality scores using simple multiplication to both PU-IR and DF-CS algorithms.

3. Full Reference 3D IQA 2 (Context Region Identification based Quality

Assessment of 3D Synthesized Views): According to recently proposed 3D view

synthesis algorithms, the choice of context region for the disocclusion plays a vital role in

the perceptual quality of 3D synthesized views. The context region taken from the back-

ground of a view produces a perceptually better quality of 3D synthesized views than

when the context region is taken from the foreground. With this view, third chapter

of the thesis is the first effort toward identifying the context region and incorporating

this information for the perceptual quality assessment of 3D synthesized views. We ob-

served that the depth energy maps of the 3D synthesized views vary significantly with the

change in the context region and subsequently can identify the context region. Hence, in
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this work, we propose a new and efficient quality assessment algorithm based upon the

variation in the depth of 3D synthesized and reference views, giving two-fold advantages:

1. It can predict the quality based on whether the context region is foreground or not.

2. It is also able to suggest the possible location of distortions. We have proposed two

new algorithms for both situations when the context region is foreground or not. The

overall predicted score is the direct multiplication of the quality score estimated when the

context region is foreground or not.
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Chapter 1

Introduction

1.1 Introduction to Image Quality Assessment of 3D

Synthesized Views

An appropriate 3D view can provide consumers with a more engaging and better immer-

sive experience [5]. 3D-Television, Free-Viewpoint-Video (FVV), Virtual-Reality (VR),

and 360◦ video are popular applications of 3D view synthesis widely used due to their re-

alistic and interactive experience [6,7]. Figure 1.1 is a visual description of an application

of 3D view synthesis during sports events.

(a)

Figure 1.1: This figure is taken from http://global.canon/en/news/2017/20170921.html

The real-world 3D images look like Figure 1.2, which is generated using the Facebook

3D algorithm [8]. (a) and (c) are two viewpoints of the figure, whereas (b) and (d) are their

zoomed-in views, respectively. As can also be observed from the figure, these zoomed-in

2
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(a) Viewpoint 1 (b) Cropped View-
point 1

(c) Viewpoint 2 (d) Cropped Viewpoint
2

Figure 1.2: Real-world example of 3D Views and its corresponding zoomed-in patches.

figures show visually unpleasing distortions to the human visual system (HVS). Similarly,

different rendering methods produce different unpleasing artifacts. Hence, there is a need

for improvement in the area of Image quality assessment of 3D view synthesis.

1.2 Depth-Image-Based-Rendering (DIBR)

DIBR [9] is a powerful method used to represent and code new scenes in the process of

3D view synthesis. In the process of DIBR, a virtual/novel view of a scene is synthesized

using still or moving images and their per-pixel depth information. Elaborating further,

the DIBR is a process that consists of two following steps:

1. Reprojection of original image points into the 3D world. This can be done using

depth information of the image.

2. Projection of 3D space points to virtual camera points at the desired location.

This process of projection (2D-to-3D) and (3D-to-2D) is termed 3D warping in Com-

puter Graphics. 3D warping is followed by image inpainting techniques to fill the missing

information in the warping process. This process of 3D synthesis is shown in Figure 1.3.

This process of rendering new scenes introduces new types of artifacts such as cracks,

ghosting, stretching, flickering and crumbling, etc. [5]. These artifacts differ from conven-

tional ones, which occur in regular natural images. Also, with technological advancement
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Figure 1.3: A general process of 3D synthesis using warping process and filling of black holes using
inpainting algorithms.

and 3D-synthesis methods, some of these traditional 3D-synthesis artifacts, such as black

holes [10], have become obsolete [2].

1.3 3D IQA Datasets Survey

IETR DIBR Dataset: This dataset comprises 140 synthesized views generated using

ten reference views and corresponding subjective scores. Out of these ten reference views,

7 are Natural Views, and 3 are Synthetic Views. The views are rendered using 7 different

DIBR methods M1: Criminisi’s [11], M2: LDI [12], M3: Ahn [13], M4: Luo’s [14], M5:

HHF [15], M6: VSRS [16], M7: Zhu [17]. Among these 7 DIBR methods (M1 to M7),

M7: Zhu is an inter-view 3D synthesis method, while M6: VSRS can be used as both

inter-view and single-view 3D synthesis; all the other methods (M1 to M5) belong to the

single-view 3D synthesis category. A brief overview of these methods is listed below:

i). Single-view 3D synthesis Methods:

• M1 (Criminisi’s [11]): This method is based on an exemplar-based texture synthesis

technique. Patch priorities are computed using confidence parameter to improve

the order of the pixel filling.

• M2 (LDI [12]): This algorithm uses an object-based Layered-Depth-Image (LDI)

representation to obtain the synthesized view. Based on this representation’s fore-

ground and background segmentation, the authors have proposed to render the

3D-synthesized view.
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Dataset IVC IVY IETR

Dataset proposed in year 2011 2016 2019
Number of synthesized Views 84 84 140
3D synthesis algorithms used 4 7 7
Year of most recent 3D algorithms 2010 2014 2016
Obsolete distortions? Yes Yes Yes
Type of obsolete distortion Black Holes Ghosting Stretching

Table 1.1: Comparison of existing IQA datasets.

• M3 (Ahn [13]): A depth-based 3D synthesis method was proposed by Ahn et al.

using patch-based texture synthesis.

• M4 (Luo’s [14]): This method is proposed based on background reconstruction. A

random walker segmentation technique was employed using a detected initial seed.

• M5 (HHF [15]): Sohl et al. proposed two approaches, Hierarchical Hole-Filling

(HHF) and Depth Adaptive Hierarchical-Hole-Filling for filling dis-occluded regions.

ii). Inter-view 3D synthesis Methods:

• M6 (VSRS [16]): The MPEG 3D video Group has adopted View-Synthesis-Reference-

Software (VSRS) as a standard. A post filter is applied on depths to solve depth

discontinuities. Then the holes are filled using inpainting.

• M7 (Zhu [17]): In this algorithm, Zhu et al. proposed to identify the background

pixels and unoccluded background around the holes. Finally, these holes are filled

using depth-enhanced Criminisi’s method and simple block-average filling method.

IRCCyN/IVC Dataset: [18] This dataset comprises of 84 synthesized views. These

views are generated from 3 different references. All three reference views are Natural

Views. A total of 7 rendering methods are used in this dataset. The point to be noted

in this dataset was that one rendering method was to fill the holes with the black pixels

simply. Hence, “black-holes” are a dominant distortion of this dataset.

IVY Dataset: The IVY dataset [19] is also a test dataset of the stereo images. The

authors used publicly available datasets to select the reference images, such as the Middle-

bury dataset (Aloe, Dolls, Reindeer, and Laundry), video-plus-depth sequences provided

by MPEG 3DV ad hoc group ( Lovebird1, Newspaper, and Bookarrival). Further, the

stereo images were generated using four view synthesis algorithms:
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Figure 1.4: Some example views from the three datasets with the primary distortions in them zoomed
in.

1. MPEG VSRS version 3.5

2. Criminisi’s method [11]

3. Ahn’s method [13]

4. inter-view consistent inpainting method

MCL-3D Dataset: In MCL-3D Dataset [20], nine image and depth views are se-

lected. Then different distortions are applied to the images or the depths before rendering

the stereoscopic images. These distortions include down-sampling blur, additive white
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Figure 1.5: Performance Evaluation Metrics

noise, JPEG and JPEG-2000 (JP2K) compression, Gaussian blur, and transmission er-

ror. Hence, the dataset contains 693 image pairs of resolutions ranging from 1024x728 to

1920x1080. Mean Opinion The score (MOS) was computed using subjective testing.

3D IQA Datasets Discussion: Amongst all the datasets discussed above, the IETR

dataset is the state-of-the-art 3D IQA dataset. In IRCCyN and MCL-3D black holes

are the main distortions that are obsolete these days [2]. Moreover, in synthesizing 3D

views of the IVY dataset, only four types of old algorithms are used. Hence this thesis

mainly focuses on distortions present n the IETR dataset, which are stretching, blockiness,

blurriness, etc. Some example views from three datasets, i.e., IRCCyN/IVC, IVY, and

IETR datasets in Figure 1.4.



1.4. EVALUATION METRICS 8

1.4 Evaluation Metrics

The performance of any image quality assessment metric can be explained in Figure 1.5.

For this process, mainly three methods are used. In this section, we will describe them

one by one.

1. Pearson-Linear-Correlation-Coefficient (PLCC): It is also named Pearson R

statistical test. PLCC can measure the strength of two variables. The formulation

of PLCC is as follows:

PLCC =

∑
(ai − ā)(bi − b̄)∑
(ai − ā)2(bi − b̄)2

(1.1)

where ai are the values of the x-variable of the first sample.

ā is mean of the values ai.

bi are the values of the y-variable of the second sample.

b̄ is the mean of the values bi.

2. Spearman-Rank-Correlation-Coefficient (SRCC): SRCC uses a monotonic

function to describe the relationship between two variables. This is done by mea-

suring the non-parametric rank correlation.

SRCC = 1− 6
∑

(a2i )

k(k2 − 1)
(1.2)

Here, ai is the difference between the ranks of two variables.

k is the total number of observations in the variables.

3. Kendall-rank-correlation-coefficient(KRCC): KRCC is commonly referred to

as τ coefficient. It is used to measure the ordinal association between two variables

statistically.

τ =
(A−B)

(A+B)
(1.3)

Here, A is the number of concordant pairs

B is the number of discordant pairs.
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4. Root-Mean-Square-Error(RMSE): RMSE uses the euclidean distance to cal-

culate the distance of true values from the predicted values. RMSE value can be

calculated using the following formula:

RMSE =
√

(

∑K
i=1(ai − â)2

K
) (1.4)

Here, i is variable. K is the number of non-missing data points. ai are true values.

âi are predicted values.

1.5 Literature Survey

The 3D IQA methods can be divided into two types based on the amount of information

of reference views available when evaluating quality metrics.

1. Full-Reference IQAs:

• SSPD [21]: Mahmoudpour et al. [35] proposed to quantify the local differences

using feature matching technique. Further, the gradient difference in image

superpixels is measured to quantify the global loss.

• IDEA [22]: Li et al. [22] proposed Instance-DEgradation-and-global Appear-

ance (IDEA) with the purpose that local distortions generally occur around

instance contours and hence dominate the occurrence of distortions. These lo-

cal distortions are then measured using discrete orthogonal moments, and the

global distortions are measured using super-pixel representations.

• LPIPS [23]: LPIPS: Learned-Perceptual-Image-Patch-Similarity (LPIPS) [23]

metric is based on deep features trained on the ImageNet dataset. We used

their trained model on VGG features for comparison.

• LOGS [36]: LOGS stands for LOcal-Geometric-distortions-in-disoccluded-

regions-and-global-Sharpness [36]. SIFT flow-based warping is first used to

detect the disoccluded regions. Then the global sharpness is quantified using

a re-blurring-based strategy.

• Tian’s [25]: Tian et al. [37] observed the statistical features of the reference

image and its corresponding 3D-synthesized image using wavelet sub-bands to
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Table 1.2: Summary of existing Full-Reference IQA’s in the literature

IQA For Publisher Year Remarks Drawback
SSPD [21] 3D Images IEEE SPL 2021 SURF feature

mapping
Time Consum-
ing, doesn’t
calculate shift
efficiently.

IDEA [22] 3D Images IEEE TMM 2021 Instance Degra-
dation and
global appear-
ance

performs poorly
on IETR

LPIPS [23] Natural
Images

IEEE CVPR 2017 Pre-trained
Deep Features

block-wise not
helping in 3D

LOGS [24] 3D Images IEEE TIP 2017 Local Geomet-
ric and Global
Sharpness

performs poorly
on IETR, pa-
rameters

Tian’s [25] 3D Images IEEE TIP 2017 Wavelet Sub-
bands

hand crafted fea-
tures, not gener-
alizable

MP-
PSNR [26]

3D Images IEEE QoMEX 2012 Morphological
Pyramids

poor perfor-
mance

MW-
PSNR [27]

3D Images IEEE QoMEX 2012 Morphological
Wavelets

poor perfor-
mance

MS-
SSIM [28]

Natural
Images

IEEE TIP 2008 Multi-Scale
Structural Simi-
larity

Focuses global
structural dis-
tortions only.

SSIM [29] Natural
Images

IEEE TIP 2004 Structural Simi-
larity

Focuses global
structural dis-
tortions only.

SC-
IQA [30]

3D Images IEEE VCIP 2018 Shift Compensa-
tion

cannot detect
shift completely

LMS [31] 3D Images Elsevier 2019 Structural repre-
sentation

hand crafted fea-
tures, not gener-
alizable

PRSI [32] 3D Images IEEE ICIP 2019 Perceptual Rep-
resentations
of Structural
Information

Black-holes ori-
ented

SR-
VQA [33]

3D Videos IEEE TIP 2019 Sparse Repre-
sentation

hand crafted fea-
tures, not gener-
alizable

EM-
IQA [34]

3D Images IEEE MM 2017 Elastic Metric Black-holes ori-
ented
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detect the artifacts in the views.

• MP-PSNR [26]: Sandi´c-Stankovi´c et al. [38] proposed to decompose the

views into multi-scale pyramids using morphological pyramids for quality pre-

diction.

• MW-PSNR [27]: Sandi´c-Stankovi´c et al. [27] used morphological filters to

maintain low-level features such as edges over multiple levels. These levels are

obtained using wavelet decomposition.

• SC-IQA [30]: In this work, the authors analyzed that there is object shifting

and geometric distortions in 3D synthesized views. They proposed a shift-

compensation-based-image-quality-assessment-metric(SC-IQA) using a global

geometric shift calculation. This shift is calculated using SURF and RANSAC

homography approaches. A visual saliency map is also used as a weighting

function to calculate the overall perceptual quality.

• LMS [31]: Low-level-and-Mid-level-Structural-representation (LMS) constructs

a scale space to mimic the hierarchical property of the human visual system

(HVS). Then the statistics of gradient orientation are integrated with the statis-

tics of gradient intensity for the low-level structural representation. Finally, a

distance between the low-level and mid-level features is calculated and used as

a quality score.

• PRSI [32]: Perceptual-Representations-of-Structural-Information(PRSI) is based

on hierarchical representation within HVS. This metric is based on low-level

contour descriptors, mid-level category descriptors, and task-oriented non-

natural structure descriptors.

• SR-VQA [33]: Sparse-Representation-Based-Video-Quality-Assessment-for-

Synthesized-3D-Videos(SR-VQA). This method treats the video as a 3D vol-

ume data as spatial and temporal domains. Then gradient and strong edges

of the depth map are key features. These features can detect the location of

flicker distortions. Further, a rank pooling method is used to pool all the tem-

poral layer scores. This score is the flicker distortion. The final quality score

is based n this flicker distortion measurement.

• EM-IQA [34]: It is an elastic-metric-based-image-quality-assessment(EM-
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IQA). In this work, a local distortion region is first selected, and then defor-

mations of curves are quantified. This metric can measure the difference in

stretching or bending between two curves.

2. No-Reference IQAs:

• CODIF [39]: Li et al. [39], proposed COlor-Depth-Image-Fusion-(CODIF)

which is a NR-3D IQA algorithm. An image fusion base on wavelet is proposed

in CODIF to emulate the relationship between color and depth images. Then

their statistical features were used to learn the proposed quality prediction

model.

• GANs-NRM [40]: In [52], Suiyi et al. proposed a Generative-Adversarial-

Networks(GAN) based NR-3D-IQA metric called, GANs-NRM that used a

Bag-of-Distortion-Word (BDW) feature extraction method on synthetic data

rendered using a GANs-based context renderer.

• Wang’s [53]: In [54], Wang et al. proposed NR 3D quality assessment for

videos which could also be translated for the image domain. The authors

measured the motion difference between consecutive frames in the optical flow

method to quantify the temporal inconsistency. Then the pixel differences of

optical flow fields are weighted using structural similarity values.

• Yan’s [42]: To measure quality-aware features considering ”local-variation-

and-global-change (LVGC)”, Yan et al. [42] developed a 3D-synthesized views

quality assessment algorithm. In the LVGC metric, structure and chromatic

luminance features are extracted to measure local and global variations.

• Yue’s [3]: Yue et al., [3] proposed NR quality metric which focuses on two

types of distortions, i.e., sharpness and geometric distortions. Further, dis-

torted regions and stretching are detected by calculating the local similarity.

