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Abstract 

 

Particulate polymer composites are an emerging class of composites that have many 

potential applications in aerospace, automotive, marine and electronic industries due to the 

synergistic combination of mechanical characteristics like high strength and lightweight. These 

composites are of great interest because of the manufacturing ease and their macroscopically 

isotropic nature. The industrial applications demand for prior knowledge of the fracture and 

fatigue behaviour due to the inherent brittle nature of these composites. The nature of the 

particulate fillers such as the geometric properties (size, and shape), volume fraction, filler 

dispersibility and interfacial bonding significantly influence the stress distribution within the 

composite. Additionally, the crack growth of such composites is loading rate-dependent. 

Therefore, for the appropriate use of these materials in various engineering applications, 

understanding the effect of the mentioned parameters on ultimate mechanical response of the 

resulting particulate polymer composite is critical. 

In this view, this thesis is divided into three major parts where the first part of the thesis 

is dedicated to develop a machine learning based predictive modeling framework to predict the 

dynamic fracture toughness of glass-filled epoxy composites with limited experimentation. 

Two computationally efficient and reliable artificial neural network models are developed to 

individually predict the effect of filler aspect ratio and loading rate on the dynamic fracture 

toughness of these composites.  

Further, in the second part, the developed predictive model has been appended with an 

efficient framework of uncertainty quantification for the investigation of stochastic effects. 

Three different shapes of glass particles are considered including rod, spherical and flaky 

shapes with coupled stochastic variations in aspect ratio, dynamic elastic modulus and volume 

fraction. An artificial neural network based surrogate assisted Monte Carlo simulation is carried 

out to quantify the uncertainty and sensitivity associated with the dynamic fracture toughness 

of composites under dynamic impact. This study reveals that the pre-crack initiation time 

regime shows the most prominent effect of uncertainty. Additionally, rod shape and the aspect 

ratio are the most sensitive filler type and input parameter respectively for characterizing 

dynamic fracture toughness.  
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Furthermore, to ensure the structural integrity of the components involving the usage 

of these composites, the last part of this thesis presents a comprehensive experimental 

investigation of the crack initiation behavior and the progressive failure of these composites 

under cyclic loading. Here the particulate polymer composites are prepared by reinforncing the 

epoxy matrix by rod-shaped glass particles in a volume fraction of 0% (neat epoxy), 5%, 10% 

and 15%. This study has suggested that the particulate fillers act as crack nucleation sites that 

result in coalescing the micro-cracks developed at the filler-matrix interface and within the 

filler itself. Epoxy composite with 10% volume fraction of rod-shaped glass fillers is found to 

exhibit the maximum fatigue life under the applied loading. 
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Chapter 1 

Introduction 

 

Modern industrial applications demand for multi-functional nature of the materials to be 

used to have the advantage of synergistic properties that are easily tailorable and achieve the 

desired performance. Polymer composites are found to have many such muti-functional 

charecteristics like high strength, lightweight, corrosion resistance, thermal insulation, acoustic 

damping along with aesthetic features. Additionally, it is also advantageous in terms of rapid 

and easy manufacturing process. Generally, polymer composite is made of two phases: the 

matrix phase (continuous) and the reinforcement phase (dispersed). Usually, a thermosetting 

or thermoplastic organic polymer serves as the matrix, the basic purpose of which is to bind 

the reinforcement and transfer the load uniformly to the embedded reinforcement. Different 

types of materials are used to strengthen the polymeric matrix and are known as reinforcing 

agents. These materials can be in the form of natural or man-made fibers, particles, whiskers 

and fragments. When in the polymeric matrix, reinforcements are provided in the form of 

particles, the resulting composite is known as the Particulate Polymer Composite (PPC). 

Alumina, silica, zirconia, mica, carbon etc. are a few examples of particulate fillers which are 

used to reinforce the polymeric matrix. The principal advantage of these particulate polymer 

composites lies in the fact that they are structurally simpler, easy to manufacture and 

macroscopically isotropic [1]. 

The excellent mechanical properties and high resistance to corrosion of fiber reinforced 

polymer composites make them a suitable material to be used by the marine and medical 

industry. Due to their high specific strength and impact resistance, these materials have also 

found applications in wind turbine blades and aircraft components. Particulate polymer 

composites are relatively at a nascent stage and are presently being utilized in medical, marine, 

automotive and electronic industries. These composites are extensively used by the electronic 

packaging industry wherin particle reinforced epoxy composites are used to reduce the thermal 

expansion. Some of the examples are the chip scale packages, ball grid arrays and flip chip on 

board assemblies that make use of thermoset polymers filled with different inorganic particles 

to enhance their working consistency by improving the mechanical and thermal properties. 

Figure 1 is an illustration of some of the applications where particulate polymer composites are 

extensively used.  
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Figure 1 Applications of particulate polymer composites 

1.1 Background 

Epoxy resin is one of the most widely used thermoset polymers for manufacturing 

polymer composites owing to it’s high specific strength, low shrinkage and great adhesion 

properties. However, it has a brittle nature and lacks damage tolerance which is a critical 

attribute for advanced engineering applications. This adversely affects the resistance of the 

resulting composite material to crack growth. A secondary phase is usually introduced in the 

epoxy matrix to improve the strength, stiffness and the overall mechanical behaviour of the 

composite. Dispersing particles of different sizes, shapes and stiffness in the epoxy matrix is 

the most common and economical way of improving it’s mechanical properties.   In real life 

applications, structural members are exposed to different loading conditions, ranging from 

static to highly transient which significantly impact the material’s mechanical behaviour 

specially in terms of crack-growth. Resistance to crack growth is governed by the  fracture 

toughness and material’s response to dynamic loading is of prime importance in aerospace, 

automotive and defense industries. Therefore, studying the material deformation in terms of 

fracture toughness under loading conditions where inertial effects play a significant role is a 

critical research area. In addition to this, material’s response to different loadings is strain rate 

sensitive. The failure mechanisms that a material undergoes in response to the rapidly changing 

loads are very different and complex compared to the deformation process observed under 

quasi-static loading conditions. Time varying loads are one of the main reason for the material 

failure in different components. Fatigue is one such phenomena where load changes with 

respect to time in a cyclic manner and leads to a progressive failure at stresses lower than the 

ultimate tensile strength of the material. Hence, it is crucial to investigate the effect of adding 
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particulate fillers in epoxy resin on the fracture and fatigue properties of the resulting 

composite. 

1.2 Motivation and challenges 

Shape, size, chemical composition, and the amount of the particulate reinforcement 

added along with its degree of dispersion are the key parameters that greatly affect the overall 

resulting properties of the composite material [2]. Another influencing parameter on the 

mechanical behaviour of composite materials is the residual stress and strain [3]. Stress transfer 

from the continuous phase to the dispersed phase is a very important phenomenon that critically 

affects the strength and stiffness of the composites [4].  

Therefore for the appropriate use of these materials in various engineering applications, 

understanding the effect of the mentioned parameters on the macromechanical properties such 

as stiffness, strength and toughness of the resulting composite is critical. As mentioned in the 

previous section, studying the aspect of fracture toughness under dynamic loading conditions 

holds great importance. A fairly good amount of investigation in this regard has been done by 

many researchers on the conventional fiber reinforced composites [5–11]. However, a very 

limited literature is available for such investigations on the particulate polymer composites. An 

adequate and proper knowledge of strength, toughness and crack initiation is very much 

essential for exploring the possible applications of PPCs. Therefore the present work bridges 

this gap and provides a deeper insight into the fracture and fatigue behaviour of PPCs.  

Also, it is important to study the combined effect of all the process parameters 

(mentioned earlier) to explore the broader efficacy of such composites, so that an optimized 

material design can be achieved. However, modeling the complex relationships between the 

governing parameters is extremely strenuous. Despite the availability of large experimental 

setups and computational tools, it is laborious and time-consuming to investigate the 

significance of each of the governing parameters experimentally. For instance, determining the 

fracture toughness of composites under dynamic loading conditions involves a very complex 

experimental setup based on stress wave propagation. Also, considering the multiphase nature 

of polymer composites, conventional modeling techniques require too much of computational 

effort. 

In this view, the approach of machine learning can be effectively used to build predictive 

models and determine the significance of the process parameters for an optimal design [12–

15]. It provides a wider scope for efficiently investigating the behaviour of resulting composites 
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with limited experimentation or computationally intensive realizations of expensive models. 

Exploitation of different machine learning algorithms have resulted in unprecedented insights 

and exploration of the composite properties beyond the capability of traditional computational 

and experimental analyses. 

The fact that modeling complex phenomena like fracture toughness of such composites 

under dynamic loading conditions is theoretically demanding but holds a large practical 

relevance, has motivated us to make tangible contribution by developing a reliable and 

computationally efficient framework to predict the same. 

1.3 Objectives 

Though there is a plethora of literature on the mechanical characterization and application 

of other types of composites, studies concerning PPCs are very limited despite its favorable 

properties reported in some initial studies. Also, the scope of development of high performance 

composite using particulate fillers remains unexplored due to the limited data on fracture and 

fatigue properties of PPCs. In addition to that, a realistic analysis and design framework for 

particulate composites should account for the possible uncertainties considering the multiphase 

nature of the PPCs. Moreover, the unavoidable variation in process parameters due to the 

varying physical properties of matrix and reinforcement, degree of polymerization, 

environmental conditions and filler dispersion can significantly affect the ultimate response of 

PPCs. To ensure the accurate assessment of the ultimate composite performance and to avoid 

the deviation from the expected material behaviour, uncertainty quantification is another 

critically important aspect.  