The overall sharpness is measured using its downsampled image. Finally, linear

pooling is done to merge them.

• NIQSV+ [43]: In [1], Tian et al. proposed a No-reference-Image-Quality-

assessment-method-for-3D-Synthesized-Views (NIQSV+). The quality of syn-

thesized views is measured by quantifying specific distortions such as black
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Table 1.3: Summary of existing No-Reference IQA’s in the literature

IQA For Publisher Year Remarks Drawback
CODIF
[39]

3D Images IEEE TMM 2021 Color-Depth Im-
age Fusion

Pre-DIBR IQA
Algorithm

GANs-
NRM [40]

3D Images IEEE TIP 2020 Generative Trained on
black-hole arti-
facts

Wang’s
[41]

3D Images IEEE TIP 2020 Wavelet Trans-
form

IRCCyN
Dataset ori-
ented, parame-
ters

Yan’s [42] 3D Images IEEE TIP 2020 Local Structure
and Global nat-
uralness

IRCCyN
Dataset ori-
ented, parame-
ters

Yue’s [3] 3D Images IEEE TIP 2019 Local and
Global Measures

Designed for
predicting black
holes.

NIQSV+
[43]

3D Images IEEE TIP 2019 Stretching and
Black hole iden-
tification

Designed for
predicting black
holes.

Jakhetiya’s
[44]

3D Images IEEE TIP 2018 Auto Regression
+ Thresholding
(APT)

Designed for
predicting black
holes.

BRISQUE
[45]

Natural
Images

IEEE TIP 2013 Spatial Domain-
based NSS

Focuses global
structural dis-
tortions only.

BIQI [46] Natural
Images

IEEE SPL 2012 Wavelet Trans-
form based NSS

Focuses global
structural dis-
tortions only.

NIQSV [1] 3D Images IEEE ICASSP 2017 Edge Image us-
ing morphology

simple but Poor
Performance

MNSS [47] 3D Images IEEE TB 2020 new NSS fea-
tures oriented
for 3D views

Hand-crafted
features are not
reliable

NRMWT
[48]

3D Videos IEEE TIP 2019 Wavelet sub-
bands with
threshold

Hand-crafted
features

GDIC [49] 3D Images IEEE ICASSP 2018 Wavelet sub-
bands

Hand-crafted
features

CSC-
NRM [50]

3D Images IEEE ICIP 2018 Convolutional
Sparse Coding
(CSC)

simple but Poor
Performance

SIQA-
CFP [51]

3D Images IEEE ICIP 2019 Contextual
Multi-Level Fea-
ture Pooling

deep features
but poor perfor-
mance
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holes, blurry regions, stretching artifacts (among-out-of-field-areas (OOFAs)

[8, 55, 56]), and finally merged using pooling.

• APT [57]: Gu et al. [57], suggested an auto-regression-plus-thresholding(APT)

based algorithm for NR IQA of 3D-synthesized views. In this method, the local

image description is predicted using auto-regression over small windows and

then thresholding.

• Jakhetiya’s [44]: [44] used Kernel-Ridge-Regression(KRR) as a global pre-

dictor in this method. This predictor estimates the geometric distortions for

the quality assessment of 3D-synthesized views.

• BIQI [46]: The BIQI metric works in two steps and is based on Natural-

Scene-Statistics(NSS). It computes the quality scores and the probabilities of

the occurrence of five types of distortions in an image, namely, JPEG, JP2K,

Fast fading (FF), Gaussian Blur (Blur), and white noise (WN).

• NIQSV [1]: NIQSV (No-reference-Image-Quality-assessment-of-Synthesized-

Views). In the NIQSV metric, authors predict the quality based on the edges

of the objects. This metric is based only on morphological operations such as

opening and closing. Then this edge detected image is used as a quality score.

• MNSS [47]: multiscale-natural-scene-statistical-analysis(MNSS) is a combi-

nation of two new natural-scene-statistics(NSS) models oriented for 3D views.

First is the variations in the degree of self-similarity from natural images at dif-

ferent scales. Second is the statistical regularity-based features. These features

decide the final quality score.

• NR-MWT [48]: No-Reference-Morphological-Wavelet-with-Threshold (NR-

MWT) is based on the fact that there is an increase in high-frequency content

in 3D views. The selected areas with high wavelet sub-band are quantified for

this purpose, followed by a threshold.

• GDIC [49]: Geometric-Distortions-and-Image-Complexity(GDIC) decomposes

the views into into wavelet sub-bands using discrete wavelet transform. Then

edge similarity is computed between the low-frequency sub-band and high-

frequency sub-bands. Then, an auto-regressive filter is combined with a bi-

lateral filter to compute the image complexity. Lastly, the quality score is
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computed by normalizing geometric distortions.

• CSC-NRM [50]: Convolutional-Sparse-Coding(CSC) is based on computing

a sparse representation with the sum of a set of convolutions for learning. These

dictionary filters are used to create a codebook for learning.

• SIQA-CFP [51]: Synthesized-Image-Quality-Assessment-with-Contextual-Multi-

Level-Feature-Pooling(SIQA-CFP). It is based upon a contextual multilevel

feature pooling module. This module can encode the low- and high-level fea-

tures. A deep pre-trained ResNet extracts these features.

We concluded the following points from the extensive literature survey conducted in

this chapter:

1. Even contemporary 3D view synthesis algorithms produce distortion in the vicinity

of object boundaries.

2. Existing No Reference (NR)/Full Reference(FR) IQAs focus on detecting black-

holes and perform satisfactorily on the IRCCyN dataset while failing to detect the

new types of distortions present in the recently proposed IETR dataset.

3. Existing algorithms are not incorporating the fundamental properties of the 3D

synthesized views, such as shifting and context information.

Considering all these points, we proposed three different 3D IQA in this thesis, which

are the next three chapters.

• Chapter 2: No Reference 3D IQA (Stretching Artifacts Identification for No Refer-

ence IQA of 3D Synthesized Images)

• Chapter 3: Full Reference 3D IQA 1 (Perceptually Unimportant Information Re-

duction and Cosine Similarity based Full Reference IQA for 3D Images)

• Chapter 4: Full Reference 3D IQA 2 (Context Region Identification based Quality

Assessment of 3D Synthesized Views)



Chapter 2

No Reference 3D IQA

Stretching Artifacts Identification for No Reference

IQA of 3D Synthesized Images

From the extensive literature survey conducted above, we observed that very few of

the existing 3D-synthesized IQA algorithms consider stretching artifacts as noticeable

distortions for 3D-synthesized views. The evaluation dataset used in those works was

IRCCyN/IVC Dataset [18], where the dominant distortion is black-holes. However, black

holes are always filled in 3D-synthesized views, so they are no longer ‘holes.’ Consequently,

evaluating how these areas are filled is crucial. black-holes are considered obsolete in the

newly proposed IETR dataset [2]. Moreover, stretching artifacts mainly occur in the newly

proposed 3D synthesis algorithms. Hence, there is a drastic difference in the performance

of these algorithms on these two datasets.

2.1 Motivation

In the literature, two existing methods i.e., NISQV+ [1] and Yue [3] try to identify

the stretching artifacts, and their performance is limited due to the violation of some

assumptions (described below).

In the NR IQA method for 3D-synthesized Views (NIQSV+) [1], Tian et al. detected

stretching using Average Horizontal and Vertical Gradients (AHG/AVG) of each col-

umn/row of the view. Authors have proposed the use of the Sobel operator for detecting

the AHG/AVG of a synthesized view as:

16
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(a)

Figure 2.1: Stretching artifact identification using [1]. The plot represents each column’s average Horizon-
tal Gradient (AHG) in the given view from IETR Dataset [2]. Purple and red colors indicate stretching
artifacts and corresponding AHG in the middle and corner of the view, respectively. A red double arrow
indicates Stretching Width (SW) as defined in [1]

AHG =
∇⃗h

H
=

I ∗Gh

H
,AV G =

∇⃗v

H
=

I ∗Gv

H
(2.1)

where, I is the Y component (from the Y CbCr color space) of the synthesized view, ∇⃗v,

∇⃗h, are the vertical and horizontal gradients obtained using Gv, Gh, Sobel vertical and

horizontal gradient operators. H is the height of the synthesized view. NIQSV+ assumes

that stretching occurs only on the right or left part of the view or in a completely horizontal

or vertical direction. Therefore, they calculated the gradient of each row or column, and

if for a particular row or column gradient magnitude is low, it suggests that this column

or row has the stretching distortions. Finally, they proposed calculating the width of the

stretching artifacts to estimate the quality score. Unfortunately, the assumption made

in NIQSV+ is not true in the IETR dataset, as stretching artifacts generally occur near

the occluding objects with no guarantee that stretching will happen in a complete row

or column. To justify these arguments, Figure 2.1 shows the gradient magnitude in the

horizontal direction for a view (from the IETR dataset) with stretching artifacts1. From

this figure, it is clear that the NIQSV+ algorithm cannot detect stretching occurring near

1This plot is generated using the official code provided by the authors of [1].
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(a)

Figure 2.2: Coarse stretching region map and its column-wise mean values of the image in Figure 1, as
proposed in [3].

objects which are not in the entire row and column. When the performance of NIQSV+

is analyzed on the IETR dataset, it performed poorly [2].

In [3], Yue et al. proposed to evaluate the stretching strength in two steps. First,

the authors identify the regions with stretching artifacts by drawing a coarse stretching

region map of a 3D-synthesized view. For this map, authors have used a uniform rotation

invariant Local Binary Pattern (LBP), LBP ri
K , which can be expressed as,

LBP ri
K =


K−1∑
i=0

s(I(ni), I(nc)), if ∆K ≤ 2

K + 1, otherwise

(2.2)

where I(ni), i = 0, 1, 2, ..., K − 1 denotes the values of surrounding K symmetric pixels,

I(nc) is the value of center pixel. The relationship between two pixels a,b is calculated

using s(a, b) as,

s(a, b) =

1, if a ≥ b

0, if a < b

(2.3)
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Also, ∆K is the number of bit-wise transitions defined as,

∆K =∥ s(I(n0), I(nc))− s(I(nK−1), I(nc)) ∥ +
K−1∑
i=1

∥ s(I(ni), I(nc))− s(I(ni−1), I(nc) ∥

(2.4)

An example of such a coarse stretching map can be seen in Figure 2.22. The white

region in the coarse map primarily indicates the stretching region. Further, the stretching

region is detected by calculating the average values and the map columns, followed by

thresholding. The authors have empirically proposed to set the threshold value T to be

0.2. However, let’s carefully analyze the mean values of each column in Figure 2. The

stretching regions in the middle (approximately column 400 to 600) of the 3D view are

not identified through mean values. Moreover, this algorithm calculates the stretching

strength for only the right or left side of the view.

To address this gap, we propose a lightweight patch-based CNN model to detect the

blocks with stretching artifacts in a 3D-synthesized view. The proposed model detects

the stretching artifacts around the occluded region even if they do not occur in the entire

row or column.

The contributions of the proposed work are listed below:

1. Demonstrate the effect of the stretching artifacts on the perceived quality and pro-

pose an efficient method of detecting the blocks with stretching artifacts.

2. The proposed model can efficiently predict the quality of 3D-synthesized views,

and the performance of the proposed algorithm is better than the existing NR

IQA algorithms. In addition, the proposed algorithm can predict the stretching

artifact’s location, which may further be useful to enhance the perceptual quality

of 3D-synthesized views.

2.2 Proposed Quality Assessment Metric

This section introduces a new lightweight CNN model to identify the blocks in the view

with stretching artifacts and further use the count of identified blocks for predicting the

2The map and the plot is inspired from [3] whose codes are not open-sourced. Hence we have imple-
mented this idea of identifying stretching ourselves.
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DIBR Synthesized Dataset

Quality Score using BIQI 

Scores Pooling Quality ScoreQuality Score using SI-DL Model 1(b)

Subjective Scores
(MOS/DMOS)

Synthesized Views

(a)

Figure 2.3: The workflow of the proposed method.

Figure 2.4: A view from IETR Dataset divided into blocks, the red window shows blocks with stretching
artifacts.

perceptual quality score. Further, to seize other distortions such as blurring and blocking,

this score is fused with the quality score obtained using the Blind Image Quality Index

(BIQI) [46], an existing NR IQA metric. We propose to integrate these scores using the

technique of pooling. The main workflow of the proposed method is outlined in Figure

2.3.

2.2.1 Stretching Identification using Deep Learning (SI-DL) Model

A stretching artifact is an annoying distortion due to improper inpainting while rendering

3D synthesized views. 3D synthesized views are generally contaminated with stretching,

flickering, ghosting, and crumbling artifacts [1], and researchers have proposed different

mechanisms to independently identify these artifacts. In this work, cohesively, we call
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Figure 2.5: Class-1: Examples of blocks (dimensions: 160× 160) with Stretching Artifacts.

them stretching artifacts and propose to have a single model to identify these.

Initially, we observed in the IETR dataset [2] that there is a direct relationship between

the stretching artifacts and overall subjective scores. However, the available data in IETR

dataset is not enough to identify the exact magnitude of stretching artifacts. We analyzed

and divided the images into blocks (of size 160 × 160). Visually, we classified them into

two categories, blocks with stretching artifacts and without stretching artifacts. We asked

five expert subjects to participate in this experiment for these visual classifications. Next,

we calculated the correlation coefficient between the number of blocks with stretching

artifacts and their corresponding subjective scores. The calculated correlation coefficient

was 0.55. This empirical study motivated us to objectively identify stretching using an

efficient CNN model.

The steps involved in the proposed Stretching Identification using Deep Learning (SI-

DL) Model are as follows:
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Figure 2.6: Class-2: Examples of blocks (dimensions: 160× 160) without Stretching Artifacts.

2.2.1.1 Data Collection

The IETR dataset has 140 views which are insufficient to train a CNN model that can

generalize well. To overcome this issue, we propose to collect the views with stretching

artifacts from the publicly available 3D datasets, namely: IRCCyN/IVC Dataset [?],

MCL-3D Dataset [58], VRTS Dataset [59]. To avoid overfitting our CNN Model, we

did not include blocks from the IETR dataset. We collected 214 related views from these

datasets and further divided them into blocks of size 160×160. The effect of changing the

size of the blocks on the overall performance is shown in Table 2.5. These blocks were then

categorized into two classes, Class 1: Blocks with stretching artifacts, and Class 2: Blocks

without stretching artifacts. Five subjects with expertise in the visual perception domain

classified the blocks into two classes using majority voting. An example of highlighted

blocks with stretching artifacts is shown in Figure 2.4. The detail of data collection is

shown in Table 2.1. Further, Figures 2.5 and 2.6 show examples of the blocks in Classes



2.2. PROPOSED QUALITY ASSESSMENT METRIC 23

Table 2.1: Data collection description in detail

Dataset Total Views Selected Views Number of blocks

IRCCyN/IVC [18] 96 26 532

MCL-3D [58] 693 154 3152

VRTS [59] 100 34 695

Table 2.2: Train-Validation splits.

Class
Class-1:

Blocks with SA

Class-2:

Blocks without SA

Total Blocks 2157 2216

Training Blocks (80 %) 1725 1773

Validation Blocks (20 %) 432 443

1 and 2, respectively.

2.2.1.2 CNN Architecture

The prepared dataset contains two categories: blocks with stretching artifacts and remain-

ing blocks without stretching artifacts. To further increase the size of the dataset, we used

the popular techniques of data augmentation, and transfer learning [60] in the proposed

model. Random rotations, random zoom, width shifts, height shifts, and random hori-

zontal flips are used for data augmentation. The created dataset had class imbalance, as

in 3D synthesized views, the blocks with distortions are less frequent than those without

distortions. Hence, the data augmentation techniques are only applied to the class with

distorted blocks to prevent the CNN model’s class imbalance while creating the dataset.

In total, 4379 blocks were included in the dataset. The distribution of these blocks into

two classes and further into the training and validation set is shown through the following

Table 2.2:

(i). Transfer Learning:

Weights of Deep convolutional networks trained on high-level image classification tasks

work surprisingly well for numerous other tasks such as image super-resolution [61] and

image synthesis [62]. In [23], Zhang et al. analyzed these deep features and concluded that

these features effectively correspond to human perceptual judgments, as well. Similarly,

instead of training the CNN model from scratch for our classification task, we utilized

feature maps using the VGG-16 [63] deep learning model trained on Imagenet dataset [64].



2.2. PROPOSED QUALITY ASSESSMENT METRIC 24

Stretching Artifacts (SA)
Classification Dataset

Class-1
Blocks
with SA

Class-2
Blocks

without SA

Class-1
Blocks with

SA

Class-2
Blocks

without SA

Class-1
Blocks with

SA

Class-2
Blocks

without SA

Training Set

Testing Set

Train /Test
Split

DIBR Synthesized Dataset

Quality Score Patch-wise
Testing

Feature Maps
using VGG-16

Feature Maps
using VGG-16

512
Features

512
Features

512
Features

512
Features

512
Features

512
Features

Dense Layers with ReLU Activation

Dense Layers with ReLU Activation

Classification
Model

Sigmoid
Layer Training

Testing

Sigmoid
Layer

Training Phase

Testing Phase

(a)

Figure 2.7: An elaborated workflow of the proposed Stretching Identification using Deep Learning (SI-
DL) Model.

We also experimented with other DL architectures, such as Resnet [65], Inception V3 [66],

and concluded that similar to the LPIPS metric [23], VGG-16 features work best for

our classification task. The weights of the layers of VGG-16 are then fine-tuned for

the proposed classification dataset. From our analysis, we have observed that freezing

the middle two blocks of VGG-16 for feature extraction gives the most relevant features

for classification. The extracted features are subjected to three Dense layers with 512

features each. Also, every layer is followed by the Rectified Linear Units (ReLU) activation

function to add non-linearity and dropout of 0.3 factor to avoid over-fitting. For binary

classification purposes, sigmoid activation is adopted in the last layer. The complete

description of the proposed CNN architecture is tabulated in Table 2.3.

(ii). Training Process:

During the training of the proposed model, Binary Cross-Entropy Loss and Stochastic

Gradient Descent (SGD) are used as a loss function and optimization algorithm, respec-

tively. All the loss functions work satisfactorily for this task. Further, we analyzed the

performance of four loss functions, Binary Cross-Entropy Loss, Poisson Loss, Squared

Hinge Loss, and Hinge Loss, for the proposed CNN architecture. Table 2.4 shows the

model performance on the validation data using these loss functions. The Binary Cross-

Entropy Loss gives the best performance, so we used the model with this loss function

as the final prediction model. Let c1 and c2 be the two classes, i.e., blocks with stretch-

ing artifacts and blocks without stretching artifacts, respectively. Let g1 and g2 are the



2.2. PROPOSED QUALITY ASSESSMENT METRIC 25

Table 2.3: The proposed VGG-16 fine-tuned architecture. FC stands for Fully Connected
Layers. Conv stands for Convolution Kernel.

Layer Description Output Shape Trainable? Activation

V
G
G
-1
6

L
ay
er
s

Input Rescale Image 160× 160× 3 True ReLU

Block 1 2× Conv − 64 112× 112× 64 True ReLU

Block 2 2× Conv − 128 56× 56× 128 False ReLU

Block 3 2× Conv − 256 28× 28× 256 False ReLU

Block 4 2× Conv − 512 14× 14× 512 True ReLU

Block 5 2× Conv − 512 7× 7× 512 True ReLU

A
d
d
it
io
n
al

L
ay
er
s

FC-1 dense-512 512 True ReLU

Dropout-1 dropout-0.3 - - -

FC-2 dense-512 512 True ReLU

Dropout-2 dropout-0.3 - - -

FC-3 dense-512 512 True ReLU

Dropout-3 dropout-0.3 - - -

FC-4 dense-2 2 True Sigmoid

ground-truth encoded value of each class c1 and c2, respectively. Let s1 and s2 be the

scores predicted from the proposed model. The cross-entropy loss function LCE can be

finally formulated as,

LCE = −g1log(s(s1))− (1− g2)log(1− s(s2)) (2.5)

where s(x) is the sigmoid activation function calculated as s(x) = 1/(1+e−x). Further,

adopted learning-rate value for SGD optimization is 10−5. Let Pclass(i) be the predicted

class of the ith patch of the view; it is given by,

Pclass(i) =

0, if class ϵc1

1, if class ϵc2

(2.6)

The complete architecture of the proposed SI-DL model with training process visu-

alization has been shown in Figure 2.7. The training was done on NVIDIA Tesla K80

in mini-batches of size 30 for 50 epochs. Figure 2.8 shows the training and validation

accuracy at each epoch. In addition, we use four metrics, accuracy, precision, recall, and

F1 score, to show the effectiveness of the proposed trained model, tabulated in Table 2.4.

All the values are above 94% using binary cross-entropy loss, which further validates the
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Table 2.4: Performance metric values on validation data with varying loss functions

Loss Function Accuracy Precision Recall F1-Score

Binary Cross-Entrpy Loss 0.9474 0.9494 0.9474 0.9473

Poisson Loss 0.9399 0.9400 0.9399 0.9399

Squared Hinge Loss 0.9294 0.9363 0.9294 0.9289

Hinge Loss 0.9159 0.9160 0.9159 0.9159

(a)

Figure 2.8: Plot of variation in training and validation accuracy with every epoch.

performance of the proposed model.

2.2.1.3 Stretching Artifact based Quality Score

A similar CNN architecture as SI-DL is used for testing purposes, where testing is done on

each block of the 3D synthesized view from the dataset being tested. Each block is then

tested for class type using the proposed SI-DL CNN Model. The final quality score QSA

of the 3D-view is proposed by calculating the average number of blocks with stretching

artifacts and is given by,

QSA =

m∑
i=1

[Pclass(i) = 0]

m
× 100 (2.7)

where m is the total number of blocks in the 3D-synthesized view. It is worth mentioning

that for the training part, none of the images from the IETR dataset were used. The

classification accuracy for the IETR dataset is 82% (testing accuracy), and the correlation
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coefficient between the number of blocks with stretching artifacts and the subjective

score of the IETR dataset is 0.4327, which is much better than most of the algorithms.

These empirical results suggest that the proposed block classification model for stretching

identification is fairly accurate.

2.2.2 Quality prediction using BIQI Metric

The proposed CNN-based quality prediction can only handle geometric distortions (such

as stretching artifacts, flickering, and crumbling). It can not handle structural distor-

tions (such as blurring and blocking). These structural distortions occur because of the

improper rendering of the 3D-synthesized views. In the literature, there are many NR

IQA metrics proposed for the identification of such artifacts in natural images such as

BIQI [46], NIQE [67], and BRISQUE [45]. In [68], it was analyzed that the BIQI met-

ric [46] can efficiently identify several kinds of distortions in 3D synthesized views. Based

on this observation, we have employed the BIQI metric to identify structural distortions

in the proposed algorithm. We also analyzed the effect of using NIQE and BRISQUE on

the performance of the proposed algorithm in Table 2.4, which concludes the superiority

of BIQI for this task. The BIQI metric works in two steps and is based on Natural Scene

Statistics (NSS). It computes the quality scores qj and the probabilities pj of the occur-

rence of five types of distortions in an image, namely, JPEG, JP2K, Fast fading (FF),

Gaussian Blur (Blur), and white noise (WN). The final quality score QBIQI is calculated

as,

QBIQI =
n∑

j=1

pjqj (2.8)

where, j = 1− 5 are the five types of distortions.

First, the image is decomposed using the Daubechies 9/7 wavelet transform over three

scales and orientations. These decompositions are then subjected to a Generalized Gaus-

sian Distribution (GGD). The vector obtained from mean, standard deviation, and shape

parameters over all scales and orientations acts as the feature vector for the images. Fi-

nally, Support Vector Regression (SVR) based testing is employed for the given images

on a pre-trained model provided with BIQI software release to get the final quality score,

QBIQI . A detailed methodology used in the BIQI metric can be found in [46].
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2.2.3 Scores Pooling

As discussed in the previous subsection, the quality of each 3D synthesized view is pre-

dicted using the proposed SI-DL and the BIQI algorithm. We aim to optimally pool the

capabilities of these two algorithms to obtain the final score. As the number of blocks

with stretching artifacts increases in the SI-DL algorithm, the perceptual quality de-

grades. Hence, there is an inversely proportional relationship between the subjective and

predicted scores by (7). From (8), it is evident that the relationship between the scores

given by the BIQI algorithm and the subjective score is directly proportional. Thus, it

is imperative to systematically merge these scores since they are on different scales and

have diverse relationships.

As suggested in the DSCB algorithm [68], the perceptual characteristics of natural

views and synthetic views3 are slightly different [69], it is beneficial to identify whether

the particular view belongs to a natural or a synthetic view type. Subsequently, to

effectively merge these scores, we introduce a pooling solution. The final quality score,

Qf of the proposed no-reference 3D-IQA is obtained as follows:

Qf =



QBIQI
x + ϵ

QSA
y + ϵ

, if IzϵIN

QBIQI
u + ϵ

QSA
v + ϵ

, if IzϵIS

(2.9)

where Iz is the zth view of the dataset. IN and IS are the set of Natural and Synthetic

Views, respectively. These sets are obtained using the framework proposed in the recently

proposed DSCB [68] algorithm. There is an inverse proportion of subjective scores with

stretching artifacts. Hence the QSA is in the denominator of this equation. x, y, u, v are

the positive non-zero constants that balance the variations in scales and diversity of the

different obtained scores. ϵ is a constant with small values used to avoid dividing by zero

conditions.

3Note that here “natural view” is a 3D image synthesized from a reference image, which is a natural
image, whereas “synthetic view” is 3D image synthesized from a reference image which is a synthetic
image (a computer-generated image).
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2.3 Experimental Results and Analysis

2.3.1 Evaluation Protocols

2.3.1.1 3D Synthesized Views Dataset

The performance of the proposed metrics is evaluated by employing them on the publicly

available dataset IETR DIBR [2].

IETR DIBR Dataset: This dataset comprises 140 synthesized views generated using

ten reference views and corresponding subjective scores. Out of these ten reference views,

7 are Natural Views, and 3 are Synthetic Views. The views are rendered using 7 different

DIBR methods M1: Criminisi’s [11], M2: LDI [12], M3: Ahn [13], M4: Luo’s [14], M5:

HHF [15], M6: VSRS [16], M7: Zhu [17]. Among these 7 DIBR methods (M1 to M7),

M7: Zhu is an inter-view 3D synthesis method, while M6: VSRS can be used as both

inter-view and single-view 3D synthesis; all the other methods (M1 to M5) belong to the

single-view 3D synthesis category. A brief overview of these methods is listed below:

i). Single-view 3D synthesis Methods:

• M1 (Criminisi’s [11]): This method is based on an exemplar-based texture synthesis

technique. Patch priorities are computed using confidence parameter to improve

the order of the pixel filling.

• M2 (LDI [12]): This algorithm uses an object-based Layered Depth Image (LDI)

representation to obtain the synthesized view. Based on this representation’s fore-

ground and background segmentation, the authors have proposed to render the

3D-synthesized view.

• M3 (Ahn [13]): A depth-based 3D synthesis method was proposed by Ahn et al.

using patch-based texture synthesis.

• M4 (Luo’s [14]): This method is proposed based on background reconstruction. A

random walker segmentation technique was employed using a detected initial seed.

• M5 (HHF [15]): Sohl et al. proposed two approaches, Hierarchical Hole-Filling

(HHF) and Depth Adaptive Hierarchical Hole-Filling for filling dis-occluded regions.

ii). Inter-view 3D synthesis Methods:
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• M6 (VSRS [16]): The MPEG 3D video Group has adopted View Synthesis Reference

Software (VSRS) as a standard. A post filter is applied on depths to solve depth

discontinuities. Then the holes are filled using inpainting.

• M7 (Zhu [17]): In this algorithm, Zhu et al. proposed to identify the background

pixels and unoccluded background around the holes. Finally, these holes are filled

using depth-enhanced Criminisi’s method and simple block-average filling method.

It may also be noted that warping without further rendering is not used in this dataset,

considering this method obsolete. Hence, there are no views with black-holes artifacts in

this dataset, which makes it different from the existing DIBR datasets (IRCCyN/IVC

Dataset [18], MCL-3D Dataset [58], VRTS Dataset [59]).

2.3.1.2 Evaluation Criteria

We followed the standard criteria for evaluating the correlation between the objective

scores obtained using different metrics and the given subjective scores in the IETR dataset.

The four criteria used are SROCC, PLCC, RMSE, and KRCC. A better IQA metric

attains larger values of PLCC, SROCC, and KRCC and a lower value of RMSE. The

scores given by different algorithms are mapped to subjective scores via the following

non-linear equation as follows:

g(X) = x1(
1

2
− 1

1 + ex2(X−x3)
) + x4X + x5 (2.10)

where X and g(X) are the objective and corresponding subjective scores, respectively.

x1, x2, x3, x4, x5 are the five parameters to be fitted non-linearly.

To comprehensively judge the performance of the proposed algorithm, we compare the

proposed algorithm with a total of 16 state-of-the-art Image Quality Assessment (IQA)

metrics, including 10 No-Reference (NR) and 6 Full-Reference (FR) metrics. These algo-

rithms are designed for two types of images, i.e., DIBR Synthesized Views, and Natural

Images. A comprehensive description of these algorithms is given below:

i). No-Reference (NR) Metrics:

• GANs-NRM: GANs-NRM [52] was proposed by Suiyi et al. in which bag of words

features was extracted for quality evaluation from a Generated Adversarial Net-

work(GAN) rendered synthetic dataset.
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• DSCB: In this method, Sadbhawna et al. [68], have assessed the quality of 3D-

synthesized views. The distortions are incorporated with the properties of the hu-

man visual system (HVS) to generate the final quality score. Authors have also

proposed to evaluate natural and synthetic views separately since their properties

differ.

• BIQI: BIQI is proposed by Moorthy et al. [46] for quality prediction of natural

images. This method is based on natural scene statistics (NSS). It is a two-step

framework. Firstly the image is subjected to a Daubechies 9/7 wavelet transform

and is parametrized using Gaussian distribution. Second, support vector regression

(SVR) predicts the scores.

• Wang’s: Wang et al. [70] measured geometric distortion and global sharpness by

decomposing the image into wavelet subbands and further comparing the high-

frequencies and low-frequencies. Image complexities are also computed in this qual-

ity assessment method of 3D-synthesized views.

• APT: Gu et al. proposes this method [57] for 3D-synthesized images. It is based

on getting the local image description using autoregression (AR) and following this

prediction with thresholding.

• Jakhetiya’s: Jakhetiya et al. [44] used Kernel Ridge Regression (KRR) as a global

predictor in this method. This predictor estimates the geometric distortions for the

quality assessment of 3D-synthesized views.

• OMIQA: Jakhetiya et al. [71] proposed OMIQA for 3D-synthesized views using non-

linear median filtering for predicting outliers to detect the geometric and structural

distortions.

• NIQSV+: Tian et al. [1] proposed a NR IQA metric for 3D-synthesized views to

identify distortions such as blurry regions, stretching, and black-holes, typically

related to 3D views.

• Yue’s: Combining Local and Global Measures (CLGM) [3] accounts for two types of

distortions, i.e., sharpness and geometric. To detect stretching (a typical geometric

distortion), the authors proposed to estimate the similarity between a region and
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its equal-size adjacent region. The disoccluded regions are predicted by using local

similarity. Finally, these scores are pooled together linearly.

ii). Full-Reference (FR) Metrics:

• SSPD: Mahmoudpour et al. [35] proposed to quantify the local differences using the

feature matching technique. further, the gradient difference in image superpixels is

measured to quantify the global loss.

• LOGS: It stands for LOcal-Geometric-distortions-in-disoccluded-regions-and-global-

Sharpness [36]. SIFT flow-based warping is first used to detect the disoccluded

regions. Then the global sharpness is quantified using a re-blurring-based strategy.

• Tian’s: Tian et al. [37] observed the statistical features of the reference image and its

corresponding 3D-synthesized image using wavelet sub-bands to detect the artifacts

in the views.

• LPIPS: Learned-Perceptual-Image-Patch-Similarity(LPIPS) [23] metric is based on

deep features trained on the ImageNet dataset. We used their trained model on

VGG features for comparison.

• MP-PSNR: Sandi´c-Stankovi´c et al. [38] proposed to decompose the views into

multi-scale pyramids using morphological pyramids for quality prediction.

• MW-PSNR: Sandi’c-Stankovi´c et al. [27] used morphological filters to maintain

low-level features such as edges over multiple levels. These levels are obtained using

wavelet decomposition.