Based on the introduction and the brief discussion above, the objectives of this research 

are: 

1. Predictive modeling of glass-filled polymer composites for determining the dynamic 

fracture toughness with limited experimentation and its validation. 

 

2. Uncertainty quantification of the dynamic fracture toughness of particulate polymer 

composites. 

 

3. To examine the robustness of the predictive model and evaluate the effect of individual 

or joint contribution of the parametric uncertainties on the model response. 

 

4. Experimental investigation of fatigue response of glass filled epoxy composites and 

exploring the plausible applications. 
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1.4 Organization of thesis 

The subsequent chapters are outlined as follows: 

Chapter 2 presents the state of the art that gives an idea of previous research done in this area. 

Chapter 3 discusses the methodology adopted for developing predictive models of glass-filled 

polymer composites for determining the dynamic fracture toughness with limited 

experimentation. Also, the influence of aspect ratio and loading rate on the dynamic fracture 

toughness of the composites is highlighted. Chapter 4 presents a machine learning based 

uncertainty quantification approach to quantify the stochastic variability in the dynamic 

fracture toughness of glass-filled epoxy composites due to the inevitable random stochasticity 

in the material and geometrical properties. Also, to quantitatively characterize the importance 

of each input parameter along with the consideration of parametric interactions, a global 

sensitivity analysis is presented. Chapter 5 presents the experimental findings of the crack 

initiation and propagation study performed on glass filled epoxy composites under cyclic 

loading. A detailed description of material fabrication is also given in this chapter. Chapter 6 

summarizes the contributions, conclusions and the future scope. 
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Chapter 2 

State of the art 

 

For any material to be utilized in the engineering applications, fracture and fatigue are 

two very critical attributes. Specially for particulate polymer composite which is the material 

of interest in this research, it is imperative to investigate the behaviour of PPCs in fracture and 

fatigue owing to its brittle nature. The relative ease in the manufacturing of these composites 

at lower cost has motivated researchers to study the mechanical properties of PPCs. However, 

most of these investigations unfold the behaviour of these composites under quasi-static 

loading conditions but the studies concerning the dynamic responses of PPCs are very limited. 

Some of the reported literature in this context is discussed in subsequent sections. 

2.1 Fracture toughness  

Dittanet et al. [16] studied the effect of particle size on the toughening mechanisms of 

PPCs. They used epoxy composites filled with nano-silica particles in a size range of 23-170 

nm and used a single-edge notch bend test to determine the fracture toughness of the composite 

material. This study indicated that the addition of nano-silica particles improved the fracture 

toughness but the particle size did not have any significant effect on its toughness. Another 

research group [17] studied the fracture toughness of CNT reinforced epoxy composites under 

quasi-static and dynamic loading conditions. It was found that the critical stress intensity 

factors were improved after performing a non-ionic surface treatment on the CNT fillers. 

Sandeep et al. [18] prepared a hybrid composite by adding micron-sized alumina particles in 

the glass fiber reinforced epoxy composite and evaluated it for the fracture toughness using a 

single-edge notch bend test. As a result, an enhancement was observed in alumina-filled epoxy 

composites in terms of mode-I stress intensity factor. Kawaguchi et al. [19] investigated the 

static fracture toughness of epoxy filled with three different types of glass particles. They 

treated the surface of each glass filler and examined the effect of moisture exposure on the 

fracture toughness of epoxy composite. Microscopic studies were performed and it was 

observed that due to the surface treatment of glass fillers, the matrix-filler adhesion was 

affected. One of the interesting findings of this study was that in the case where poor adhesion 

was observed due to the surface treatment, exposure to moisture resulted in improved fracture 

toughness. In another study [20], izod impact test was performed on composites prepared by 

reinforcing hollow glass beads in the polypropylene matrix. The impact strength of the 
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composite was found to increase with increase in the volume fraction of glass beads upto 15%. 

The main reason for this improvement was suggested to be the shear yielding of the polymeric 

matrix around the glass fillers. The nature of the fillers such as the geometric properties (size, 

and shape), volume fraction, filler dispersibility and interfacial bonding significantly influence 

the stress distribution within the composite [21–24].  

Determining the fracture toughness under dynamic loading conditions is typically 

achieved by using a drop tower, split Hopkinson pressure bar or gas gun setup [25–27]. The 

onset of crack propagation is captured using a high-speed camera and a technique known as 

digital image correlation (DIC) is often used to determine the parameters of dynamic fracture 

[28]. Jajam and Tippur [26] conducted a study to compare the effects of nano and micron-sized 

silica particles on the static and dynamic fracture toughness of epoxy composites. The test setup 

of three point bending and drop tower was used to measure the quasi static and dynamic fracture 

toughness of the composites respectively. While the static measurement of fracture toughness 

(KIC) was straightforward, dynamic measurement involved the correlation of deformed and 

undeformed images captured with a high speed camera using the technique of DIC. This 

correlation was done to compute the in-plane displacement components which were further 

used to extract the mode-1 stress intensity factor histories. It was found that irrespective of the 

filler scale, the fracture toughness was improved with the particle reinforcement in the epoxy 

matrix under both the loading conditions. However, under dynamic loading, micron-sized 

fillers showed more improvement in the fracture toughness compared to the nano-sized fillers 

while the nano fillers performed better under the quasi-static loading conditions.  

One more research group [29] investigated the fracture toughness of rubber filled 

polymer composites under quasi-static and dynamic loading conditions. Dynamic fracture 

toughness was characterized using a new experimental approach wherein the magnetic field is 

generated using a magnetic impulse installation and converted into mechanical loading. In this 

study, data was obtained in terms of crack length corresponding to the applied pulse 

amplitudes. Specific fracture energy was found to be higher in dynamic process compared to 

the quasi-static loading conditions. In another study [30], the effect of filler size and the filler-

matrix interfacial strength on the dynamic fracture toughness of epoxy composites was 

investigated. In this study, spherical glass particles of different sizes (7-200 µm) were used 

with two different interfacial strengths. Interferograms were used to extract the information 

regarding the stress intensity factor and the crack velocity. Reinforced epoxy samples showed 

higher dynamic fracture toughness compared to the unfilled ones corresponding to both the 
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interfacial strength conditions. The effect of the particle size was found to be more prominent 

in the case of weakly bonded fillers. There are a few more studies that indicate that the size, 

shape and interfacial strength of the reinforcing agents play a major role in deciding the 

dynamic fracture toughness of PPCs [31–38]. Bie et al. [39] studied the effect of strain rate on 

the dynamic fracture toughness of CNT reinforced epoxy composites. They used three different 

types of multi-walled CNT (randomly dispersed, functionalized and pristine) to reinforce the 

epoxy matrix and subjected the resulting composite to a loading of very high strain (105 – 106 

/s). The highest fracture toughness was exhibited by the functionalized CNT filled epoxy 

composites owing to the underlying failure mechanisms. A few more studies also suggest that 

increasing strain rate results in increasing value of fracture toughness for different PPCs [2,40–

42].  

A detailed experimental investigation was performed by Kushvaha and Tippur [43] to 

qualitatively characterize the effect of using different shapes and volume fraction of glass 

particles on the dynamic fracture toughness of epoxy composites. The setup of gas-gun based 

long bar impactor was used to experimentally simulate the fracture of composite samples under 

dynamic loading conditions. The composite samples were prepared by reinforcing rod, flake 

and spherical shaped glass fillers in the epoxy matrix, each in a volume fraction of 5, 10 and 

15%. Different pulse shapers were used during the experiment to control the rate of dynamic 

loading. DIC was used to measure the fracture parameters and comparison of fracture 

toughness was made between the neat epoxy and the reinforced samples. Epoxy reinforced 

with rod-shaped fillers was found to exhibit the highest crack initiation toughness followed by 

flake and spherical fillers. Another finding was that with increasing loading rate an increased 

fracture toughness was observed. This study holds a great significance as it forms the basis of 

the current research work. While it is evident that such elaborate investigations are done 

experimentally, there is a huge need of developing a reliable computational model to reduce 

the experimental effort. 

2.2 Computational methods 

Various researchers have relied on computational methods to evaluate or predict the 

mechanical properties of different PPCs to get a hint of their application potential while 

reducing the experimental effort. Hutar et al. [44] modelled a polypropylene based particulate 

composite as a three phase system (matrix, particle and the interphase) and predicted the overall 

response of the composite in terms of stiffness. Another research group [45] also made use of 
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a Finite Element Model (FEM) to predict the flexural properties of PPCs used for dental 

applications. They assumed that the polymeric matrix and the filler particles were 

homogeneous, isotropic and linear elastic, and also assumed the filler-matrix interface to be 

continuous. This finite element analysis facilitated with a stress distribution map under the 

given loading. The predicted values of flexural strength of the composite were validated against 

the experimental findings. Cho et al. [46] presented an experimental investigation along with 

numerical analysis on the effect of particle size on the interfacial fracture properties of the 

glass/alumina reinforced polymer composite. They used the model of an axisymmetric 

representative volume element and subjected the uniaxial tensile stress to it and the subsequent 

particle-matrix debonding was reported. Zhang and Chen [47] used a numerical model with the 

consideration of cohesive force to compute the critical interfacial strength using the particle 

size and the matrix properties. Extended finite element method was also used to model the 

fracture behaviour of poly-sulfone composites and the displacements, stress intensity factor 

along with the energy release rate were computed [48]. They used enrichment functions to 

incorporate the discontinuities in the considered elements.  