2.3.2 Parameters Sensitivity Analysis

As shown in equation (9), the proposed algorithm uses predominantly four parameters

(x, y, u, and v), and these parameters control the contribution of the proposed SI-DL

algorithm and the BIQI algorithm. The other parameter ϵ is a small non-zero positive

value used to avoid division by zero. We chose the value of ϵ = 1 for our experiment. The

following observations are made to choose the value of these four parameters.

1. From Table 2.8, it is visible that the proposed algorithm (SI-DL) does not perform

as well as the BIQI algorithm for the natural images; consequently, x > y.
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(a)

(b)

Figure 2.9: Parameter Sensitivity. (a) and (b) shows the performance of the proposed algorithm with
varied parameters x, y, and u, v for Natural Views and Synthetic Views, respectively.

2. The BIQI algorithm is designed for the quality prediction of natural images, and it

is expected that it cannot perform well for synthetic images. While the proposed

SI-DL algorithm is performing much better than the BIQI algorithm and overall

pooling, the contribution of the SI-DL algorithm should be higher than the BIQI

algorithm. Subsequently, parameter v should have a higher value than the u.

Based upon the above arguments and extensive empirical analysis, we have chosen the

value of these parameters (x, y, u, and v) to be 0.31, 0.01, 0.81, and 1.01, respectively.

In Figure 2.9, the dependency of the proposed algorithm on these parameters has been

shown. From these figures, it is visible that slightly varying these parameters does not

significantly affect the proposed method’s performance.

In the proposed SI-DL algorithm, the blocks are identified with stretching artifacts
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Table 2.5: Effect of varying block sizes on performance metrics using proposed pooling.

Block-sizes IETR Dataset

PLCC SROCC KRCC RMSE

128×128 0.6457 0.5598 0.3727 0.1532

160×160 0.7087 0.6672 s0.4726 0.1749

192×192 0.5936 0.5414 0.3731 0.1429

Table 2.6: Performance comparison after pooling with the existing NR-IQA metrics.

Metric IETR Dataset

PLCC SROCC RMSE

Proposed(QSA) with BIQI [46] 0.7087 0.6672 0.1749

Proposed(QSA) with BRISQUE [45] 0.5331 0.4153 0.2098

Proposed(QSA) with NIQE [67] 0.5038 0.3792 0.2142

to assess the perceptual quality of 3D images. The blocks cannot be too big, as bigger

blocks can have more than one object, and only some parts can have stretching artifacts.

On the other side, smaller blocks do not represent the image properties. With this view,

we have chosen 160 × 160 blocks to train the deep-learning model. The performance of

the proposed algorithm by varying the block size is given in Table 2.5, and it is visible

that the proposed algorithm performs best when the block size is 160× 160.

The proposed algorithm uses BIQI [46] algorithm for the quality prediction of struc-

tural distortions. To further validate the superiority of BIQI over other popular NR IQA

metrics such as BRISQUE [45] and NIQE [67], we analyzed the performance of pooling

these metrics in the proposed algorithm. Table 2.4 contains this detailed comparison,

which also validates the superiority of the BIQI metric in terms of performance parame-

ters.

2.3.3 Performance Comparison and Analysis

A detailed comparison of the proposed metric with the existing NR and FR IQA metrics

is shown in Table 2.7. The proposed method is significantly superior to all the compared

existing methods. The proposed metric obtains the PLCC, SROCC, KRCC, RMSE values

of 0.7087, 0.6672, 0.4726 and 0.1749 respectively. The proposed method performs almost

equal to SSPD metric [35] but can be considered superior to the SSPD metric because
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(a) Proposed (b) SSPD [35]

(c) LPIPS [23] (d) DSCB [68]

(e) BIQI [46] (f) APT [57]

(g) Jakhetiya’s [44] (h) NIQSV+ [1]

Figure 2.10: Scatter Plot of DMOS values and objective scores of state-of-the-art IQAs.

SSPD is a FR 3D IQA metric while the proposed is an NR 3D IQA metric. Additionally,

the SSPD metric takes approximately 28 seconds to predict the quality score of one

view, which is very large compared to the proposed metric (see Table 2.13). Further,

the proposed method achieves 9.7%, and 16.84% gain in PLCC and SROCC from GANs-

NRM [52] metric, which is an NR 3D IQA metric. The proposed method achieves a

2.99% and 6.56% increase in PLCC and SROCC compared to the recently proposed

Yan’s metric [42]. Yan’s metric is a training-based algorithm, trained using random forest

regression on the IETR dataset. So, similar to Yan’s metric, we also applied random forest

regression for mapping scores (scores using the SI-DL model and BIQI) to subjective

scores, and the proposed method achieves above 10% better performance (in terms of
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PLCC and SROCC) than Yan’s metric. It is worth noting that the proposed method

with and without training on the IETR dataset performs significantly better than Yan’s.

The proposed method outperforms all the other NR IQA methods, whether designed for

DIBR Views or Natural Images.

As discussed in [68], the human visual system is more sensitive to natural than syn-

thetic images. To show the effectiveness of the proposed algorithm for both the natural

and synthetic images, separate results for both types of images are shown in Table 2.8.

As the table shows, the proposed method obtained 0.6811, 0.6045, 0.4197, and 0.1709 val-

ues of PLCC, SROCC, KRCC, and RMSE, respectively, for the 98 natural views IETR

datasets. The proposed method also achieved 0.7704, 0.7273, 0.5470, and 0.1766 values of

PLCC, SROCC, KRCC, and RMSE, respectively, for 42 synthetic views from the IETR

dataset. Table 2.8 shows that the proposed algorithm performs well for both types of

images.

The proposed algorithm has several stages: stretching artifact identification, BIQI

algorithm, classification, and pooling. The stage-wise performance is shown in Table

2.9. The inclusion of each stage significantly enhances the performance of the proposed

algorithm.

The proposed quality metric is designed to identify stretching artifacts and is not

focused on identifying black holes. Nevertheless, we tested our method on the IRCCyN

dataset (whose most dominant distortion is black holes) [18] and IVY dataset [19]. The

detailed analysis can be seen in Table 2.10. It may also be noted that while performing

this experiment, we have taken care of generality by not including the patches from the

dataset which is being tested. Moreover, the parameters settings and pooling method

are different for different datasets. The performance of the proposed algorithm is slightly

poorer than the QA algorithms specifically designed for the 3D synthesized views with

black holes (IRCCyN dataset). We have also compared the proposed algorithm with the

existing algorithms on the IVY dataset [19], and the proposed algorithm is performing

better than the existing algorithms except IDEA [22]. At the same time, the performance

of the proposed algorithm is much better than the IDEA on the IETR and IRCCyN

datasets.

Further, we have evaluated the individual performance of the proposed algorithm for

the 7 DIBR synthesis algorithms (M1-M7) used in the IETR dataset, and the results
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are shown in Table 2.11. It can be inferred from this table that apart from the whole

IETR dataset, the proposed SI-DL and overall algorithm works satisfactorily for M1-M7

individually also. Although, the performance of SI-DL is limited for some algorithms such

as M1, M2, and M5. One possible reason is that SI-DL is specially designed for stretching

artifact identification, and these algorithms do not significantly produce such distortions.

Nevertheless, the proposed overall pooling method overcomes this limit of SI-DL, as can

also be seen in Table 2.11.

We have also adopted scatter plots for intuitively comparing quality assessment meth-

ods. The scatter plot between the predicted objective score and the subjective scores

given in the IETR dataset is shown in Figure 10. We compared the plots of seven rele-

vant and recently developed different methods such as SSPD [35], LPIPS [23], DSCB [68],

BIQI [46], APT [57], Jakhetiya’s [44], NIQSV+ [1]. It can be depicted from Figure 2.9

that the predicted scores from the proposed method converge better as compared to other

quality metrics.

2.3.4 Statistical Significance Analysis

Besides numerical comparisons using PLCC, SROCC, KRCC, and RMSE parameters,

statistical significance analysis is another widely adopted comparison method. For this

purpose, F-Test is done between the objective scores obtained using the proposed method

and the scores obtained using the state-of-the-art quality assessment methods. The F-

Test is based upon the variance-based hypothesis [72], where the score of the F-test, Fscore

is given by,

Fscore =
σ2
m1

σ2
m2

(2.11)

here, σm1, σm2 are the RMSE values of the two metrics (m1,m2) being tested. All

the tested IQA metrics with their F-test values are listed in Table 2.12. ‘+1’ indicates

that m1 is statistically superior to m2, ‘0’ indicates that the two are equally competitive,

whereas ‘-1’ indicates the statistical inferiority of m1 to m2. Table 2.12 shows that the

proposed method is statistically superior to all the compared no-reference IQAs.
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2.3.5 Time Complexity Comparison

The computational complexity of the proposed algorithm is in line with the requirements

needed to address real-time applications. To empirically validate this, we calculated

the time for predicting the perceptual quality of a 3D-synthesized image of resolution

1024 × 768 from the IETR dataset, and the results are reported in Table 2.13. The

proposed algorithm takes approximately 0.646 seconds to predict the perceptual quality

of the 3D synthesized image on a system with configuration, Intel(R) Core(TM) i7-8700

CPU, 16 GB RAM, and NVIDIA GeForce GT730 Graphics. Further, we can interpret

from the table that although the time taken by the proposed algorithm is higher than

NIQSV+ [1], OMIQA [71], DSCB [68] algorithms. At the same time, all these algorithms

perform poorly in the experimentation compared to the proposed algorithm.

2.4 Application in the enhancement of 3D views

(a)

Figure 2.11: Location identification of blocks with stretching artifacts using proposed SI-DL model.

The proposed algorithm efficiently predicts the quality of 3D-synthesized views. Along

with predicting the quality, our SI-DL algorithm can accurately predict the location of

blocks with stretching artifacts. Figure 2.11 illustrates the performance of the proposed

algorithm on a view from the IETR dataset (for detecting the blocks with stretching

artifacts). In this figure, blocks with red boundary show that it has stretching artifacts.
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After detecting these blocks, any of the enhancement algorithms (such as [44], [56], [55])

can be applied to remove stretching artifacts. Henceforth, the proposed algorithm can

assess the perceptual quality of 3D synthesized views and help enhance their perceptual

quality.

2.5 Conclusions and Future Work

In this paper, we proposed a novel algorithm for no-reference quality assessment of 3D

synthesized views, which is a challenging problem due to the presence of cohesive stretch-

ing artifacts. Several algorithms were proposed to assess the quality of 3D-synthesized

views in the literature. Still, they perform poorly when employed for distortions in more

recent datasets due to their inability to identify the stretching artifacts efficiently. We

observe a relationship between the perceptual quality of 3D synthesized images and the

number of blocks with stretching artifacts and propose to estimate these blocks via a

CNN-based architecture. In contrast, none of the images from the IETR dataset are used

while training. Our approach outperforms the existing methods in terms of correlation

between the subjective and objective scores. One of the limitations of our approach is its

inability to detect the level of stretching distortions in the identified block, which we plan

to address in our future work.
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Table 2.8: Performance metrics comparison individually for Natural and Synthetic View
types for IETR Dataset.

Step Natural Views Synthetic Views

PLCC SROCC KRCC RMSE PLCC SROCC KRCC RMSE

BIQI 0.5700 0.5347 0.3667 0.1908 0.2623 0.2894 0.1870 0.2672

SI-DL (Proposed) 0.4543 0.4099 0.2962 0.2079 0.5217 0.5019 0.3609 0.2363

Pooling (proposed) 0.6811 0.6045 0.4197 0.1709 0.7704 0.7273 0.5470 0.1766

Table 2.9: Stage-wise performance evaluation of the proposed algorithm.

Stage IETR Dataset

PLCC SROCC KRCC RMSE

BIQI 0.4327 0.4321 0.2898 0.2223

Stretching Identification (Proposed) 0.4307 0.3610 0.2530 0.2237

BIQI + Stretching Identification (Proposed) 0.6109 0.5652 0.3897 0.1963

BIQI + Stretching Identification + Classification (Proposed) 0.7087 0.6672 0.4726 0.1749

Table 2.10: Performance comparison of various 3D IQA algorithms for IRCCyN Dataset
and IVY Dataset. (”♢”, ”∆”, ”†”, ”-” indicates same meaning as in Table 2.7.)

Metric NR/FR IRCCyN Dataset IVY Dataset

PLCC SROCC RMSE PLCC SROCC RMSE

Proposed NR 0.7710 0.6896 0.4240 0.5459 0.5396 11.9349

NIQSV+∆ [1] NR 0.7114 0.6668 0.4679 0.2191 0.2990 24.0530

APT∆ [57] NR 0.7307 0.7157 0.4546 0.5240 0.4748 20.9961

OMIQA∆ [71] NR 0.7678 0.7036 0.4266 0.2637 0.1131 13.7566

IDEA♢ [22] FR 0.6652 0.4986 0.3533 0.6311 0.6132 19.0379

GANs-NRM♢ [52] NR 0.7940 0.7720 0.4100 - - -

Wang’s♢ [70] NR 0.7995 0.7869 0.4000 - - -

Jakhetiya’s∆ [44] NR 0.8054 0.7598 0.3946 0.5211 0.2288 12.1467
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Table 2.11: Performance of the proposed algorithm on different DIBR synthesis algorithms
used in IETR dataset.

DIBR Algorithm Proposed SI-DL Overall

PLCC SROCC KRCC RMSE PLCC SROCC KRCC RMSE

M1 (Criminisi’s) [11] 0.1529 0.0577 0.0161 0.0906 0.5520 0.4451 0.2842 0.0765

M2 (LDI) [12] 0.1234 0.1605 0.1013 0.1059 0.4195 0.3857 0.2630 0.0854

M3 (Ahn) [13] 0.5080 0.3837 0.2995 0.1498 0.8003 0.7865 0.5895 0.1043

M4 (Luo’s) [14] 0.3386 0.0535 0.0106 0.1209 0.3950 0.3759 0.2526 0.1181

M5 (HHF) [15] 0.0922 0.0552 0.0162 0.1020 0.6719 0.5083 0.3684 0.0759

M6 (VSRS) [16] 0.4325 0.2569 0.1816 0.1559 0.4742 0.4652 0.3149 0.1522

M7 (Zhu) [17] 0.6336 0.1581 0.0899 0.0109 0.5785 0.5033 0.3333 0.0528

Table 2.12: Statistical Significance (SS) Table for comparison between the proposed al-
gorithm and existing state-of-the-art IQAs.

Metrics SSPD [35] LPIPS
[23]

DSCB [68] BIQI [46] APT [57] Jakhetiya
[44]

NIQSV+
[1]

Proposed 0 0 +1 +1 +1 +1 +1

Table 2.13: Time taken (in seconds) by objective 3D IQA metrics.

Metric Proposed SSPD [35] NIQSV+ [1] DSCB [68] APT [57] Jakhetiya [44] OMIQA [71]

Time

(in seconds)
0.6457 28.868 0.26 0.575 101.66 4.285 0.041



Chapter 3

Full Reference 3D IQA 1

Perceptually Unimportant Information Reduction and

Cosine Similarity based Full Reference IQA for 3D

Images

We also observed from the literature that there are very few optimal Full-Reference

3D IQAs in the literature. And as both NR and FR 3D IQA have their own advantages

in multiple applications, we proposed a new full reference 3D IQA in this and the next

chapter. One of the primary reasons behind these algorithms’ sub-optimal performance

is their inability to highlight the distortions accurately. To overcome this limitation,

we propose a novel FR IQA algorithm to efficiently identify the distortions present in

3D-synthesized images and eventually predict their perceptual quality. The proposed

algorithm mainly works in two parts. We anticipated the geometric distortions using

the reference and synthesized image in the first part of our approach. Rendering 3D

synthesized image shifts pixels in the image. Due to these shifts and geometric distortions,

the different image contains minuscule information perceptually unimportant for the 3D

synthesized image’s quality assessment. We propose using the morphological operation

(opening) for unimportant information reduction to calculate the quality score. In the

second part of our approach, cosine similarity between pre-trained VGG-16 [63] features

on the Laplacian pyramid of the original and synthesized image is utilized to predict the

quality score. Then these scores are efficiently pooled to get the final quality score. The

main contributions of the proposed algorithm are enumerated below:

1. We use a simple morphological operation (opening) for unimportant information

reduction between original and distorted 3D synthesized images. The residual image

43
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(a) Reference Image (b) 3D synthesized image (c) NIQSV+ [43]

(d) APT [57] (e) Yue’s [3] (f) OMIQA [71]

Figure 3.1: Predicted distortion maps using various algorithms. (a) and (b) are a reference and its
corresponding 3D synthesized image from IETR Dataset. (c)-(f) are the distortion maps of the image
predicted using four existing algorithms in the literature.

after a morphological operation can highlight the geometric distortions well. We

propose to use this image to quantify the quality score of 3D synthesized images.

2. Geometric and structural distortions are quantified using the multi-level Laplacian

pyramid-based deep features.

3. Finally, we compare these deep features of the reference and the distorted image,

which are perceptually important via cosine similarity. Cosine similarity identifies

the similarity of deep features within each other rather than giving importance to

the magnitude of difference across them.

Algorithms proposed in prior works identify geometrical distortions, such as stretching,

black-holes, blurring, flickering and crumbling, using different techniques such as super-

pixel gradients [21], shift-compensation [73], Kernel Ridge Regression [74], Autoregressive

Modelling [57], Median filtering [71], Horizontal/Vertical average gradient [43], Local Bi-

nary Pattern [3] etc. Most of these algorithms perform well on the IRCCyN dataset [18].

The algorithms work on two assumptions: a) black-hole artifacts exist in the 3D syn-

thesized images; b) correlation between neighboring pixels in the geometrically distorted

region is pretty low, and these distortions can be highlighted using any prediction algo-

rithm. However, with evolution in 3D rendering, black holes have become obsolete while

stretching artifacts are predominantly present in the rendered images, as observed in the
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IETR dataset [2]. As existing algorithms cannot highlight stretching artifacts accurately,

their performance is suboptimal on the IETR dataset, also shown in this survey by Tian

et al. [75].

To illustrate the above arguments, Fig. 3.1(a) and 3.1(b) show a reference and a 3D-

synthesized image, respectively, from the IETR dataset (in which the prominent distortion

is around the boundary of the shark). Correspondingly, Figs. 3.1(c) − (f) show the

identified artifacts using several existing algorithms (such as NIQSV+ [43], APT [57],

Yue [3], and OMIQA [71])1. In this figure, a higher gray level suggests the location of

geometric distortions, and a dark level suggests that geometric distortions are not present

in this region. These distortion maps are pooled to estimate the perceptual quality of

3D synthesized images. It can be noticed from the figure that the existing algorithms are

unable to identify geometric distortions accurately. There are two primary reasons for

their sub-optimal performance.

1. Existing algorithms assume that distortions are abrupt and the correlation between

neighboring pixels is low. On the contrary, with the growth of better inpainting al-

gorithms, distortions in 3D synthesized images are smooth (as shown in Fig. 3.1(b)),

and correlation among the neighboring pixels is high even in the distortion region.

2. NIQSV+ [43] and Yue’s [3] algorithms assume that stretching artifacts mainly arise

at the left and right margin of the image and that they occur in the entire row or

column. This assumption is invalid since the stretching artifacts can also arise near

the objects due to the occlusion.

3.1 Proposed Algorithm

We propose an algorithm that can accurately identify the artifacts in 3D synthesized im-

ages and eventually judge their quality. First, we use a morphological operation (opening)

in the residual image to efficiently identify the distortion in a 3D synthesized image. Then,

to capture the other vital features affecting the quality of a 3D image, we use a pre-trained

Convolutional Neural Network (CNN), i.e., VGG-16 [63] on the Laplacian pyramid. Using

the cosine similarity, we calculate the quality score based on the similarity between the

1Note that all the maps are generated using the official codes released by the authors except for Yue’s
which we implemented ourselves.
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(a) Reference image (R) (b) Distorted image (D)

(c) Residual image (RE = |R−D|)
before erosion operation

(d) Residual image after erosion
operation(EO)

(e) Image after dilation
operation(DO)

Figure 3.2: Elaborated Perceptually Unimportant Information Reduction (PU-IR) method with high-
lighted (perceptually important and unimportant) distortions.

feature maps of reference and the distorted image. Lastly, we pooled the scores calculated

using both algorithms to get the final quality scores. In the following sub-sections, the

detailed methodology is explained:

3.1.0.1 Perceptually Unimportant Information Reduction (PU-IR)

3D synthesized images are generally contaminated with geometric distortions, while struc-

tural distortions are predominantly not present in these images [57]. Consequently, the

difference between the reference and distorted image can provide substantial useful in-

formation related to perceptual quality. This argument can be validated by comparing

the performance of PSNR on the IETR dataset [2] and the LIVE dataset [76]. With this

view, we calculated the residual image (RE) by taking the respective difference of Y, Cb,

and Cr components of reference and distorted images as:

RE = |R−D| (3.1)

Here, R and D are the references and the corresponding distorted image. Example

reference and distorted image from the IETR dataset are shown in Fig. 3.2(a) and 2(b),
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respectively. In Fig. 3.2(c), the residual image is shown, and it can be observed that the

residual image (highlighted using a white window) can efficiently highlight the important

geometric distortions. Simultaneously, the reference and distorted images are slightly

shifted due to improper rendering. This shifted information is visible in the residual image

(highlighted using a fluorescent yellow window). This information from the shift cannot

be considered distortion and does not contribute to the overall perceptual quality. This

is why the performance of PSNR is promising but not optimal for the quality assessment

of 3D synthesized images. Removing the perceptually unimportant information from the

shift between the reference and the distorted images is required. In the literature, this

shift compensation has been done using the SURF key-point detection [21, 73], sparse

representation [77], SIFT-flow based warping [24], etc. We propose a high-speed and

efficient algorithm that removes unimportant information using classical image processing

techniques in this work. Due to the slight shift in the reference and distorted image, only

thin object boundaries are visible in the residual image (as shown in Fig. 3.2(c)). This

perceptually unimportant information can be further suppressed using the morphological

erosion operation (⊖) [74]. The erosion (⊖) of RE by S replaces the value of RE at a

pixel (x, y) by the minima of the values of RE over a structuring element S. So, eroded

image (EO) is obtained via:

EO = RE ⊖ S = min
(i,j)ϵS

{RE(x+ i, y + j)} (3.2)

We have used 5 × 5 square window as the structuring element in this work. Fig.

3.2(d) shows that a simple erosion operation can remove the unimportant perceptual

information arising from the shift between the reference and distorted image. With this

view, erosion operation can effectively reduce unimportant information arising due to

the shift. However, erosion operation shrinks the geometric artifacts slightly due to the

5× 5 structuring element. To identify the geometric distortion, we propose applying the

dilation operation (⊕) further after the erosion operation (2). The dilation (⊕) of EO by

S replaces the value of EO at a pixel (x, y) by the maxima of the values of EO over a

structuring element S.

DO = EO ⊕ S = max
(i,j)ϵS

{EO(x− i, y − j)} (3.3)
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Fine noise due to shifting. Perceptually significant strong intensity pixels.

Figure 3.3: Perceptually Unimportant Information Reduction map (DO) analysis using the histogram.

In Fig. 3.2(e), we have shown the residual image after the dilation operation. This

figure shows that the proposed algorithm can highlight geometric distortions, and this

information can be infused to predict perceptual quality. The final quality score is cal-

culated using the mean of the reference and the residual image after the morphological

operation (DO). The quality score using the proposed PU-IR algorithm is calculated as:

QPU−IR′ = log
mean(DO)

mean(R)
(3.4)

Here mean represents the average value of the corresponding image. This quality score

is scaled to avoid negative values of scores.

The residual image after morphological operation still contains small perceptually

unimportant information (shown in Fig 3.2(e) highlighted using a fluorescent yellow win-

dow). This information should not be considered to estimate the objective quality of

3D-synthesized images. Hence, if the number of pixels in a residual image is more than
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(a) Reference Image
(R)

(b) RLL 1 (c) RLL 2 (d) RLL 3 (e) RLL 4

(f) Distorted Image
(D)

(g) DLL 1 (h) DLL 2 (i) DLL 3 (j) DLL 4

Figure 3.4: Laplacian Levels wise highlighted distortions in the reference and distorted images. RLL
stands for Reference image Laplacian Level, and DLL stands for Distorted image Laplacian Level. Please
note that RLL(2-4) and DLL(2-4) are of different resolutions, but these are shown in equal size for better
visualization in this figure.

(a) Reference Im-
age

(b) Distorted Image (c) Laplacian of Refer-
ence Image

(d) Laplacian of Dis-
torted Image

Figure 3.5: Effect of Laplacian on the distortions of an image from IETR Dataset.

a threshold, significant geometric distortions are present, and perceptual quality should

be poor and vice-versa. With this view, the residual image after dilation operation (DO)

can be further used to enhance the proposed PU-IR algorithm. From Fig. 3.3, it can be

seen that the intensity range of pixels in the visible distortions (green window) is much

greater than the range in fine noise (blue window), which is not perceptually significant.

With this view, we propose to enhance the proposed PU-IR algorithm further using the

number of pixels with strong geometric strengths as:
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QPU−IR =


QPU−IR′ × λ1, if count > (m×n)

γ

QPU−IR′×λ2, otherwise

(3.5)

Here, λ1 and λ2 are positive non-zero constant parameters used to enhance the pro-

posed PU-IR algorithm and estimate the perceptual quality of 3D synthesized images.

The parameter ‘count’ is the number of pixels with strong intensity in the residual im-

age after dilation operation (DO). m and n are the dimensions of the image in x and

y-direction, respectively. The γ is a positive non-zero constant. The motivation behind

(5) is to amplify the impact of information in the residual image if strong geometric dis-

tortions are present in the 3D synthesized views and vice-versa. With this view, the value

of λ1 should be higher than λ2, as strong geometric artifacts affect the perceptual quality

more than the weaker ones. The sensitivity analysis of λ1, λ2, and γ parameters is shown

in the next section.

Although the proposed PU-RI algorithm is quite simple, it can remove unimportant

information from the shift between the reference and distorted image. Even though the

proposed algorithm can mainly incorporate geometric distortions, it cannot effectively

identify structural artifacts such as blurring and noise contamination.

3.1.0.2 Deep Features extraction and comparison using Cosine Similarity

(DF-CS)

In the proposed PU-IR algorithm, the quality of 3D synthesized images is calculated using

the ratio of the mean of the residual image after dilation operation (DO) to the reference

image. However, two significant drawbacks are associated with this algorithm, which need

to be rectified.

1. In the PU-IR algorithm, erosion operation is used to remove the perceptually unim-

portant information in its process. Simultaneously, PU-IR removes small structural

distortions such as noise and other artifacts.

2. Also, the PU-IR algorithm identifies the overall absolute geometric distortions but

can not guarantee that these geometric distortions affect the perceptual quality.
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ORIGINAL VIEW

SYNTHESIZED VIEW

SYNTHESIZED VIEW
LAPLACIAN PYRAMID

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

A.  3D VIEW PREPROCESSING B. VGG-16 NETWORK ARCHITECTURE

3 x 3 CONVOLUTION +  BATCH NORMALIZATION + RELU

MAX POOL

ORIGINAL VIEW 
LAPLACIAN PYRAMID

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

BLOCK 5

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 1 LEVEL 3

LEVEL 1 LEVEL 3

SYNTHESIZED VIEW
FLATTENED DEEP FEATURES

ORIGINAL VIEW FLATTENED
DEEP FEATURES

C. COSINE SIMILARITY BASED QUALITY SCORING

COSINE
SIMILARITY (S)

QUALITY
SCORE(QDF-CS)

Figure 3.6: An elaborated workflow of the proposed Deep Features fusion using Cosine Similarity (DF-
CS).

We propose a new algorithm based on the Laplacian pyramid and cosine similarity to

overcome these issues. The Laplacian pyramid [78] is created using the Gaussian pyramid.

In the Gaussian pyramid higher-level image (low resolution) is created from a lower-level

image (high resolution) by blurring and down-sampling. To be more precise, the image

at the next level of the Gaussian pyramid is generated by blurring using the Gaussian

kernel and then downsampling the image from the current level by removing every even-

numbered row and column. We first build a Gaussian pyramid of image I with L levels

{Gl}Ll=1(G1 = I), where Gl(x, y) is obtained as,

Gl(x, y) = (Gl−1(x, y) ∗ f) ↓ 2 (3.6)

Here, ‘*’ is the convolution operation, ↓ is the downsampling operation which is done

by removing the alternative rows and columns, and f is the 2-D Gaussian kernel as:

f =
1

16



1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1


(3.7)

We follow this pattern as we go up the pyramid (i.e., resolution decreases). A level in

the Laplacian pyramid is formed by the difference between the same level of the Gaussian

pyramid and the interpolated version of its upper level in the Gaussian pyramid. Let Ll

be the lth level of the Laplacian pyramid formed using Gaussian levels (Gl) and (Gl+1),
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formulated as,

Ll = Gl − (Gl+1 ↑ 2) (3.8)

Here ↑ represents the interpolation operation, and interpolation is done using the

bilinear interpolation algorithm. The first level of the Laplacian pyramid is the simple

difference between the original image and the interpolated image from the above level in

the Gaussian pyramid. The lower levels (such as levels 1 and 2 (See Fig. 3.4)) of the

Laplacian pyramid are the difference between the color image and the moderately blurred

versions of the color image. The synthesized view’s level 1 and 2 contains structural and

geometric distortions. Using these levels of the Laplacian pyramid can resolve the first

issue associated with the proposed PU-IR algorithm. Simultaneously, levels 3 and 4 (See

Fig. 3.4) of the Laplacian pyramid are images consisting of band-pass images and some

low-frequency residuals. Any information available in these levels of synthesized view will

be the substantial geometric distortions and overcome the second issue associated with

the proposed PU-IR algorithm. Examples of cropped references and distorted images

are shown in Fig. 3.5(a) and 3.5(b), respectively. Further, their corresponding Laplacian

features at Level 1 are highlighted in Fig. 3.5(c) and 3.5(d), respectively, and from this

figure, it can be seen that Laplacian can highlight the distortions.

Once the Laplacian pyramid is obtained, we move to the next feature extraction step.

It is well known that VGG-16/19 architecture can extract the perceptually important

features [23]. Further, its pre-trained architecture can be directly used to estimate the

perceptual quality of natural images. Similarly, we also propose to extract features from

the VGG-16 architecture. Notably, the input to the VGG-16 architecture is the specific

levels of the Laplacian pyramid rather than color images. The weights of the pre-trained

VGG network are fixed; it cannot detect the perceptually relevant features related to

the 3D synthesized views (it can be seen via observing the performance of the LPIPS

algorithm [23] on the IETR dataset). With this view, we propose to use the Laplacian

pyramids of distorted and synthesized images to capture both structural and geometrical

distortions and feed them into the network. The Laplacian pyramid works progressively

at different scales towards the quality assessment of 3D synthesized images. The complete

framework of the proposed DF-CS algorithm is shown in Fig 3.6.

CNN network trained on Imagenet dataset [64] for image classification surprisingly

performs well for image representation [79, 80]. This is the reason why feature extracted
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from pre-trained CNN architectures have been used for style transfer [81], image super-

resolution [82], image reconstruction [83]. Similarly, for efficient feature extraction, we

have also used VGG-16 architecture [63]. Among different deep architectures in the

literature, the deep features obtained from VGG-16 architecture are more relevant to the

perceptual quality assessment of images. This argument is also justified by Zhang et al.

in their detailed study of the power of the deep features as a quality metric in [23].

We propose to extract features from the fourth convolution layer of block five of VGG-

16 for the distorted image and the original image for their different Laplacian levels. The

Laplacian images are directly fed into the VGG with their original sizes without any

initial pre-processing. Let F be the set of feature vectors (f) obtained from the VGG-16

architecture represented as

F = {f or
c , f sy

c , f or
L1
, f sy

L1
, ....., f or

Ln
, f sy

Ln
} (3.9)

Here or, sy stand for original and synthesized images, respectively. While, c stands

for the RGB color components of the images and L1, ...., Ln are the n Laplacian levels.

Then these features are converted into a one-dimensional vector, i.e., the flattened

vector. After obtaining the feature vector for the distorted and reference image, the next

step is to combine these features to determine the final quality. Generally, the geometric

distortions arise close to the high-frequency regions, and these distortions also occur in

patches rather than evenly distributed in the whole image. With this view, the human

visual system perceives a low level of geometrical distortions. So, it can be argued that

most regions with geometric distortion have the same effect on the overall perceptual

quality [57]. Therefore, we propose identifying the number of features that are similar to

each other instead of calculating the magnitude of the difference between these features.