Yang et al. [49] used Finite Element framework to analyse the mechanical behaviour of 

polymer composites heavily filled with fillers. In conjunction with the implicit framework of 

the FEM, a cohesive zone model was used for capturing the deformations and the undergoing 

failure modes. They considered the matrix to be viscoelastic and used the traction constitutive 

law to simulate delamination. Another research group [50] utilized a FEM to model the micro-

mechanical behaviour of the PPCs. They used such obtained information regarding the highest 

stress concentration and its distribution to further predict the mechanisms of crack growth 

under the applied loading. A computational approach based on cohesive zone modeling was 

used to investigate the interaction of the embedded particles with the crack by taking into 

consideration the mismatch between the elastic properties of the matrix and the reinforced 

particles [51]. Ju and Lee [52] developed a micromechanical model to predict the damage 

response of the elasto-plastic polymer composites. Their formulation resulted in successful 

predictions of the effective elastic modulus of the resulting composite. Lee et al. [53] proposed 

a computational model for the prediction of microstructural damage by using the approach of 

voronoi cell finite element and a displacement based finite element model for the microscopic 

and macroscopic analysis respectively. In another study [54], a method based on the discrete 

element approach was used to model the mechanical behaviour of PPCs and information 

regarding the ultimate tensile strength and toughness was obtained. Individual discrete 
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elements were clustered to model the entire volume of the composite.  The contact forces were 

evaluated in accordance with coulomb’s friction law and the time integration scheme adopted 

for the dynamic analysis was based on conditionally stable central difference method. While 

such an effective approach was adopted, the results largely depended on element size which 

also directly influenced convergence of the adopted numerical method. Wolff et al. [55] used 

the concept of 2-radii to generate filler polymer composites and performed parametric studies 

on the elastic modulus of the resulting composite. Many others have utilized the three-phase 

computational modeling techniques to evaluate the damage behaviour of different particulate 

composites [56–62]. Msekh et al. [63] used phase field modeling to predict the tensile strength 

and the J-integral, a fracture parameter in case of clay/epoxy nanocomposites. They replaced 

the discontinuities with a damage field to represent the topology of the crack using a 

regularization parameter. Another research group [64] also used the approach of phase field 

modeling to predict the macroscopic mechanical behaviour of clay nanocomposites.  

 As discussed above, the finite element, phase field modeling, molecular dynamics and 

cohesive zone modeling have been used to model the material behaviour of polymer 

composites for the longest time [65–72]. However, these methods involve assumptions 

regarding the interphase properties, particle arrangement, and the bonding between the matrix 

and the reinforcement. Also, the existing numerical frameworks for modeling of cracks largely 

rely upon adaptive mesh refinement, localized enhancements of interpolation functions and 

artificial regularization parameters to solve the ill-posed problem [73–78]. Additionally these 

techniques require proper determination of parameters associated with internal length scales 

for different materials. Therefore, the complexity and computational intensiveness of these 

methods have encouraged the research community to look for other alternatives. 

 In this view, many researchers have relied on the Machine Learning (ML) approach to 

predict the mechanical properties and also determine the significance of the process parameters 

for an optimal design. In the last few years, machine learning has been recognized as a powerful 

tool used for efficient predictive modeling in the field of polymer composites that could lead 

to unprecedented insights and exploration of the system properties beyond the capability of 

traditional computational and experimental analyses. There are various machine learning 

algorithms that are being utilized in material science depending upon the type of problem and 

the dataset available. Wiangkham et al. [79] used the framework of Artificial Neural Network 

(ANN) and Adaptive Neuro Fuzzy-Inference System (ANFIS) to predict the fracture toughness 

of  poly-methyl methacrylate based composite. They used the ratio of crack length to sample 
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width, sample thickness, width of the sample and the angle of mode mixity as the predictor 

variables to accurately predict the fracture toughness. Another group [80] made use of the data 

obtained from the Charpy impact test and finite element simulations to predict the fracture 

toughness of poly-propylene based composites using the algorithm of decision tree regression 

and the adaptive boosting. Cidade et al. [81] used the ANN framework to accurately predict 

the dynamic fracture toughness of  carbon reinforced epoxy composites by utilizing the data 

obtained from the full field digital image correlation measurements. A few more successful 

attempts can be found in the literature where ML algorithms have been used to predict the 

mechanical properties of PPCs under different exposure conditions [82–85]. Over the last two 

decades, material science has undergone a steady shift from the phase of developing purely 

computational techniques for the discovery and design of new and complex materials to the 

phase of developing coupled methods that increase the reliability of results by making use of 

computational predictions and experimental validation. 

2.3 Fatigue 

One of the most critical attributes for a material to be utilized for structural applications 

is its ability to resist crack under different loading conditions. To ensure the long-term 

serviceability of these materials, a few of the researchers have studied the behaviour of 

particulate polymer composites under cyclic loading. Blackman et al. [86] prepared a 

particulate polymer composite by blending nano-sized silica particles in the epoxy resin and 

introduced a notch in the final specimen. This specimen was then subjected to sinusoidal 

loading and the corresponding fatigue behaviour was studied. It was found that with the 

presence of nano-silica particles in the epoxy matrix, the fatigue response improved the 

threshold values of stress intensity factor.  

Another research group [87] performed a fatigue crack growth study on epoxy reinforced 

with crushed silica particles under different stress ratios. The major finding of this study was 

the improved resistance to crack growth as the crack was observed to get deflected by the 

reinforced silica particles. Another observation was that the threshold value of the stress 

intensity factor reduces with an increasing stress ratio. The effect of particle morphology on 

the fatigue response of epoxy-alumina composite was also studied and spherical alumina 

particles were found to have better resistance to the crack-initiation and propagation nano-

scaled rod-shaped particles and the unfilled epoxy [88]. Another important observation from a 

study on the fatigue investigation of alumina-filled particulate composites was that fatigue life 



12 | P a g e  
 

of any polymer composite can be controlled by controlling the interfacial bonding between the 

matrix and the reinforcing particles [89]. In another study, Bellemare et al. [90] investigated 

the fatigue crack initiation and propagation in polyamide composites reinforced with nano-

sized clay particles. They considered the composite specimens with and without notch and 

generated stress with respect to the number of cycles to failure curves as well as the rate of 

crack propagation versus stress intensity factor curves respectively. They concluded that 

addition of nano-particles changed the mechanism of cracking and resulted in reducing the 

resistance to crack propagation which was contradicting to the previously reported literature. 

Also, the incorporation of even small quantities of carbon nano fibers in the polymeric matrix 

resulted in significant improvement in the fatigue response of the resulting composite owing to 

the underlying toughening mechanisms [91]. The main failure mechanism in particulate 

polymer composites under cyclic loading was observed to be the filler matrix debonding which 

resulted in the growth of subcritical cracks and consequently a sudden failure occured [92].  

The literature concerning the fatigue response of particulate polymer composites is very 

limited. Most of the existing work focuses on the investigation of the fatigue response of 

composite materials in terms of crack propagation where a pre-existing notch is introduced in 

the sample [93–96]. Thus, leaving a wide gap in understanding the phenomena of crack 

initiation during cyclic loading conditions without the presence of a sharp notch. Therefore, it 

is a logical progression to investigate the crack initiation behaviour and the progressive failure 

of particulate polymer composites under cyclic loading. Since it has been indicated in a few 

recent studies that the dynamic fracture toughness of epoxy composites significantly improves 

when reinforced with micron-sized glass particles, the fatigue response of the same needs to be 

investigated in sufficient detail [1,28]. 
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Chaper 3 

Predictive modeling 

 

This chapter presents the methodology adopted to predict the dynamic fracture toughness 

of glass-filled epoxy composites. Artificial Neural Network (ANN), a supervised machine 

learning framework is used to develop two different predictive models for the dynamic fracture 

toughness corresponding to two different datasets available. One dataset focuses on the 

material properties, while the other dataset represents the loading conditions in terms of loading 

rate and wave speed. The problem background, methodology of the proposed solution and the 

obtained results are discussed in the subsequent sections of this chapter. 

3.1 Background  

The PPC under consideration in this study was an epoxy composite reinforced with 

micron-sized glass particles in three different shapes viz. spherical, flake and rod (refer to  

Figure 2). The epoxy system comprised of a Bisphenol-A resin and an amine-based hardener, 

purchased from Buehler, U.S.A. The composite sheets were cast using glass particles in a 

volume fraction of 5%, 10% and 15%. Further, these sheets were machined into rectangular 

specimens of size 60 mm × 30 mm × 9 mm with a notch of length 6 mm at the center of each 

specimen. The physical properties of these composite specimens were measured using pulse-

echo techniques and are given in Table 1. The shear (Cs) and longitudinal wave speed (Cl) were 

determined at discrete locations using stress wave transducers. 

 

Figure 2 Sphere, flake and rod shaped glass fillers (scale bar: 50 μm) [43] 

Table 1 Properties of the glass particles used 

Particle type Aspect Ratio Dynamic elastic modulus (GPa) 

Vf  = 5 % Vf  = 10 % Vf  = 15 % 

Sphere 1 4.62 5.08 5.67 

Flake 6 4.69 5.40 6.16 

Rod 80 4.68 5.33 6.08 
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Each specimen was then subjected to dynamic loading using the setup of long bar 

impactor which works on the principle of stress wave propagation. The schematics of the 

dynamic fracture test are given in Figure 3. A gas gun setup with high pressure cylinder was 

used for launching the projectile. The impact of the striker (diameter, 25.4 mm; velocity ~16 

m/s) onto the specimen generated a compressive stress wave that propagated through the 

specimen. The stress wave upon reaching the free edge of the specimen, reflected back in the 

form of tensile wave which resulted in opening the pre-notch and started the growth of crack 

in mode-I. This stress wave was responsible for the in-plane deformation in the specimen, 

which was measured using the technique called, Digital Image Correlation (DIC). A black and 

white random granular pattern was created on the specimen surface and a high-speed digital 

camera (Cordin 550) was used to capture the images of the specimen before and after the event 

of impact. The camera was triggered by delay generator through the completion of the electrical 

circuit with the impact of the long bar. The images were taken at a frame rate of 3.33 

microseconds (300,000 frames /s). Each image in the deformed state had its counterpart in the 

set of undeformed images. 