On the contrary, the frequently used mean-square error (MSE) gives weightage to the more

deviating features and ignores the less deviating features. For this, the cosine similarity

has been recently used in several computer vision problems such as object tracking [84],

image classification [85], palm-print recognition [86], binary search [87]. In these problems,

the need is to identify the number of deep features that are similar. We have also used

cosine similarity to fuse the deep features estimated on the Laplacian pyramid with this

view. Henceforth, we propose to find the similarity between the deep features of different

Laplacian pyramid levels of the synthesized image f sy and the original image f or as given
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below:

S = 1− cosθforfsy = 1− for · fsy

∥for∥ ∥fsy∥
(3.10)

where “∥.∥” and “.” represents the vector’s euclidean norm and the dot product between

two vectors. “CosineSimilarity” is the term used for the cosine of the angle between the

vectors f or and f sy and it is indicated by cos θforfsy . The higher cosine similarity value

indicates the closeness of vectors to each other, which further indicates better perceptual

quality. Simultaneously, a lower cosine similarity value indicates that feature vectors

differ and subsequently poorer the perceptual quality. Hence, cosine similarity is directly

proportional to the quality score. To inverse this relationship, we subtracted the cos θforfsy

from 1.

Hence, we obtain the final set of Cosine Similarities (CS) of different levels of the

Laplacian pyramid as,

CS = {SL1 , .....,SLn} (3.11)

After an exhaustive study, we propose to use only two levels of the Laplacian pyramid

(first and third level) to evaluate the quality score of 3D-synthesized images. Including

more levels does not significantly affect the proposed algorithm’s overall performance (as

shown in Table 3.3). The quality score (QDF−CS) using the proposed DF-CS algorithm

is obtained as,

QDF−CS = SL1 + SL3 (3.12)

3.1.0.3 Scores Pooling

The proposed PU-IR can identify the geometric distortions and quantify the perceptual

quality based on these distortions. Further, the proposed DF-CS is based upon quanti-

fying scores based on structural and geometric distortions. To merge the benefits of the

proposed PU-IR and DF-CS, the final perceptual quality score is estimated by multiplying

the quality scores obtained by the proposed DF-CS and PU-IR algorithm as:

Q = QDF−CS ×QPU−IR (3.13)
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Here, QDF−CS and QPU−IR are the perceptual quality scores estimated using the

proposed DF-CS and PU-IR algorithms, respectively.

3.2 Experimental Results & Analysis

3.2.1 3D Synthesized images Dataset

We evaluated our model on the publicly available the IETR 3D Dataset [2] and IRCCyN

Dataset [18]. The IETR dataset consists of a total of 140 synthesized images, along with

ten reference images. These images are rendered using seven rendering methods, i.e. A1-

A7 [88–94]. The subjective scores of each image are given in the form of Differential

Mean Opinion Score (DMOS) in the dataset according to the Subjective Assessment

Methodology for Video Quality (SAMVIQ) convention [95]. The rendering methods A1-

A7 are explained in brief as:

• A1 [88]: It is an exemplar-based image inpainting method proposed by Criminisi

et al.. The patch priorities are computed using a confidence to optimize the filling

order further.

• A2 [89] is an object-based Layered Depth Image (LDI) representation. The authors

have utilized the foreground-background segmentation approach to improve this

method’s inpainting.

• A3 [90]: In this method, texture synthesis is done using patches based upon the

disocclusion filling method utilizing the depth map information.

• A4 [91]: Authors use a background reconstruction-based approach in this method.

Morphological operations followed by canny edge detection are utilized for back-

ground reconstruction. Further, hole filling is done in this pre-processed image.

• A5 [92]: In this method, disocclusion of holes is done using depth adaptive Hierar-

chical Hole Filing (HHF).

• A6 [93]: The MPEG 3D video Group has adopted this method of Depth Image-

Based Rendering (DIBR) by Tanimoto et al., this software is also known as View

Synthesis Reference Software (VSRS). A post-filter approach is used on the depth

map to render the new scenes.
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• A7 [94]: Zhu et al. identified the relevant pixels in the background around the holes

to fill the occluded regions.

The four evaluation criteria used for performance comparison of the proposed algo-

rithm with the existing IQA algorithms are SRCC, PLCC, KRCC, and RMSE. Higher

PLCC, SRCC, KRCC, and lower RMSE values indicate a better IQA metric. The calcu-

lated objective scores are mapped to subjective scores using a five-parameter non-linear

mapping as,

f(X) = α1(
1

2
− 1

1 + eα2(X−α3)
) + α4X + α5 (3.14)

where αi, i = 1, 2, 3, 4, 5 are the five parameters to be fitted. X and f(X) is the

objective score, and its corresponding mapped subjective score, respectively.

3.2.2 Performance Comparison and Analysis

Table 3.1 shows that the proposed algorithm’s performance is compared to 24 existing

IQA algorithms in the literature, including 8 FR IQAs, 13 NR IQA, and 3 SVR IQA.

As can also be observed from the table, the proposed algorithm obtains the best overall

performance. It is superior to all other competing IQA algorithms, whether oriented for

3D images or natural images. The proposed metric obtains 0.7965, 0.7909, 0.5992, and

0.1499 of PLCC, SRCC, KRCC, and RMSE, respectively. It exceeds by 9.7 % and 14.5

% in terms of PLCC and SRCC from state-of-the-art CODIF Metric [39], which is a no-

reference 3D-IQA metric. Also, the proposed quality evaluation exceeds 13.4 % and 15.4

% in terms of PLCC and SRCC from SSPD Metric [21], which is a full-reference 3D-IQA

metric.

The proposed algorithm combines several modules, i.e., PU-IR, DF-CS, and merging

using the proposed pooling mechanism. To validate the inclusion of these modules in-

dividually and progressively, we have shown the step-wise performance of these modules

in Table 3.2. It can be seen from the table that Proposed PU-IR and Proposed DF-CS

individually also perform better than all the existing algorithms. The Proposed PU-IR

metric obtains 0.7295, 0.7302, 0.5332, and 0.1696 of PLCC, SRCC, KRCC, and RMSE,

respectively and exceeds by 0.4 % and 5.76 % in terms of PLCC and SRCC from state-

of-the-art CODIF Metric [39]. The proposed DF-CS algorithm achieves 0.7848, 0.7676,
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Figure 3.7: Scatter Plot between DMOS Values and Objective Scores of the 3D synthesized IQAs for the
IETR dataset.

0.5753, and 0.1537 values of PLCC, SRCC, KRCC, and RMSE, respectively, 8.09 % and

11.18 % better in terms of PLCC and SRCC than the existing CODIF algorithm. Fur-

ther, the final proposed pooling performs even better than the proposed PU-IR’, PU-IR,

and DF-CS, with at least 3.03 % gain in SRCC. These results also validate the proposed

fusion method given in (13).

In Table 3.3, the proposed DF-CS algorithm’s performance is given when VGG-16

based deep-features are extracted from different levels of Laplacian pyramids. From this

table, it can be observed that all the levels of the Laplacian pyramid individually as well as

in combination give satisfactory results, and the linear combination of Level-1 (SL1) and

Level-3 (SL3) gives the best results in comparison to individual levels. It is also concluded

through the extensive study by analyzing all the possible combinations of these levels.

With this view, in the proposed DF-CS algorithm, Level-1 (SL1) and Level-3 (SL3) were
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(a) Proposed PU-IR

(b) Proposed Final

Figure 3.8: Effect of variation of parameter γ on the performance of the proposed PU-IR algorithm and
the proposed overall algorithm (equation (13)).

used to predict the perceptual quality of 3D synthesized images.

In the proposed DF-CS algorithm, we asserted that cosine similarity between deep

features works better than extensively used other measures such as Structural SIMilarity

(SSIM) [29] and Peak Signal to Noise Ratio (PSNR). To manifest the same, in Table

3.4, we have shown the performance of all these measures for the IETR Dataset. The

table suggests that cosine similarity performs better for the quality assessment of 3D

synthesized images than all the other measures. These results also show the importance

of cosine similarity in the proposed algorithm.

The scatter plots of objective versus subjective scores for different 3D IQA metrics

are compared in Fig. 3.7. The scatter plots are used to compare IQAs intuitively. We

compared both proposed methods to five existing 3D IQA metrics: SSPD [21], DSCB [68],

APT [57], NIQSV+ [43], LPIPS [23]. It can be depicted from the figure that scores using
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Figure 3.9: Sensitivity analysis of parameters λ1 and λ2 on the performance of the proposed algorithm.

proposed methods converge better than other metrics. Hence, all the predicted objective

scores maintain more consistency with subjective ratings than state-of-the-art 3D IQA

metrics.

The proposed algorithm is designed to identify all distortions, excluding black holes,

as they are obsolete. Despite that, we tested the proposed algorithm for the performance

on the IRCCyN dataset [18], in which the most dominant distortion is black holes. The

proposed model is also found to be performing satisfactorily for this dataset. The results

are shown in Table 3.5. The values of parameters λ1, λ2, γ, and laplacian levels are

optimized for the IRCCyN dataset. As depicted in the table, the proposed algorithm’s

performance is comparable to the 3D IQA algorithms specifically designed for views with

black holes. Also, the performance of these compared algorithms is inferior to the IETR

dataset (Table 3.1). These results show that the proposed algorithm is generalized to

datasets other than the IETR dataset.

3.2.3 Statistical Significance

Another widely adopted comparison method is statistical significance analysis to compare

various quality assessment algorithms, and for this purpose, F-Test is commonly used. It
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is based upon the variance hypothesis [101] between scores obtained using the proposed

algorithm and the existing algorithms. The score of the F-test, Fs, is given by,

Fs =
σ2
m1

σ2
m2

(3.15)

here, σm1 , σm2 indicates the RMSE values of the two metrics (m1,m2) being tested.

Then, a threshold Fc is calculated based on the number of images in each database with

a confidence level of 90 %. If Fs > Fc, metric m2 performs statistically better than metric

m1 (indicated by ‘+1’ in the Table 3.6). If Fs > 1/Fc, metric m2 performs statistically

inferior to metric m1 (indicated by ‘-1’ in the Table 3.6). Otherwise, the two metrics are

statistically competitive (indicated by ‘0’ in Table 3.6). Table 3.6 lists the tested IQA

metrics with their F-Test values. It can be depicted from the table that the proposed

algorithm is statistically better than all the compared 3D IQAs.

3.2.4 Parameter Sensitivity Analysis

The proposed PU-IR algorithm (5) used three parameters λ1, λ2, and γ. The parameter

λ1 and λ2 control the contribution of the proposed PU-IR algorithm in the situation of

whether perceptually significant geometric distortions are available or not. To show the

dependency of the proposed algorithm on these parameters, we have done the following

two empirical studies:

1. The effect of variation of values of λ1 and λ2 on SRCC is shown through a 3D

mesh graph (Fig. 3.9). From this figure, it can be analyzed that any value of

λ1 > λ2 gives very similar results. This empirical study validates our arguments for

equation (5) that it is required to amply the impact of geometric distortions and

reduce perceptually unimportant information available in the residual image (DO).

2. Further, another parameter γ is used as a threshold for deciding between the two

cases, as discussed in (5). To analyze the sensitivity of proposed pooling on γ

values, we varied them from 200 to 2000. We showed the proposed algorithm’s

corresponding performance in Fig. 3.8 for proposed PU-IR and for proposed final

pooling. Moreover, for any positive value of γ, the performance of the proposed

pooling is more significant than 0.7500 SRCC, which is still better than the state-

of-the-art algorithms.
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3. Fig. 3.10 shows the variation in performance by changing the structuring elements

to ‘disk’ and ‘square’ of different ‘radius’ and ‘width,’ respectively. These plots also

depict that the performance is not much changed with these parameters also.

The computational power for predicting a 3D image of 1024 × 768 resolution from

the IETR dataset is calculated individually for both the proposed PU-IR and DF-CS

algorithms. The proposed PU-IR algorithm takes approximately 0.2 seconds to predict

the perceptual quality of the 3D synthesized image. Further, the proposed DF-CS takes

0.3 seconds on a GPU (Nvidia Quadro P2000 with 16GB of RAM). Overall the proposed

algorithm takes less than 1 second to process the 3D synthesized images, which is well

suited for real-time applications.

3.3 Conclusions and Future work

This work proposed a fast and efficient algorithm for identifying geometrical and structural

distortions and quality assessment of 3D synthesized images. The proposed algorithm is

based on the idea that even a simple difference image can give perceptually important

information and shift information. With this view, our proposed method removes the

perceptually unimportant information via the morphological operation (opening). We

compared the deep features extracted from the last layer of the pre-trained VGG-16

architecture to further refine the distortion. It is interesting to note that the deep features

are extracted on the Laplacian pyramid of the reference and distorted 3D synthesized

images. As the literature suggests, cosine similarity performs better than the mean square

error if the application observes the similarity between two vectors. With this view, we

also compared deep features using the cosine similarity. Finally, both algorithms were

fused to estimate the perceptual quality of 3D synthesized images. The time taken by

the proposed algorithm is approximately 1 second compared to 25 seconds taken by the

existing algorithm SSPD.

In the proposed algorithm, the features of VGG-16 are used to estimate the percep-

tually relevant deep features and, subsequently, the perceptual quality of 3D synthesized

images. All the features are not perceptually essential and should not be used for quality

estimation purposes. For this purpose, future work should first identify perceptually im-

portant deep features and use them for quality estimation. One possible strategy could be
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to calculate the eigenvalues of these deep features and use those above a certain threshold.
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Table 3.2: Step-wise performance analysis of the proposed algorithm.

Metric PLCC SRCC KRCC RMSE

Proposed (Pooling) 0.7965 0.7909 0.5992 0.1499

Proposed DF-CS 0.7848 0.7676 0.5753 0.1537

Proposed PU-IR 0.7295 0.7302 0.5332 0.1696

Proposed PU-IR’ 0.7199 0.7000 0.5096 0.1703

Table 3.3: Dependency of DF-CS algorithm on different Laplacian Levels.

Metric PLCC SRCC KRCC RMSE

Without Laplacian 0.7098 0.6998 0.5174 0.1750

Laplacian Level 1 ( SL4) 0.6538 0.6012 0.4317 0.1876

Laplacian Level 2 (SL3) 0.7415 0.7061 0.5180 0.1663

Laplacian Level 3 (SL2) 0.7665 0.7414 0.5529 0.1592

Laplacian Level 4 (SL1) 0.7634 0.7491 0.5624 0.1601

(SL1 + SL2 + SL3 + SL4) 0.7848 0.7558 0.5673 0.1543

(SL1 + SL3) 0.7848 0.7676 0.5753 0.1537

Table 3.4: Effect of various metrics on fusion of deep-features. PP stands for Performance
Parameter

Metric Cosine Similarity SSIM PSNR

PP PLCC SRCC PLCC SRCC PLCC SRCC

SL1 + SL3 0.7848 0.7676 0.7566 0.7233 0.7180 0.7065
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Table 3.5: Performance comparison of the proposed algorithm with existing algorithms
on IRCCyN dataset, sorted in descending order of PLCC values.

IQA Metric NR/FR PLCC SRCC KRCC RMSE

Wang’s [41] NR 0.7995 0.7869 - 0.4000

GANs-NRM [52] NR 0.7940 0.7720 - 0.4100

IDEA [22] FR 0.7796 0.6652 0.4986 0.3566

Proposed FR 0.7772 0.7337 0.4698 0.4189

OMIQA [71] NR 0.7678 0.7036 0.4466 0.4266

APT [57] NR 0.7307 0.7157 - 0.4546

LOGS [24] FR 0.7243 0.6511 0.4849 0.3890

NIQSV+ [43] NR 0.7114 0.6668 0.4679 0.5040

Table 3.6: Statistical Significance (SS) comparison of the proposed algorithm with existing
state-of-the-art IQA algorithms for the IETR dataset.

Metric Proposed SSPD APT DSCB NIQSV+ LPIPS

Proposed - +1 +1 +1 +1 +1

SSPD -1 - +1 +1 +1 0

APT -1 -1 - -1 0 -1

DSCB -1 -1 +1 - +1 -1

NIQSV+ -1 -1 0 -1 - -1

LPIPS -1 0 +1 +1 +1 -
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Figure 3.10: Performance variation of the proposed algorithm with change in Structuring Elements (SE).



Chapter 4

Full Reference 3D IQA 2

Context Region Identification based Quality Assess-

ment of 3D Synthesized Views

Depth information is an integral part of the DIBR process for the 3D view synthesis.

In this context, a few existing algorithms have used depth information for the quality

assessment. Li et al. [102] proposed a method for the quality assessment of depth images

using the edge characteristics of depth images. In this algorithm, two types of maps are

predicted using the depth information, i.e., similarity map and weighting map. They

are further pooled using edge-guided pooling to get the final predicted quality score.

Shao et al. [103] proposed a 3D synthesized video quality assessment algorithm using the

local binary patterns as feature representation and dictionary learning. Liu et al. [104]

proposed a new quality metric for distortions arising due to texture/depth compression

in 3D synthesized videos. This objective metric considers two features, i.e., temporal

flickering and Spatio-temporal activity. On the same line, Wang et al. [105] proposed a

new depth perception quality assessment considering stereoscopic and spatial orientation

structural features.

In the above-discussed state-of-the-art 3D QA metrics, we observed the following is-

sues: 1. Most of the existing algorithms highly depend upon the tunable parameters and

can not be generalized. 2. Although a few existing algorithms use depth information for

the quality assessment of views. At the same time, none of the existing algorithms analyze

the context information and incorporate this information while estimating the perceptual

quality of 3D synthesized views. All existing algorithms ignore the context information,

such as whether the region is foreground or not. Considering these drawbacks, in this

67
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Figure 4.1: Workflow diagram of the proposed algorithm when the context region is foreground.

paper, we propose to predict the perceptual quality of 3D-synthesized views by identify-

ing the context region and integrating it with the quality assessment model. The main

contributions of the proposed algorithm are as follows:

1. In general, the geometric distortions which are perceptually important occur near

the edges and disoccluded regions and not in the full 3D synthesized views. The

proposed algorithm efficiently identifies the possible location of distortions and iden-

tifies the distortions only in these regions.

2. As the context region from the foreground significantly generates the distortions near

the disoccluded regions. It is vital to analyze if the context region is foreground or

not. With this view, the proposed algorithm identifies the context regions based

upon the variation in the depth views of reference and distorted 3D synthesized

views. The proposed algorithm is the first effort toward integrating the context
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information with the quality assessment model.

3. The proposed algorithm is free from any parameter tuning. The proposed metric

achieves better performance than the existing algorithms and requires less than a

second to predict the perceptual quality of 3D synthesized views.

we have done an extensive literature survey on using depth information for the quality

assessment purpose and presented below:

4.1 Proposed Methodology

The context region is where the information is taken for the disocclusion process during

the 3D view synthesis. The context region can either be taken from the foreground, back-

ground, or both. Recent research in 3D view synthesis suggests that geometric distortions

significantly affecting the perceptual quality of a 3D view occur if the context region is

foreground and does not affect the quality much, otherwise [106]. With this view, it is

vital to analyze the context region and use this information for 3D IQA. From empirical

study, we have observed a significant variation in the depth of the distorted view con-

cerning the depth of the reference view if the context region is foreground. In Fig. 4.1,

two reference views, their synthesized views, and corresponding depths from the IETR

dataset [?] are shown to validate this argument. From this figure, it can be observed that

if the context region is foreground, there is a significant variation in the depths of the

distorted view with respect to the reference view. Hence, the depth of information can

help analyze whether the context region is foreground or background. Subsequently, this

information can be utilized in estimating the quality score for 3D synthesized views.

As discussed earlier, the location of the context region (foreground or background)

significantly affects the overall perceptual quality of 3D synthesized views. Thus, we

propose two different steps for both situations. The first step of the algorithm is based

on the correlation between the depth energy maps of the reference and distorted views.

Also, we propose an algorithm based upon the Discrete Cosine transform (DCTs) of the

distorted local region for the second situation. Finally, to get the consolidated quality

score, we propose simply multiplying these two scores in Step 1 and Step 2. The complete

workflow diagram of the proposed model is shown in Fig. 4.4. The step-wise detailed

methodology of the proposed algorithm is explained as follows:



4.1. PROPOSED METHODOLOGY 70

4.1.1 Quality Score when context region is the foreground (Step

1)

The process of 3D synthesis brings some annoying distortions to the synthesized scenes,

and these distortions mainly occur around the foreground objects. Recent studies suggest

that while filling the missing pixels information during 3D-synthesis, using the texture

information from the background compared to the foreground [106] produces perceptually

better 3D views. In this context, it is conspicuous to use the depth information of the

3D scenes in the process of 3D synthesis as also proposed in [106]. With this view, it is

also essential to incorporate depth information while estimating the perceptual quality

of these 3D views. Similarly, to predict the quality of these 3D synthesized views, we

have obtained the depth maps of the reference and the 3D synthesized views using the

single image depth estimation algorithm [107]. However, the estimated depth images

are generally noisy, so we propose reducing noise using a simple thresholding method.

Also, if the context region is foreground, there is a significant variation in the reference

and distorted views (as shown in Fig. 4.1 and Table 2.3). This variation can be easily

highlighted using the energy maps of the depths of both reference and distorted views.

The two kernels (Robert’s edge detection) used for estimating the energy maps are as

follows:

+1 0

0 −1

 and

 0 +1

−1 0


Let Dr(u, v) and Ds(u, v) be a pixel in the reference depth and the synthesized depth

views, respectively. Gx
r (u, v) and Gy

r(u, v) be the pixel in the reference, and the synthe-

sized depth images formed by convolving with the first kernel and similarly Gx
s(u, v) and

Gy
s(u, v) be a pixel in the depth images formed by convolving with the second kernel.

Then gradient or the energy map of the reference and the synthesized view (i.e. Er(u, v)

and Es(u, v)) can then be defined as:

Er(u, v) =
√
(Gx

r )
2 + (Gy

r)2, and

Es(u, v) =
√
(Gx

s)
2 + (Gy

s)2, respectively
(4.1)
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Figure 4.2: Workflow Diagram of Step 2 of the proposed algorithm when context region is background.
This diagram shows the images visually after applying operations described in Step 2, such as morpho-
logical dilation, masking out, and discrete cosine transform.

Further, to identify the variation in the depth energy maps, which also act as the

perceptual quality score when the context region is from the foreground, we propose

calculating Pearson’s correlation coefficient between the energy maps of the reference and

distorted depths. Hence, the quality score for foreground context (QFG) can be given as:

QFG =

∑∑
(Er − Er)(Es − Es)√

(
∑∑

(Er − Er)2)(
∑∑

(Es − Es)2)
(4.2)

Here, Er and Es represents the mean of energy maps Er and Es, respectively. From

equation (2), it can be observed that a higher correlation coefficient value suggests that

there is not much variation in the depth map of the distorted view with respect to the

depth map of the reference view. So, a higher correlation coefficient value suggests two

observations: 1. The perceptual quality of the 3D synthesized view is good, or 2. during

the 3D synthesis, the context of the disoccluded region is taken from the background, and

they are not generating perceptually significant distortions around the objects [106].

At this point, it is crucial to understand how QFG could quantify the quality of views

based on whether the texture information was from the foreground or background. For

this purpose, Table 2.2 shows the change in depths and their corresponding energy maps

with different synthesized views. For these images, it can be concluded that the energy

map of SV-1 (the case of context region from the foreground) is less similar to the energy

map of the reference view as compared to the SV-2 (the case of context region from the

background). In addition to the visual analysis, the correlation coefficient value (QFG)
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for SV-1 is 0.6509, which is lesser than for SV-2, which is 0.8231. With this view, a

lesser correlation between energy maps of reference and synthesized views suggests that

these views are not similar and have poorer perceptual quality. Although the proposed

algorithm is pretty simple, it exploits the fundamental properties of the 3D synthesized

views. Table 2.5 shows that QFG individually has the performance of 0.7369 PLCC and

0.7324 SRCC, which is better than the state-of-the-art algorithms.

4.1.2 Quality score when the context region is background (Step

2)

The calculated quality score (QFG) gives a fair idea about the distortions caused by

the context region as foreground by using the correlation between depth energy maps.

However, when the context region is background, substantial distortions are not present

around the edges [106]. Subsequently, there is not much variation in the depth of the

distorted view with respect to the reference view. Table 2.3 shows the views from the

IETR dataset [?] and corresponding depths to validate these arguments. There is not

much variation in the depth of images in the first and second rows in Table 2.3 if the

context region is the background. With this view, depth information can not be directly

utilized for the quality assessment of 3D synthesized views when the context region is

background. Further, in 3D synthesized views, distortions are generally present in the

vicinity of objects, and their edges [22]. In algorithm IDEA [22], authors have used

instance segmentation to identify the possible locations of distortions. The same task of

possible location of distortion identification can be done using depth maps. So, we have

proposed a new algorithm to identify the location of the distortions using depth maps in

Step 2 and to predict the quality score based on the Discrete Cosine Transform (DCT)

of these locations. The detailed workflow of the proposed algorithm (Step 2) is shown in

Fig. 4.3.

Generally, in 3D synthesized views, most distortions are present near the edges of

objects, and it is required to extract the possible location of these distortions. In Step 1,

the object boundaries are estimated using depth information. We extracted the distorted

region of the synthesized view and the corresponding region in the reference view by

utilizing their depth information. We propose using the dilation operation on the energy

map (Es) to get a mask image and further extracting the distorted region in the 3D views
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Figure 4.3: Masking out operation flow in detail.

(pictorial representation is shown in Fig. 4.4). The dilation operation is applied to the

energy map of the synthesized view (Es) to obtain the desired mask (M) at a pixel (x, y)

is given as,

Ms(x, y) = Es(x, y)⊕ S = max
(i,j)ϵS

{Es(x− i, y − j)} (4.3)

Here S is the structuring element of the shape ‘disk’ with a radius of 2. The slight

variation in S, such as shape and size, does not significantly affect the proposed algorithm’s

performance. This mask is further used to extract the distorted portion from the reference

view and the synthesized view termed Masking Out, i.e., MOr and MOs, respectively, as:

MOr = Ms ×RV (4.4)

MOs = Ms × SV (4.5)

The Reference and Synthesized Views are RV and SV , respectively. These masked-

out references and synthesized views can identify the possible distortions and are further

employed in this quality score measurement process.

The Human Visual System (HVS) is highly sensitive to the high-frequency components

of images compared to the low-frequency. Even slight distortions in high-frequency dis-

tortions are perceivable by the human visual system [108]. In this context, we propose to

extract the high-frequency components of the Masked Out views (MOs and MOr) using
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the Discrete Cosine Transform (DCT). The DCT [109] domain of images has proved to

be a good alternative for quality prediction [110, 111] of natural images. We imitate this

idea of using the DCT domain to extract the high-frequency components in our proposed

3D-IQA algorithm. The process of transformation of reference and synthesized masked

out images, i.e., MOr and MOs into the reference and synthesized transforms Tr and Ts,

respectively, is defined as:

Tpq =
1

αpαq

M−1∑
m=0

N−1∑
n=0

MOmncos
π(2m+1)p

2M
cosπ(2n+1)q

2N
(4.6)

where, 0 ≤ p ≤ M − 1, 0 ≤ q ≤ N − 1 (4.7)

αp =


1√
M
, p = 0√
2
M
, 1 ≤ p ≤ M − 1

(4.8)

αq =


1√
N
, q = 0√
2
N
, 1 ≤ q ≤ N − 1

(4.9)

Where M and N are image O’s row and column sizes, respectively.

After extracting the DCT coefficients, we only utilized the DCT coefficients present

in the lower triangle for the quality prediction. For perceptual quality estimation, we

propose to identify the variation in DCT coefficients of the masked distorted image to the

masked out reference view, and the variation is estimated as:

QBG = log
2552√∑
(Tr − Ts)2

(4.10)

Where Tr and Ts are the DCT coefficients of the reference and synthesized masked-out

views, respectively.

4.1.3 Final Perceptual Quality Score Pooling

We proposed to fuse the above evaluated two quality scores (QFG and QBG) into one final

score (Q) by simply combining both the scores using a multiplication operation.
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Figure 4.4: Workflow Diagram of the proposed model.

Q = QBG ×QFG (4.11)

It is interesting to observe from the above equation that the proposed algorithm does

not depend on any parameters. The proposed algorithm controls the contribution of

foreground and background information based on the two scores calculated individually

in the above sections. Both scores QFG and QBG have a proportional relationship with

the perceptual quality. Hence, the final predicted score is also directly proportional to the

quality. A higher value of Q indicates better image perceptual quality of 3D synthesized

views and vice-versa.

4.2 Experimental Results

4.2.1 Dataset and evaluation criteria for performance compari-

son

We examined the proposed algorithm on two publicly available 3D IQA datasets with the

established benchmark, i.e., the IETR-DIBR dataset [?] and IVY dataset [19].

4.2.1.1 IETR dataset

The dataset consists of synthesized views created using 7 different Depth Image Based

Rendering (DIBR) algorithms i.e. D1-D7 [88–94], along with their reference views. This
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(a) Proposed (b) PU-IR [113]

(c) SSPD [21] (d) SI-DL [68]

(e) DSCB [117] (f) APT [57]

(g) Jakhetiya’s [118] (h) NIQSV+ [43]

Figure 4.5: Scatter Plot between DMOS Values and Objective Scores of different IQA methods.

way, the dataset consists of 140 3D and ten original views. This dataset is distinguished

from all the existing 3D IQA datasets in the literature as it suggests that black-holes type

artifacts are obsolete and not included as one of the types of distortion.

4.2.1.2 IVY dataset

This data consists of 84 views synthesized from 7 reference views using four different

DIBR algorithms D8-D11 [88, 90, 93, 121]. The DMOS values are generated using the

double stimulus continuous quality scale. To get the final quality score, our experiment

averages the quality of two views, the left- and right views.

We employed four widely used evaluation criteria for performance evaluation compared
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to existing IQA algorithms, i.e., PLCC, KRCC, SRCC, and RMSE. Any IQA metric with

a higher value of PLCC, SRCC, KRCC, and a lower value of RMSE is considered a better

metric. Similar to the APT [57], a five-parameter non-linear mapping is used to map the

calculated objective scores to subjective scores as,

g(x) = γ1(
1

2
− 1

1 + eγ2(x−γ3)
) + γ4x+ γ5 (4.12)

where γ1, γ2, γ3, γ4, and γ5 are the five parameters to be fitted. g(x) is the mapped

subjective score, x is the objective score.

4.2.2 Performance Analysis

We compared the proposed algorithm with 25 existing IQA algorithms, most specifically

designed for the quality assessment of 3D synthesized views. Of these 25 algorithms, 13 are

FR-IQAs, while the remaining 12 are NR-IQAs. The proposed algorithm achieved 0.7707,

0.7572, 0.5700, and 0.1580 values of PLCC, SRCC, KRCC, and RMSE, respectively. The

proposed algorithm achieves 5.32 % and 7.60 % gain in terms of PLCC and SRCC,

respectively, as compared to the best performing existing FR 3D-IQA algorithm, i.e.,

MLFA [112]. Further, the proposed algorithm achieved a total gain of 6.15 % and 9.67 %

in terms of PLCC and SRCC, respectively, as compared to Yan’s metric [116], which is

an NR 3D-IQA metric. In addition to 3D Synthesized Views, we compared the proposed

algorithm with IQA algorithms proposed for Natural Images. The LPIPS [23] algorithm

works exceptionally well for natural images. However, for 3D synthesized views, it can

only achieve 0.6659 and 0.6144 values of PLCC and SRCC, respectively. A detailed

comparison of the performance analysis can be seen in Table III.

To show that both the proposed algorithms (Step 1 and Step 2) and simple fusion

scheme are working efficiently, ablation study results are presented in Table 2.5. Score 1

is the Correlation Coefficient between depth energy maps, which attains 0.7369 and 0.7324

values of PLCC and SRCC, respectively. Score 2 is PSNR between DCTs of masked out

views, which attains 0.4446 and 0.4248 values of PLCC and SRCC, respectively. Finally,

these scores are fused using the simple multiplication operation. This ablation study

validates the proposed algorithms’ performance and fusion scheme.

To validate the generality of the proposed algorithm, we have also checked the per-
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formance on the IVY dataset. The proposed algorithm attains 0.6726, 0.6547, 0.4775,

and 10.5412 values of PLCC, SRCC, KRCC, and RMSE, respectively. The proposed al-

gorithm performs better for this dataset than the existing 3D IQA algorithms, except for

the SSPD algorithm. At the same time, the performance of the proposed algorithm is

significantly better than the SSPD algorithm on the much more comprehensive dataset

IETR. Further, the proposed algorithm is free from any tunable parameters, which is not

the case with SSPD. Additionally, the time taken to predict the perceptual quality score

by the proposed algorithm is less than a second for a 3D synthesized view. In contrast,

SSPD takes around 28 seconds for the same. These results suggest that the proposed

algorithm performs better than the SSPD algorithm.