 

Figure 3 Schematic diagram of the experimental setup used for determining the  dynamic 

fracture toughness 

 

Further using DIC, these sets of images were correlated, and the in-plane displacement 

components namely crack opening (𝑢𝑦) and crack sliding (𝑢𝑥) were obtained using the 

following asymptotic expressions [28] 
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In the above-mentioned equations, (𝑟, 𝜃) are the crack-tip in polar coordinates, 𝜅 is 
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plane stress where 𝜇 is the shear modulus and 𝜈 is the Poisson’s ratio. The coefficients (𝐾𝐼)𝑛 

and (𝐾𝐼𝐼)𝑛 of the leading terms (when 𝑛 =  1) are the mode-I and mode-II dynamic stress 

intensity factors, respectively. To evaluate the displacement components after the crack started 

propagating, the following equations were used [97].  
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Here (𝑥, 𝑦) and (𝑟, 𝜃) are the cartesian and polar coordinates respectively, 𝑐 represents the 

instantaneous crack speed, 𝐶𝐿 is the longitudinal wave speed and 𝐶𝑆 is the shear wave speed 

for the composite material. Using these displacement components, stress intensity factor, a 

fracture parameter was computed within a time regime of -30 µs to 30 µs. The negative sign 

here does not represent the global time, rather it is a sign convention used by the authors to 

represent the time instants before the crack initiates. In this context, nine-time instants are 

considered before the initiation of crack (referred to as the pre-crack initiation regime) and nine 

are considered after the initiation of crack (referred to as the post-crack initiation regime). 

When the time instant approaches to zero, the crack initiates. Also, different pulse shaper 

conditions were used during the experiment to achieve different strain rates. Slopes of stress 

intensity factor histories in the linearly increasing region upto the crack initiation depends on 

the loading rate [98] and the measured slopes were ~ 107 times higher compared to the usual 

rates obtained in the quasi-static condition. The strain rates were measured on the long bar 

using the strain gauge as shown in Figure 3 Details of different pulse shaper conditions are 

given in Table 2. 

Table 2 Pulse shaper conditions 

Type Thickness 

(mm) 

Strain rate (s-1) 

Polycarbonate washer + 

Aluminium 100 disc 

1.6 3.7 

Aluminium 100 disc 0.3 10.7 

No pulse shaper - 42 

 

This experimental determination of dynamic fracture toughness was performed by 

Kushvaha et al. [43] and the data obtained from their study have been used for developing the 

predictive model in the current work. The dynamic fracture toughness is largely affected by 

the material properties but studying the influence of each parameter using such complex and 

laborious setup is extremely cumbersome. This forms the basis of the problem and the 

methodology of the proposed solution is given in the next section. 
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3.2 Methodology 

3.2.1 Predictive model-I 

In the present work, artificial neural network is used as a surrogate model for predicting 

the dynamic fracture toughness of glass-filled epoxy composites, wherein a feed-forward 

multilayer perceptron (MLP) with a back-propagation learning algorithm is implemented. 

Back-propagation involves the fine tuning of network weights based on the calculated error in 

each iteration and hence helps in improving the prediction capability of the model. ANN is a 

non-parametric mathematical model which is comprised of three main layers (input, hidden 

and output) and many interconnected processing units, commonly known as neurons. The 

neurons of one layer are connected to the neurons of the next layer and are responsible for 

summing up the incoming information along with the synaptic weights. The propagation of 

information between the neurons of different layers is determined by an activation function. 

These functions filter out the information of every neuron based on its relevance for the model’s 

prediction and help in normalizing each neuron’s output within a specific range.  

In the current study, aspect ratio (AR), dynamic elastic modulus (𝐸𝑑), volume fraction 

(𝑉𝑓) and time (𝑡) are used as the input parameters and the dependent variable i.e., stress intensity 

factor is the output parameter. To improve the network training, ‘standardized’ technique is 

used to rescale the covariate space. The entire available data is partitioned in training and 

testing datasets following a partition ratio of 70:30. The used ANN model follows a custom 

architecture wherein two hidden layers are used (refer to Figure 4). 

 

Figure 4 Network architecture used for the prediction of SIF 

Sigmoid and hyperbolic tangent are used as the activation functions for the hidden and 

the output layer respectively. Considering the computational efficiency, gradient descent is 
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used as the optimization algorithm [99] with hyperparameters like initial learning rate = 0.4, 

momentum = 0.9 and batch as the training type. Batch is considered to be the most suitable 

training type for smaller datasets due to it’s ability to minimize the total error by choosing the 

synaptic weights appropriately [99]. Learning rate and momentum are two very important 

configurations of the ANN model. Learning rate determines the pace and degree to which the 

model can be changed in response to the error calculated from the updation of synaptic weights 

at each time, while momentum controls the instabilities of the network caused by a very 

high/low learning rate.  

The data in corresponding to aspect ratio 1 (spherical fillers) and 80 (rod shaped fillers) 

are fed into the above-mentioned neural network. The performance accuracy is statistically 

evaluated by calculating Mean Absolute Percentage Error (MAPE) and the coefficient of 

determination (𝑅2) using the following equations: 

 𝑀𝐴𝑃𝐸 = 
100

𝑛
∑

|𝑇𝑖 − 𝑃𝑖|

𝑇𝑖

𝑛

𝑖=1

 (6) 

 𝑅2 = 1 −
∑ (𝑃𝑖 − 𝑇𝑖)

2𝑛
𝑖=1

∑ (𝑇𝑖 − 𝑇𝑚)2
𝑛
𝑖=1

 (7) 

where 𝑛 is the number of data points, 𝑇𝑖 is the true value, 𝑃𝑖 is the predicted value and 𝑇𝑚 is 

the mean of the true values. After obtaining a satisfactory network performance with the 

selected architecture, SIF is predicted for the flake shaped glass fillers corresponding to aspect 

ratio 6. Further, to get more confidence, crack initiation toughness (SIF at t = 0) was predicted 

for intermediate values of AR i.e. 3.5 and 43. The results corresponding to these aspect ratio 

were given in [43] through an empirical relation,  

K1 = 𝐶1*log(AR) + 𝐶2                                                  (8)             

where, K1 is the crack initiation toughness, 𝐶1and 𝐶2 are constants (for 5% Vf; 𝐶1 = 0.49 MPa√m 

and 𝐶2 = 1.69 MPa√m; for 10% Vf; 𝐶1 = 0.59 MPa√m and 𝐶2 = 1.97 MPa√m and for 15% Vf; 

𝐶1 = 0.58 MPa√m and 𝐶2 = 2.37 MPa√m). 

Additionally, the normalized importance is evaluated to express the importance of each 

parameter relative to the most important parameter based on the synaptic weights assigned to 

each predictor in the neural network. Also, a fractographic study using a Scanning Electron 

Microscope (SEM) is conducted to examine the undergoing failure mechanisms that 

contributed for improving the dynamic fracture toughness of the resulting composites. 
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3.2.2 Predictive model-II 

Another ANN model is developed to predict the dynamic fracture toughness of glass-

filled epoxy composites at varying loading rates. For this study, the experimental data available 

corresponding to three different loading rates as mentioned in section 3.1 are used. Five 

parameters are fed to the input layer as predictors. Those input parameters include loading rate 

(LR), shear wave speed (Cs), longitudinal wave speed (Cl), volume fraction (Vf) of the glass 

fillers and time (t). The volume fraction considered here is 0% and 10% for neat epoxy and rod 

shaped glass fillers respectively. A feed forward back propagation architecture with one hidden 

layer is used (refer to Figure 5). Hyperbolic tangent and identity are used as activation functions 

for the hidden and output layer respectively. Again the training type is selected as batch and 

gradient descent is utilized as the optimization algorithm to estimate the synaptic weights as it 

is computationally efficient and produces stable errors with stable solution convergence. 70% 

of the available data chosen randomly, is used as the training set and remaining 30% is for the 

validation purpose. 

Data corresponding to loading rate = 3.7 s-1 and 10.7 s-1 are utilized to train the model 

and the validation was done using the data corresponding to loading rate = 42 s-1 by predicting 

the SIF values corresponding to this loading rate. Similar to the first predictive model as 

mentioned in the previous section, MAPE and R2 are used as the accuracy metrics to check the 

reliability of the given model. Further, a fractographic analysis is also performed to understand 

the underlying toughening mechanisms. 

 

Figure 5 ANN architechture 
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3.3 Results and Discussions 

3.3.1 Predictive model-I 

The proposed model predicts the SIF histories at different aspect ratios of glass-fillers. Using 

the experimental values of SIF corresponding to AR = 1 and 80, SIF values are predicted for 

AR = 6. Those predicted values are compared with the experimental ones and are found to have 

a close fit. Figure 6 shows the closeness of the experimental and predicted values (goodness of 

the fit) from the proposed model and the coefficient of determination is 0.9963.  

 

Figure 6 Goodness of fit 

The mean absolute percentage error in the predicted values is 9.01% and the prediction 

accuracy is 90.99%. Comparison of the predicted and experimental values of SIF can be seen 

in the following figures. Predicted values are found to be in good agreement with the 

experimental ones. Figure 7 and Figure 8 show the increment in SIF with time before and after 

the crack initiates. Maximum value of SIF is observed in case of rod shaped fillers with highest 

aspect ratio i.e. 80. Increase in AR results in improved energy release rate and more active 

participation of fillers in crack bridging phenomena, hence the fracture toughness increases.  
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Figure 7 Comparison of experimental and predicted values of SIF for AR = 1, 80 
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Figure 8 Comparison of experimental and predicted values of SIF for AR = 6 

Further, the crack initiation toughness (SIF at t = 0 s) of the experimental and predicted 

values are also found to be in close agreement with each other as shown in Figure 8. It is evident 

from the figure that crack initiation toughness increases with the increase in the aspect ratio 

and hence the fillers with AR = 80 showed the maximum toughness (3.516 MPa.m1/2). This can 

be attributed to the fact that increase in AR increases the energy density (energy stored in the 

composite system per unit volume) which in turn improves the overall strength [100,101]. As 

the results are available for only three different kinds of filler shape (aspect ratio), it is desirable 

to know the nature of SIF histories for the different values of AR. Therefore, to determine the 

SIF histories corresponding to different aspect ratio, intermediate values (3.5 and 43) are 

chosen and the predicted values are compared with the results obtained corresponding to the 

empirical equation as mentioned in the methodology section (refer to Figure 9). 

Results from both are found to be in close agreement with each other, indicating the 

reliability and effectiveness of the developed ANN model in the present work. Figure 10 shows 
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the normalized importance based on the calculated synaptic weights. Since it is a dynamic 

study, time is inevitably the most influential parameter. After time, the aspect ratio is observed 

to have the most dominant effect on forming the neural network for the prediction of SIF 

histories. 

 

 

Figure 9 Comparison of predicted and experimental and predicted values of crack initiation 

toughness 
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Figure 10 Comparison of predicted and experimental and predicted values of crack initiation 

toughness at AR = 3.5 and 43 

  

 

 

Figure 11 Independent variable importance 

It is evident from the plots that SIF increases with increase in the aspect ratio and to understand 

the underlying toughening mechanisms, a fractographic study is done. The SEM images shown 

in Figure 12 - Figure 14, indicate that the specimens have failed in four different failure modes 

namely; matrix cracking, filler-matrix interface separation, filler breakage and the filler pull-

out. The dominant modes that are observed from the fractographs of spherical fillers (Figure 

12) are matrix cracking and matrix-filler interface separation. Some of these particulate fillers 

are observed to be pulled out but no filler breakage is found. Owing to the low aspect ratio (AR 

= 1) in this case, bridging of the crack is assumed to be inactive. The circumvention of crack 

by the spherical filler is observed which resulted in momentary crack arrest followed by its 
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reinitiation. A lower value of crack initiation toughness is found in this case because the 

spherical shape of the fillers did not actively participate to arrest the crack growth. 

 

 

Figure 12 Fractograph of the fractured composite with spherical fillers in Vf = 10% (scale 

bar = 200 μm) 

The dominant failure modes observed in the case of flake shaped fillers are more or less same 

as that of spherical ones. However, the additional failure mode in this case is the filler breakage 

(Figure 13) which contributes to increased energy dissipation and relatively higher fracture 

toughness.  

Among the three kinds of filler shapes, the rod shaped fillers exhibited the highest 

fracture toughness by undergoing additional failure modes, filler breakage and filler pull-out. 

This enhancement in toughness can be attributed to the increased energy dissipation by the rod 

shaped fillers because of several identified filler breakages (see Figure 14). The rod- shaped 

glass filler has an average length of 800 µm which makes it quite likely for the filler to bridge 

the crack and provide enough resistance for the crack propagation until the filler particle either 

fractures or gets pulled out. Relatively high energy dissipation because of the filler breakages 

is due to the fact that the tensile strength of the used glass particles is 3 GPa in comparison to 

the neat epoxy which is 70 MPa. Therefore, even a couple of fiber breakages can result in a 

fairly high fracture toughness of the composite. 
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Figure 13 Fractograph of the fractured composite with flake-shaped fillers in Vf = 10% 

(scale bar = 200 μm) 

 

Figure 14 Fractograph of the fractured composite with rod-shaped fillers in Vf = 10% (scale 

bar = 200 μm) 
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 These results clearly indicate that the filler shape (aspect ratio) has a significant 

influence on the crack initiation toughness of the glass-filled epoxy composites. Higher aspect 

ratio promotes percolation at low volume fraction and forms an interconnected network that 

results in extremely high specific surface area, stiffness, strength and fracture toughness [102]. 

 

3.3.2 Predictive model-II 

As results in section 3.3.1 have shown that the epoxy reinforced with rod-shaped fillers 

exhibited highest fracture toughness, the effect of varying loading rate on the dynamic fracture 

toughness is studied with rod-shaped fillers and the comparison is shown between the neat 

epoxy and epoxy reinforced with 10% Vf of the fillers.  

Data corresponding to loading rate, 3.7 s-1 and 10.7 s-1 are used to train the neural 

network and predicted results are then compared with the experimental ones. Coefficient of 

determination and mean absolute percentage error is found to be 0.97 and 14 % respectively. 

Goodness of fit between the predicted and the experimental SIF histories can be seen in Figure 

15. SIF histories are predicted within a time frame of -30 μs to 30 μs. Stress intensity factor is 

found to increase with increase in time and loading rate. The effect of loading rate is not very 

significant until the crack initiates, while in the post crack regime, noticeable increase in SIF 

can be observed. In addition to this, it is observed that reinforcing the epoxy matrix with rod-

shaped silica fillers improves the fracture toughness of the resulting composite. The results 

obtained from the proposed ANN model are in good agreement with the experimental values 

of stress intensity factor and the same can be seen in Figure 16 and Figure 17. 
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Figure 15 Goodness of fit between the predicted and experimental values 

 

 

Figure 16 Comparison of the predicted and experimental values of SIF for LR =  3.7 𝑠−1 and 

10.7 𝑠−1 
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Figure 17 Comparison of  predicted and experimental values of SIF for LR = 42 𝑠−1 

 

Figure 18 shows the importance of each input parameter relative to the parameter 

having the highest importance in determining the neural network for the prediction of stress 

intensity factor. As it is a dynamic study, time is certainly the most significant parameter among 

all. Moreover, the loading rate is also a time dependent parameter which justifies it having the 

highest normalized importance. Loading rate is the second most important parameter as varying 

the rate of loading changes the material response and the same has been supported 

experimentally and also by the proposed neural network model. As mentioned earlier in the 

section 3.1 that the stress wave propagation leads to the event of fracture in the specimen, shear 

wave speed and the longitudinal wave speed are found to be the next important parameters in 

the analysis. Shear stress waves propagate radially through the specimen leading to the 

cracking of the matrix and the fractographs also suggest that matrix cracking is the most 

dominant mode of failure. Therefore, shear wave speed is one of the important parameters 

followed by longitudinal wave speed and the volume fraction. 
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Figure 18 Order of parameter importance 

Results indicate that the glass filled polymer composites exhibit more crack initiation 

toughness compared to neat epoxy composites due to the tendency of glass fillers to arrest the 

crack growth. Also, the crack initiation toughness of these composites increases with the 

increase in the loading rate (refer to Figure 19) and this can be attributed to the fact that at 

higher strain rate the material undergoes a combination of different failure modes resulting in 

higher energy dissipation. This can be further explained with the help of fractographs shown 

in Figure 20 where the fractographs of the two most contrasting conditions (no pulse shaper 

and polycarbonate washer + aluminium disc) are given. Figure 20 (a) shows the surface 

morphology of the material when pulse shaper is not used during the event of fracture. In this 

case, matrix cracking, filler-matrix interface separation and filler pull-out are observed as the 

undergoing failure modes and each of these modes contribute to the overall energy dissipation. 

At higher loading rate, the fillers tend to behave stiffer resulting in breakage of fillers as the 

crack continues to grow. This results in higher energy dissipation because the reported tensile 

strength of fillers is 3 GPa (while for neat epoxy, it is ~70 MPa) [43] which means that even a 

few filler breakages can result into huge energy dissipation and hence an overall increase in 

the crack initiation toughness is observed. Figure 20 (b) shows the fractograph of the material 

when polycarbonate + aluminium disc pulse shaper is used. Even in this case, the material 

undergoes the above mentioned failure modes but due to lower loading rate, fillers get pulled 

out rather than breaking. Hence the energy dissaipation is comparatively less which ultimately 

results in relatively lower crack initiation toughness. 
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Figure 19 Crack initiation toughness at varying loading rate 

  

 

 

Figure 20 Fractographs of glass filled epoxy composites (A) for no pulse shaper and (B) 

polycarbonate + aluminium disc pulse shaper case (scale bar = 100 μm) 
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Chapter 4 

Uncertainty quantification of the dynamic fracture toughness 

 

Outcomes based on experimental data essentially bring us to the realization that 

quantification of uncertainty is of utmost importance for developing a reliable and practically 

relevant inclusive analysis and design framework for the dynamic fracture of particulate 

composites. With limited literature available on the determination of fracture toughness 

considering inertial effects, this chapter demonstrates a computationally efficient approach for 

uncertainty quantification and sensitivity analysis of dynamic fracture toughness of particulate 

polymer composites based on surrogate modeling.     