In Fig. 4.6, we have compared the scatter plots of the scores from objective metrics

versus Differential-Mean-Opinion-Scores (DMOS) for seven different IQA metrics from the

literature to compare these IQAs intuitively. The seven existing 3D IQA metrics compared

are: SSPD [21], PU-IR [113], SI-DL [68], DSCB [117], APT [57], Jakhetiya’s [118], and

NIQSV+ [43]. From the said figure, it can be analyzed that the proposed objective scores

converge better than other metrics.

4.2.3 Parameters Sensitivity Analysis

As discussed earlier, the proposed algorithm does not depend upon any parameters; sub-

sequently, parameter tuning is not required. To validate this argument, we have also

shown the performance of the proposed algorithm when structuring elements and the

edge detection operators are varied in Fig. 4.6 and Table 2.5. These figures show that

the proposed algorithm does not depend on any parameters.

We have also checked the dependency of the proposed algorithm on various edge

detection algorithms such as Roberts, Sobel, Prewitt, Canny, and Holistically-Nested Edge

Detection (HED) [122], and the results are shown in Table 2.7. This table shows that the

proposed algorithm performs similarly when simple horizontal and vertical gradient-based

edge detection operators (such as Roberts, Sobel, and Prewitt) are used. Further, when

Canny and HED algorithms are used, the performance of the proposed algorithm is poor.

One of the primary reasons behind the poor performance is that these algorithms cannot

efficiently detect the foreground edges in depth maps and can subsequently not accurately

identify the context region.
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Figure 4.6: Performance dependency of the proposed algorithm with variation in Structuring Elements.
Here, ‘r’ is the radius, and ‘w’ is the width in terms of pixels.

4.2.4 Statistical Significance

We adopted a Statistical Significance (SS) analysis method (F-Test [101]) to compare the

proposed method to other IQA algorithms. F-test is derived from the variance hypothesis

between the objective scores of the proposed metric and the existing IQA algorithms. The

score of the F-test, SS, is given by,

SS =
m2

µ1

m2
µ2

(4.13)

here, mµ1 ,mµ2 are the Root-Mean-Square-Error values of the two objective metrics

(µ1, µ2) being tested, respectively. With a confidence interval of 90 %, the proposed

method (µ2) is statistically superior to all the compared IQA algorithms.
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4.2.5 Existing 3D IQA algorithms as a plug-in for the proposed

algorithm.

The proposed idea of developing a context-aware 3D IQA algorithm is novel and can be

incorporated with the existing algorithms to enhance their performances. Since no existing

3D IQA algorithm incorporates the context information in their algorithm, we examined

whether the proposed algorithm can serve as a plug-in to improve the performances of

the existing algorithms for 3D IQA. We define the new, improved 3D IQA metric (Qnew)

as,

Qnew = Qa ±Qb
e (4.14)

Q and Qe are the predicted quality scores using the proposed and existing IQA al-

gorithms. The parameter a and b are the weighting parameters used to balance the

difference in their scales and the relationship diversity. The operator + or − depends on

whether both algorithms have a proportional or inversely proportional relationship. In

Table 2.8, we have shown the results when the proposed algorithm is fused with the exist-

ing, BIQI [46], DSCB [117], LPIPS [23], and NIQSV+ [43] algorithms. From this table,

it is clear that the proposed algorithm can work as a plug-in to improve the performance

of the existing algorithms.

4.3 Conclusions and future work

In this work, we have used the fact that context information plays an essential role in the

perceptual quality of 3D synthesized views. For example, when the context region is fore-

ground, the synthesized views may have significant distortions near the object boundaries

and vice-versa. Hence, in the proposed algorithm, we have identified the context region

and proposed two new algorithms based on whether the context region is from the fore-

ground or background. Interestingly, when the context is foreground, there is a significant

variation in the depth of the reference and synthesized views. Thus, we have proposed

to use depth information to identify the context region. Finally, these quality scores are

fused via the simple multiplication of both scores obtained when the context region is

foreground or not. The proposed algorithm achieves 0.7707 and 0.7572 values of PLCC
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and SRCC, respectively, for the IETR dataset. Also, the proposed algorithm is free from

parameter tuning and only requires less than a second to predict the perceptual quality of

3D synthesized views. The proposed algorithm requires complete information about the

reference view, and in the future, we will use the same principle for creating the NR IQA

algorithm. One possible way of creating NR IQA is by creating pseudo-reference views.

The depth information can help to identify the possible distortions, and the remaining

view can behave as the reference view.
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Table 4.1: The literature survey shows how depth information has been used earlier for
the quality assessment of 3D synthesized images.

S. No Research Paper Selected Views

1. ”Predicting-the-Quality-of-
View-Synthesis-With-Color-
Depth-Image-Fusion,”-L.-Li,-Y.-
Huang,-J.-Wu,-K.-Gu,-and-Y.-
Fang,-IEEE-Transactions-on-
Circuits-and-Systems-for-Video-
Technology,-vol.-31,-no.-7,-pp.-
2509-2521,-July-2021-

-Pre-DIBR-Image-Quality-
Assessment-Algorithm. The
experimental results are only
available for the VSRS method.
Based on color-depth image
fusion in the frequency domain
(wavelet transform). Limited
performance on the IETR dataset
and performance is included in
the revised manuscript.

2. Depth-Image-Quality-
Assessment-for-View-Synthesis-
Based-on-Weighted-Edge-
Similarity-Leida-Li,-Xi-
Chen,-Yu-Zhou,-Jinjian-Wu,-
Guangming-Shi;-Proceedings-of-
the-IEEE/CVF-Conference-
on-Computer-Vision-and-
Pattern-Recognition-(CVPR)-
Workshops,-2019,-pp.-17-25.

This work is for the quality as-
sessment of depth images, not
for the 3D synthesized images.
It only considers the distortions
in 3D synthesized images arising
from poor depth images but does
not include distortions due to im-
proper rendering. Our algorithm
works on predicted depths based
on input views and depths. Poor
performance on the IETR dataset
and performance is included in
the revised manuscript.

3. ”Depth-Perception-Assessment-
of-3D-Videos-Based-on-
Stereoscopic-and-Spatial-
Orientation-Structural-
Features,”-W.-Wang-et-
al.,-IEEE-Transactions-on-
Circuits-and-Systems-for-Video-
Technology,-2022.

This work is mainly for the qual-
ity assessment of depth videos,
not for the 3D synthesized im-
ages. Only considers the distor-
tions in depth images and does
not consider the distortions in
3D synthesized images due to
the improper rendering. Re-
sults are not available on the IR-
CCyN(Video), IRCCyN(Images),
IETR, and IVY datasets.
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4. ”No-Reference-Quality-
Prediction-for-DIBR-
Synthesized-Images-Using-
Statistics-of-Fused-Color-Depth-
Images,”-Y.-Huang,-X.-Meng-
and-L.-Li,-IEEE-Conference-
on-Multimedia-Information-
Processing-and-Retrieval-
(MIPR),-2020,-pp.-135-138.-

CODIF (S. No 1) is a further ex-
tension of this method.

5. ”Quality-assessment-of-3D-
synthesized-views-with-depth-
map-distortion,”-C.-Tsai-
and-H.-Hang,-2013-Visual-
Communications-and-Image-
Processing-(VCIP),-2013,-pp.-1-
6.

This paper tries to do the shift
compensation between the refer-
ence and distorted images. The
assumption is that this shift arises
due to the poor quality of depth
images. After shift compensa-
tion, SSIM is applied to estimate
the quality score. This algorithm
does not use depth images for
quality assessment.

6. ”Subjective-and-Objective-
Video-Quality-Assessment-of-
3D-Synthesized-Views-With-
Texture/Depth Compression-
Distortion,”-X.-Liu,-Y.-
Zhang,-S.-Hu,-S.-Kwong,-
C.–.-J.-Kuo-and-Q.-Peng,-
IEEE-Transactions-on-Image-
Processing,-vol.-24,-no.-12,-pp.-
4847-4861,-Dec.-2015

This work mainly consider dis-
tortions due to compression of
depth images and 3D videos. For
3D views containing depth distor-
tions, and have not used depth in-
formation in obtaining the quality
score.
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Table 4.2: effect of context region as foreground and background on depth and energy map
of the 3D-synthesized views. Here, Synthesized View-1 (SV-1) and Synthesized View-2
(SV-2) are the case of context region from foreground and background, respectively. CC
stands for Correlation Coefficient

View
Type

Patch Depth energy
map

CC

Reference
View

-

SV-1 0.6509

SV-2 0.8231
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Table 4.5: Ablation study of the proposed algorithm.

IETR Dataset IVY Dataset

Stage PLCC↑ SRCC↑ PLCC↑ SRCC↑

Score 1 (QFG) 0.7369 0.7324 0.6142 0.5974

Score 2 (QBG) 0.4446 0.4248 0.4833 0.4950

Final Score (Pooling) 0.7707 0.7572 0.6726 0.6547

Table 4.6: Comparison of the proposed algorithm with existing algorithms on the IVY
dataset for performance. Unavailability of data is indicated using the ‘-’ symbol.

IQA Metric PLCC↑ SRCC↑ KRCC↑ RMSE↓

SSPD [21] 0.6892 0.6814 0.4872 10.3210

Proposed 0.6726 0.6547 0.4775 10.5412

LOGS [24] 0.6442 0.6385 0.4509 18.8549

IDEA [22] 0.6311 0.6132 0.4405 19.0379

MP-PSNR [26] 0.6114 0.5954 0.4217 19.0379

SI-DL [68] 0.5459 0.5396 - 11.9349

MW-PSNR [27] 0.5240 0.5051 0.3528 20.9969

APT [57] 0.5240 0.4748 0.3389 20.9961

NIQSV+ [43] 0.2191 0.2990 0.2037 24.0530

Table 4.7: Comparison of the proposed algorithm when different edge detection methods
are used for edge detection.

Edge Detection PLCC↑ SRCC↑ KRCC↑ RMSE↓

Roberts 0.7707 0.7572 0.5700 0.1580

Sobel 0.7720 0.7528 0.5659 0.1576

Prewitt 0.7652 0.7515 0.5659 0.1596

Canny 0.5851 0.5198 0.3616 0.2010

HED [122] 0.5320 0.5496 0.3934 0.2114
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Table 4.8: The proposed algorithm as a plug-in to improve the performance of the existing
algorithms on the IETR dataset.

Stage PLCC↑ SRCC↑ KRCC↑ RMSE↓

Proposed 0.7707 0.7572 0.5700 0.1580

BIQI [46] 0.4327 0.4321 0.2898 0.2223

Proposed with BIQI 0.8131 0.8032 0.6125 0.1443

Gain (in %age) 5.59 6.99 8.31 9.63

DSCB [117] 0.6030 0.5571 0.3677 0.1978

Proposed with DSCB 0.8068 0.7925 0.5982 0.1465

Gain (in %age) 4.77 5.54 5.78 7.98

LPIPS [23] 0.6659 0.6144 0.4386 0.1850

Proposed with LPIPS 0.7817 0.7583 0.5723 0.1546

Gain (in %age) 1.15 0.98 1.14 2.26

NIQSV+ [43] 0.2324 0.1545 0.1083 0.2411

Proposed with NIQSV+ 0.7726 0.7538 0.5612 0.1574

Gain (in %age) 0.33 0.41 0.76 0.50

Table 4.9: Comparison of the proposed algorithm with different edge detection methods.

Edge Detection PLCC SRCC KRCC RMSE

Roberts 0.7707 0.7572 0.5700 0.1580

Sobel 0.7720 0.7528 0.5659 0.1576

Prewitt 0.7652 0.7515 0.5659 0.1596

Canny [1] 0.5851 0.5198 0.3616 0.2010

HED [2] 0.5320 0.5496 0.3934 0.2114



Chapter 5

Conclusions and Future Work

5.1 Future Work

Figure 5.1: (a). A synthesized view. (b). The failure (green arrows) of a random patch (red window) in
a 3D synthesized view. Synthesized Using: [4]

Free Viewpoint Video (FVV), 3D-Television, 360°video, and Virtual Reality (VR) are

some of the applications of 3D-synthesis, famous because of their realistic and interac-

tive experience [4, 123]. Unfortunately, the rendered 3D views, even using contemporary

methods, cannot generate the perfect novel 3D view [4]. These methods cannot perform

efficiently on complex surfaces and produce some artifacts, as shown in Fig. 5.1. The

artifacts in the 3D synthesized views differ from conventional artifacts in regular natu-

ral images. With the advancement of efficient algorithms for generating 3D synthesized

views, it is required to have an image quality assessment (IQA) algorithm which can au-

tomatically judge the perceptual quality of generated 3D synthesized views that match

89
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Metric Oriented for PLCC SRCC RMSE

LOGS 3D Views 0.6350 0.6021 0.8400
PSNR Natural Images 0.2869 0.1772 1.0417
SSIM Natural Images 0.1610 0.1231 1.1735
LPIPS Natural Images 0.1921 0.0132 1.3874
APT 3D Views 0.1717 0.0013 1.3849

Table 5.1: Performance of state-of-the-art IQA algorithms for the proposed test dataset.

Step 1: Dataset Creation


Collection of authentic 3D
synthesized views using various 3D
syntheses algorithms.
Various types of reference images.

Step 2: Subjective Testing


Using large-scale human
judgements.
Pair-wise MOS and Elo rating
system.

Step 3: CNN-based Deep Learning Model


Training and testing on the created
dataset.
Domain-shift aware model.
Regression-based prediction of
perceptual scores using Convolutional
Neural Networks.

Step 4: 3D view enhancement using
proposed metric.


3D Images Restoration.

Figure 5.2: Step-wise flow of the proposed future work.

with the human visual system. The 3D IQA algorithms can judge the perceptual quality

and are also helpful in the fast development of Image Restoration (IR) (IR includes tasks

such as super-resolution (SR), denoising, enhancement, etc.) algorithms. With this view,

Is there a need to create a large-scale 3D synthesized IQA database generated using the

recently proposed 3D synthesized view generation algorithms?

To the best of our knowledge, there is no large-scale dataset for quality evaluation of

3D synthesized views. Subsequently, no generic IQA algorithms are proposed to judge

the quality of 3D synthesized views. The quality evaluation datasets and metrics used by

contemporary 3D synthesis methods for various purposes are designed for natural images

(for example, to determine the threshold in Section 3.1 in the paper [4], authors used the

LPIPS metric [23] which is initially designed for naturally degraded images and not for

3D images).

The process of the creation of the IQA dataset and its subjective testing is hectic. In

this context, to validate that the proposed problem is worth pursuing, we created a small

test dataset of 60 3D views generated using two recent 3D algorithms (i.e., [4,123]), tested
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using five expert subjects. This subjective testing is also validated using Cohen’s Kappa

coefficient. The performance of five popular IQA metrics (LOGS [124], Peak Signal to

Noise Ratio(PSNR), SSIM [29], LPIPS [23], APT [124] ) oriented for natural as well as

3D images are given in Table 5.1. The error in Table 5.1 suggest that the literature has

no proper algorithm for this purpose.

Our preliminary analysis suggests a need for a new perceptual metric designed explic-

itly for 3D views for 3D image restoration and enhancement. For this purpose, the future

steps involved in the proposed process are summarized in Figure 5.2.

5.2 Conclusions

In this thesis, we tried to understand the fundamental properties of the 3D synthesized

views such as: the shift between the reference and synthesized views and context infor-

mation. In chapter 2, we propose to use an interesting observation that there is a direct

relationship between the number of blocks with stretching artifacts with the perceptual

quality of 3D synthesized view. We have proposed to use Deep-learning based approach

to detect the blocks with stretching artifacts. In chapter 3, we proposed an efficient and

simple approach using morphological operations to reduce the perceptually unimportant

information arising due to the shift between the reference and distorted 3D synthesized

views. In chapter 4, we have proposed an algorithm based on the context information.

Recent progress in the 3D view synthesis domain suggests that if the context region is

foreground, substantial distortions are present in the 3D synthesized views and vice-versa.

With this view, we first propose to use depth information to identify context information.

Also, the same depth information is used to estimate the quality score when the context

region is foreground or not. The final quality score is estimated by multiplying the scores

obtained when the context region is foreground or not.
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