4.1 Background 

 A realistic analysis and design framework for particulate composites should account 

for the possible uncertainties due to the inherent inhomogeneity and multiphase nature of the 

PPCs. Moreover, the unavoidable variation in process parameters due to the varying physical 

properties of matrix and reinforcement, degree of polymerization, environmental conditions 

and filler dispersion can significantly affect the ultimate response of PPCs. To ensure the 

accurate assessment of the ultimate composite performance and to avoid the deviation from the 

expected material behaviour, uncertainty quantification is critically important [103].  

The uncertainties can be categorized as model uncertainties and parameter 

uncertainties. The model uncertainties arise from the oversimplification of the physics involved 

while the uncertainty in the parameters arises from stochasticity in the inputs [104]. The 

uncertainties in the inputs (often correlating directly to the manufacturing uncertainties) have 

more influence and their propagation is complicated due to the ineffable relationships between 

the parameters. Expressing complex stochastic input-output relationships requires statistical 

approaches where the results can be computed with a variability bound in the inputs to provide 

the confidence interval of the potential outputs. Several statistical approaches such as Monte 

Carlo simulation, perturbation method, surrogate-based modeling etc. have been explored in 

this context in numerous engineering problems [105–110]. One of the prevalent methods is the 

Monte Carlo (MC) technique for the quantification and propagation of uncertainties due to its 

simplicity and high statistical accuracy up to a large extent of input variability [111–113]. The 

MC simulation method is a sampling-based approach that generates thousands of samples 
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corresponding to the random input variables as per their probability distribution and 

subsequently, the probabilistic distribution of the output quantity of interest is characterized. 

However, the downside of the standard Monte Carlo method is its slow convergence and a 

large number of realizations (~104) are required to attain the desired accuracy. To mitigate the 

computationally expensive nature of MCS, the possible avenues could be parallelization of the 

Monte Carlo simulations [114] or utilization of surrogate modeling approaches [115,116]. 

Even though parallelization may be able to reduce the time for Monte Carlo Simulations, it still 

requires high computational effort. On the other hand a surrogate model can effectively replace 

the expensive simulation models or physical experiments based on a limited optimum sample 

evaluation. Thus in case of experimental stochastic characterization, based on a few 

experimental tests a computational mapping can be established between the stocahstic input 

parameters and the output quantity of interest using surrogate modeling. Subsequently, the 

surrogate model can be exploited for predicting the output parameter corresponding to any 

random combination of the input parameters within the design domain and the Monte Carlo 

simulation can be performed efficiently.  

In this chapter, an ANN based uncertainty quantification approach is presented to 

quantify the stochastic variability in the dynamic fracture toughness of glass-filled epoxy 

composites due to the inevitable random stochasticity in the geometrical and material 

properties (such as aspect ratio, dynamic elastic modulus and volume fraction). The gap 

between the necessity of large-scale data generation for Monte Carlo simulation and the 

limitation of carrying out multiple experimentations is proposed to be addressed by adopting 

ANN based surrogate modeling approach here. 

4.2 Methodology 

4.2.1 Surrogate modeling 

In the current study, the experimental dataset is taken from Kushvaha et al. [43] for 

developing ANN model to predict the dynamic fracture toughness. Aspect ratio (AR), dynamic 

elastic modulus (𝐸𝑑), volume fraction (𝑉𝑓) and time (𝑡) are used as the input parameters and 

the stress intensity factor is the output parameter. To improve the network training, 

‘standardized’ technique is used to rescale the covariate space. The entire available data is 

partitioned in training and testing datasets following a partition ratio of 70:30. The used ANN 

model follows the architecture of one hidden layer with two neurons. Hyperbolic tangent and 

identity are used as the activation functions for the hidden and the output layer respectively. 



34 | P a g e  
 

Considering the computational efficiency, gradient descent is used as the optimization 

algorithm [99] with hyperparameters like initial learning rate = 0.4, momentum = 0.9 and batch 

as the training type. The data corresponding to aspect ratio 1 (spherical fillers) and 80 (rod 

shaped fillers) are fed into the above-mentioned neural network and the pridiction accuracy is 

cgeched using MAPE and R2 as accuracy metrics. After obtaining a satisfactory network 

performance with the selected architecture, SIF is predicted for the flake shaped glass fillers 

corresponding to aspect ratio 6. 

4.2.2 Surrogate based stochastic approach 

 The stochastic response of dynamic fracture toughness of glass-filled epoxy composites 

is investigated under the inherent uncertainty in the input parameters (aspect ratio, dynamic 

elastic modulus and volume fraction of fillers). Since fracture in this study is a dynamic event, 

stochasticity in the input parameters is introduced corresponding to each time instant. The 

considered cases of uncertainty (stochastic variation) here are as follows: 

i.  Uncertainty in aspect ratio only: 𝑔{𝐴𝑅{𝑆𝐼𝐹̅̅ ̅̅ ̅}} = {𝐴𝑅1, 𝐴𝑅2, 𝐴𝑅3, … , 𝐴𝑅𝑛} 

ii.  Uncertainty in aspect ratio and dynamic elastic modulus:  𝑔{𝐸𝑑{𝑆𝐼𝐹̅̅ ̅̅ ̅}, 𝐴𝑅{𝑆𝐼𝐹̅̅ ̅̅ ̅}} =

{Φ1{𝐴𝑅1, 𝐴𝑅2, 𝐴𝑅3, … , 𝐴𝑅𝑛}, Φ2{𝐸𝑑1 , 𝐸𝑑2 , 𝐸𝑑3, … , 𝐸𝑑𝑛}}  

iii.  Uncertainty in aspect ratio and volume fraction: 𝑔{𝑉𝑓{𝑆𝐼𝐹̅̅ ̅̅ ̅}, 𝐴𝑅{𝑆𝐼𝐹̅̅ ̅̅ ̅}} =

{Φ1{𝐴𝑅1, 𝐴𝑅2, 𝐴𝑅3, … , 𝐴𝑅𝑛}, Φ2{𝑉𝑓1, 𝑉𝑓2 , 𝑉𝑓3 , … , 𝑉𝑓𝑛}} 

iv.  Combined uncertainty in aspect ratio, dynamic elastic modulus and volume fraction:  

𝑔{𝑉𝑓{𝑆𝐼𝐹̅̅ ̅̅ ̅}, 𝐴𝑅{𝑆𝐼𝐹̅̅ ̅̅ ̅}, 𝐸𝑑{𝑆𝐼𝐹̅̅ ̅̅ ̅} } = {Φ1{𝐴𝑅1, 𝐴𝑅2, 𝐴𝑅3, … , 𝐴𝑅𝑛}, Φ2{𝑉𝑓1, 𝑉𝑓2, 𝑉𝑓3, … , 𝑉𝑓𝑛}, 

Φ3{𝐸𝑑1, 𝐸𝑑2 , 𝐸𝑑3, … , 𝐸𝑑𝑛}} 

Here the symbol 𝑆𝐼𝐹̅̅ ̅̅ ̅ indicates the parametric stochasticity, while n represents the number of 

data points. 

To account for these cases of uncertainty, Monte Carlo simulation (MCS) method is 

integrated with the ANN model for generating a large-scale dataset based on limited 

experimental results. Although the PPCs are macroscopically isotropic, the inhomogeneities in 

the composite are responsible for the complex mechanical behavior governed by coupled 

parameters. The development of satisfactory computational models accounting for 

uncertainties in such coupled parameters using MCS is very expensive in terms of time and 

cost. Obtaining solutions using the conventional numerical approaches requires thousands of 

simulations. Thus we exploit experimental data that captures the stochastic variations 
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realistically [43]. A flowchart for the proposed ANN assisted MCS methodology is given in 

Figure 21.  

 

Figure 21 Flowchart for ANN assisted MCS methodology 

A sample space of 10000 × 3 is generated for each time instant using a pseudo-random 

distribution within the design space [117]. Based on the range of available data and physical 

intuition from experimental observation, a certain stochastic band is selected for the aspect 

ratio, volume fraction and dynamic elastic modulus. The Degree of Stochasticity (DOS) for the 

considered band is 30%, 20% and 10% for aspect ratio, volume fraction and dynamic elastic 

modulus respectively. DOS in aspect ratio is a direct result of the fact that it is very difficult at 

the manufacturer’s end to have a high degree of precision when it comes to the filler size 

distribution. Also, there are significant chances of variability while coming down to a specific 

filler shape. Usually the buyer gets a technical sheet from the manufacturer, stating the average 

size of the filler without any tolerance band [118]. The considered DOS in volume fraction and 
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elastic modulus comes mainly from the inevitable measurement error. Even though we have 

considered the above-mentioned DOSs in the present analysis, following the proposed ANN 

based stochastic methodology other DOSs can also be considered if necessary. Using this 

degree of stochasticity, an input space is created and fed into the developed ANN model 

corresponding to which stochastic responses of SIF are obtained. These stochastic responses 

resulting from the forward propagation of uncertainties are then statistically characterized by 

computing their probability density function (PDF) at each time instant. The computed 

probability density function reflects the statistical moments along with the likelihood of stress 

intensity factor at a given time instant. 

4.2.3 Sensitivity analysis 

 To examine the model robustness and evaluate the effect of individual or joint 

contribution of the parametric uncertainties on the model response, a global sensitivity analysis 

is performed further. Among several available variance-based methods, the variance 

decomposition-based Sobol sensitivity analysis is known to quantify the contributions of each 

input parameter and their interactions to the overall model output variance accurately. The 

output variance is decomposed into summands of variances using the combinations of input 

parameters in increasing dimensionality. A model of the form, 𝑦 = 𝑓(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) can be 

decomposed into terms of increasing dimensionality as follows [119] : 

𝑓(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) = 𝑓0 +∑ 𝑓𝑖(𝑋𝑖) + 
𝑛
𝑖=1 ∑ 𝑓𝑖𝑗(𝑋𝑖 , 𝑋𝑗) +⋯+ 𝑓1,…𝑛(𝑋1, … , 𝑋𝑛) 1≤𝑖<𝑗≤𝑛     (9)      

where, 𝑦 is model output,  𝑓0 =  ∫ 𝑓(𝑋) 𝑑𝑋
Ω

, 𝑋𝑖  represents Input parameters, 𝑛 is the number 

of input parameters. Similarly, the variance of the output can be decomposed as:  

𝑉𝑎𝑟 [𝑓(𝑋)] = ∑ 𝑉𝑎𝑟[𝑓𝑖(𝑋𝑖)] + 
𝑛
𝑖=1 ∑ 𝑉𝑎𝑟[𝑓𝑖𝑗(𝑋𝑖 , 𝑋𝑗)] + ⋯+1≤𝑖<𝑗≤𝑛 𝑉𝑎𝑟[𝑓1,…𝑛(𝑋1, … , 𝑋𝑛)]   

                                                                                                                                               (10) 

The decomposed variances can also be represented as: 

𝑉𝑎𝑟[𝑓𝑖(𝑋𝑖)] = 𝑉𝑎𝑟[𝐸(𝑌|𝑋𝑖)],  

𝑉𝑎𝑟[𝑓𝑖𝑗(𝑋𝑖𝑗)] = 𝑉𝑎𝑟[𝐸(𝑌|𝑋𝑖 , 𝑋𝑗)] − 𝑉𝑎𝑟[𝐸(𝑌|𝑋𝑖)] −  𝑉𝑎𝑟[𝐸(𝑌|𝑋𝐽)],    (11) 

𝑉𝑎𝑟[𝑓1,…𝑛(𝑋1, …𝑋𝑛)] = 𝑉𝑎𝑟[𝑦] − ∑ 𝑉[𝑓𝑖(𝑋𝑖)] −
𝑛
𝑖=1

  ∑ 𝑉𝑎𝑟[𝑓𝑖𝑗(𝑋𝑖 , 𝑋𝑗)] −⋯−1≤𝑖<𝑗≤𝑛 ∑ 𝑉𝑎𝑟[𝑓1,…𝑛−1(𝑋1, … , 𝑋𝑛−1)] 1≤𝑖<𝑗≤𝑛−1   

 

Normalizing the equation with unconditional variance of output, 𝑉𝑎𝑟[𝑦] we get, 
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1 =∑𝑆𝑖 + 

𝑛

𝑖=1

∑ 𝑆𝑖𝑗 +⋯+ 𝑆1,…𝑛 
1≤𝑖<𝑗≤𝑛

 (12) 

This decomposition results in normalized indices more commonly known as Sobol sensitivity 

indices. Measure associated with the first term of equation (12) is known as the first order 

sensitivity index (𝑆𝑖) and accounts for the effect of 𝑋𝑖 on the output of the model. The 

subsequent terms give a measure of higher order indices that interpret the parametric 

interactions and the effect of a single input parameter along with all its possible interactions, 

leading to total effect sensitivity index (𝑆𝑇𝑖). The expressions for these two indices are given 

as: 

 𝑆𝑖 = 
𝑉𝑋𝑖(𝐸𝑿~𝑖(𝑌|𝑋𝑖))

𝑉(𝑌)
   (13) 

 𝑆𝑇𝑖 = 
𝐸𝑿~𝒊(𝑉𝑋𝑖(𝑌|𝑿~𝑖))

𝑉(𝑌)
    (14) 

where 𝑋𝑖 is the i-th parameter and 𝑿~𝑖  denotes the matrix of all factors but 𝑋𝑖. In the present 

study, the same has been implemented using a python library [120]. 

 

4.3 Results and discussions 

4.3.1 Results of the surrogate model 

The proposed architecture of ANN model is used to predict the SIF histories 

corresponding to different aspect ratios and volume fractions of glass fillers. A study 

highlighing the optimal balance of bias and variance corresponding to the different sizes of 

training dataset is performed and the results for the same are shown in Figure 22. Based on this 

study, the experimental data corresponding to aspect ratio 1 and 80 are used to train the network 

and the experimental and predicted SIF values are compared as shown in Figure 23. The used 

ANN model is found to have a good prediction accuracy as the mean absolute percentage error 

and the coefficient of determination are found to be 3.8% and 0.99 respectively. Later the SIF 

histories for aspect ratio 6 are predicted using this trained neural network and the results for 

the same are shown in Figure 24.  

The results shown in Figure 23 and Figure 24 demonstrate the ability of the proposed 

ANN model to  efficiently handle the complex relationship of the input parameters and predict 

the SIF response of the composite accurately for unforeseen scenarios. Such ANN model can 

also provide a clear representation of output space in terms of the interactive plots of different 
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input parameters. Figure 25 is one such representation where the distribution of SIF at three 

different time instants is given over the entire domain of aspect ratio and volume fraction (note 

that only based on experimental characterization it will be practically impossible to investigate 

such detailed interactive effects due to the expense and time involved with such endeavor). It 

is observed that with an increase in the volume fraction and aspect ratio of glass fillers, the SIF 

increases with time, which in turn increases the resistance of the composite material to crack 

growth. It is evident that irrespective of the aspect ratio, an increase in the volume fraction of 

the fillers increases the crack initiation toughness (SIF corresponding to t = 0). However, the 

resistance to crack growth is more dominant for rod shaped fillers (AR = 80) with a higher 

volume fraction. The reason for the rod shaped fillers to have the maximum fracture toughness 

is the highest dissipation of energy in this case owing to the underlying failure mechanisms (as 

mentioned in chapter 3).  

 

Figure 22 Effect of the size of training dataset on the predicted values in terms of percentage 

error in the predictions of mean and standard deviation of remaining samples 
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Figure 23 Comparison of experimental and predicted values of stress intensity factor (A) for 

5% Vf , (B) for 10% Vf  and (C) for 15% Vf  when the ANN model is trained with the data 

corresponding to aspect ratio 1 and 80 
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Figure 24 Comparison of experimental and predicted values of stress intensity factor using the 

dataset corresponding to aspect ratio 6  for (A) 5% Vf , (B) 10% Vf  and (C) 15% Vf 
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Figure 25 ANN based predictions of SIF in three different time regimes over the complete 

domain of aspect ratio and volume fraction (A) within the pre-crack initiation regime (at t = -

19.98 µs), (B) when the crack initiates (at t = 0 µs) and (C) within the post-crack initiation 

regime (at t = 19.98 µs) 
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4.3.2 Uncertainty quantification 

Having the ANN based predictive framework validated in the preceding subsection, 

here we exploit the ANN model further for quantifying the effect of stochasticity in material 

and geometric attributes at different time instants. The uncertainty quantification of dynamic 

fracture toughness of glass-filled epoxy composites (leading to complete probabilistic 

characterization) is carried out considering the stochastic effects in aspect ratio, dynamic elastic 

modulus and volume fraction. The main idea of uncertainty analysis is to describe the complete 

set of possible outcomes corresponding to the random/uncertain input space with the associated 

probability distributions. The probability of having stochastic output values within a certain 

range is characterized by a probability distribution. Following this probabilistic approach, here 

the uncertainty in the response of SIF history is described in terms of probability density 

function and stochastic bounds. The PDF response of SIF after introducing the aforementioned 

degree of stochasticity in the input parameters as per the cases specified in section 4.2.2,  for 

rod, flake and spherical shaped fillers is shown in Figure 26 - Figure 28 respectively. In these 

figures, probabilistic values of SIF are normalized with respect to the corresponding 

deterministic SIF values, as presented in Figure 23 and Figure 24. These figures are the 

illustrations of the probabilistic analysis conducted using the ANN model to predict the SIF 

history corresponding to seven time instants. Probabilistic characterization of the stochastic 

response of stress intensity factor corresponding to the cases where input stochasticity is 

considered as the coupled effect of all factors, is presented for only 10% volume fraction of 

glass fillers for the sake of brevity.  
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Figure 26 PDF plots of rod-shaped fillers accounting for the stochastic response of SIF for 

variation in only aspect ratio (A) at 5% Vf,, (B) at 15% Vf, and PDF responses of normalized 

SIF history for 10% Vf  of  fillers when a stochastic variation is introduced (C) only in the aspect 

ratio, (D) simultaneously in aspect ratio and dynamic elastic modulus, (E) simultaneously in 

aspect ratio and volume fraction and (F) simultaneously in aspect ratio, dynamic elastic 

modulus and volume fraction. Thus we show the results for the individual stocahsticity in 

aspect ratio for 5%, 10% and 15% Vf, while different compound effects of stocasticity are 

shown considering 10% Vf . The corresponding deterministic results are shown in Figure 23 
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Figure 27 PDF plots of flake-shaped fillers accounting for the stochastic response of SIF for 

variation in only aspect ratio (A) at 5% Vf,, (B) at 15% Vf, and PDF responses of normalized 

SIF history for 10% Vf  of  fillers when a stochastic variation is introduced (C) only in the aspect 

ratio, (D) simultaneously in aspect ratio and dynamic elastic modulus, (E) simultaneously in 

aspect ratio and volume fraction and (F) simultaneously in aspect ratio, dynamic elastic 

modulus and volume fraction. Thus we show the results for the individual stocahsticity in 

aspect ratio for 5%, 10% and 15% Vf, while different compound effects of stocasticity are 

shown considering 10% Vf . The corresponding deterministic results are shown in Figure 24 



45 | P a g e  
 

 

Figure 28 PDF plots of spherical-shaped fillers accounting for the stochastic response of SIF 

for variation in only aspect ratio (A) at 5% Vf,, (B) at 15% Vf, and PDF responses of normalized 

SIF history for 10% Vf  of  fillers when a stochastic variation is introduced (C) only in the aspect 

ratio, (D) simultaneously in aspect ratio and dynamic elastic modulus, (E) simultaneously in 

aspect ratio and volume fraction and (F) simultaneously in aspect ratio, dynamic elastic 

modulus and volume fraction. Thus we show the results for the individual stocahsticity in 

aspect ratio for 5%, 10% and 15% Vf, while different compound effects of stocasticity are 

shown considering 10% Vf . The corresponding deterministic results are shown in Figure 23 
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As a reference to the individual or combined input variation, a solid line is drawn at the 

mean level in all the PDF plots indicating the variability in the crack propagation. Skewness in 

the shape of PDF plots indicates the increase in the non-linear relationship between the input 

and output space due to the introduced uncertainty. The 3D plots of the PDF clearly indicate 

that as the time progresses, the effect of introduced stochasticity in the input space has a less 

pronounced effect on the SIF response. The input parameters are primarily responsible for the 

interfacial bond strength that contributes in the energy dissipation properties of the composite, 

which in turn helps in resisting the crack initiation. However, once the SIF reaches its critical 

value, a crack is initiated and as the crack progresses the effect of stochasticity in the input 

space is less influential for the fillers with lower aspect ratio (spheres and flakes) while sizeable 

influence can be observed for the rod shaped fillers. To account for the propagation of 

introduced stochasticity, uncertainty bounds for different filler shapes corresponding to 

different stochastic cases are presented further in 29 – Figure 31, as discussed in the following 

paragraphs. 

The load transfer from the polymeric matrix to the filler reinforcement is the basic mechanism 

for the working of a polymer composite material. This load transfer mechanism is governed by 

the interfacial strength of the composite. Filler reinforcements embedded in the polymeric 

matrix cause perturbations at the interface between the matrix and the reinforcement. The 

extent of these perturbations depends on the geometry and the volume fraction of the fillers. 

Hence the overall composite behavior in terms of strength, stiffness and toughness strongly 

depends on the state of the polymer-filler interface. The stochastic variability bounds in the 

composite fracture toughness due to the effect of considered stochasticity in the input 

parameters are shown in 29 – Figure 31. 
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Figure 29 Response bands for SIF history of rod-shaped fillers after introducing stochasticity 

(A) only in the aspect ratio (DOS = 0.3), (B) simultaneously in aspect ratio (DOS = 0.3) and 

dynamic elastic modulus (DOS = 0.1), (C) simultaneously in aspect ratio (DOS = 0.3) and 

volume fraction (DOS = 0.2) and (D) simultaneously in aspect ratio (DOS = 0.3), dynamic 

elastic modulus (DOS = 0.1) and volume fraction (DOS = 0.2). The corresponding 

deterministic results are shown in the insets. 
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Figure 30 Response bands for SIF history of flake-shaped fillers after introducing stochasticity 

(A) only in the aspect ratio (DOS = 0.3), (B) simultaneously in aspect ratio (DOS = 0.3) and 

dynamic elastic modulus (DOS = 0.1), (C) simultaneously in aspect ratio (DOS = 0.3) and 

volume fraction (DOS = 0.2) and (D) simultaneously in aspect ratio (DOS = 0.3), dynamic 

elastic modulus (DOS = 0.1) and volume fraction (DOS = 0.2). The corresponding 

deterministic results are shown in the insets. 

 

 

 



49 | P a g e  
 

 

Figure 31 Response bands for SIF history of spherical-shaped fillers after introducing 

stochasticity (A) only in the aspect ratio (DOS = 0.3), (B) simultaneously in aspect ratio (DOS 

= 0.3) and dynamic elastic modulus (DOS = 0.1), (C) simultaneously in aspect ratio (DOS = 

0.3) and volume fraction (DOS = 0.2) and (D) simultaneously in aspect ratio (DOS = 0.3), 

dynamic elastic modulus (DOS = 0.1) and volume fraction (DOS = 0.2). The corresponding 

deterministic results are shown in the insets. 

Additionally, such a framework of uncertainty quantification facilitates ready 

assessment of the confidence in the experimental predictions for further industrial adoption. 

Considering the first stochastic case (only AR), among the three filler types, rod-shaped glass 

fillers are found to exhibit maximum variation in the SIF response. The geometrical aspect of 

the fillers is directly related to the interfacial strength and hence has a direct impact on the 

failure mechanisms. Considering the larger aspect ratio of rod shaped fillers, any variability in 
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the size will lead to a significantly varying SIF response while for the other two filler types, 

the variability in the SIF response is relatively less owing to the inherited shape and lower 

aspect ratio. When stochasticity is introduced simultaneously in two parameters (AR and Ed  ; 

AR and Vf), as shown in Figures 4.9 (B), (C) – 4.11 (B), (C), an increase in the variability bound 

is found. Also, it is evident from the above figures that combined uncertainty in the input 

parameters (Figures 4.9 (D) – 4.11 (D)) results in higher variability (wider bound) in the 

stochastic SIF history compared to the other cases. 

The deviation in the stochastic SIF responses from the deterministic SIF values for all 

the filler types at three different time instants is shown in Figure 32. The rod shaped fillers 

show maximum deviation from the deterministic SIF values in all the three time regimes. In 

case of spherical shaped glass fillers, once the crack initiates, the deviation caused by 

introducing uncertainty simultaneously in the aspect ratio and dynamic elastic modulus has 

shown a less prominent effect on the SIF when compared with the deterministic values. Also, 

in the pre-crack initiation regime, in case of spherical fillers, the combined uncertainty in the 

aspect ratio and volume fraction, results in a comparatively lesser deviation in SIF while in the 

post-crack initiation regime, this deviation is in almost the similar range with flake shaped 

fillers.  Although the dynamic elastic modulus is one of the key parameters in describing the 

fracture toughness, not much variation is seen in this factor for the different shapes of fillers. 

However, the filler shape is observed to have more control over the kind of crack interaction 

that takes place and consequently affects the ultimate fracture toughness of the composite. The 

sensitivity of different such critical input parameters is further quantified in the next subsection.     
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Figure 32  Deviation of mean stochastic SIF responses from the deterministic values when 

there is uncertainty (A) only in the aspect ratio (DOS = 0.3), (B) simultaneously in aspect ratio 

(DOS = 0.3) and dynamic elastic modulus (DOS = 0.1), (C) simultaneously in aspect ratio 

(DOS = 0.3) and volume fraction (DOS = 0.2) and (D) simultaneously in aspect ratio (DOS = 

0.3), dynamic elastic modulus (DOS = 0.1) and volume fraction (DOS = 0.2) 

4.3.3 Sensitivity analysis 

In order to quantitatively characterize the importance of each input parameter along 

with the consideration of parametric interactions, a global sensitivity analysis as discussed in 

section 4.2.3, is performed. This facilitates the identification of the input parameter with the 

most crucial effect on the crack initiation toughness. The sensitivity analysis is carried out on 

the rod shaped fillers here as these fillers have shown the most pronounced effect of 

uncertainty. Therefore, to account for the probabilistic distribution of the input space and the 

parametric interactions, Sobol’s first order and total effect indices are calculated. Parametric 
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interactions are a result of the non-additive effect of nonlinear components for the prediction 

of crack initiation toughness. Keeping in view the inherent uncertainties and the resulting 

random input fields, Sobol’s sensitivity indices act as performance measures of the random 

output variable for achieving adequate control and reliable manufacturing process. Based on 

the output variance decomposition, the statistically most important parameter is discovered and 

the results are shown in Figure 33.  

 

 

Figure 33 Global sensitivity analysis for crack initiation toughness (A) Sobol’s first order 

sensitivity index (B) Sobol’s total effect sensitivity index 

Out of the three critical parameters under consideration, aspect ratio is found to have 

the highest value of Sobol’s first order sensitivity index followed by dynamic elastic modulus 

and then the volume fraction. The reason for this trend could be attributed to the resulting 

change in internal stresses and strains within the composite in response to the aspect ratio 

variations, which in turn affects the overall toughness of the composite. Additionally, the 

analysis with the consideration of all the possible parametric interactions of any one parameter 

with the remaining two, indicates the same order of sensitivity indices. In general, the 

quantitative analyses considering both individual and interaction effects of sensitivity reveal 

that the aspect ratio of the glass fillers is the most influential parameter, leading to the highest 

variability impact on the crack initiation toughness of particulate polymer composites. 
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Chapter 5 

Fatigue: A crack initiation and propagation study 

 

One of the most critical attributes for a material to be utilized for engineering 

applications is its ability to resist crack under different loading conditions. To ensure the long-

term serviceability of these materials, studying the behavior of particulate polymer composites 

under cyclic loading is of prime importance. In this context, this chapter gives a comprehensive 

information about the behaviour of glass-filled epoxy composites under cyclic loading 

conditions along with the detailed methodology of fabricating these composites. 

5.1 Background 

 Fatigue life of any material is expressed in two important segments, the number of load-

cycles required for the crack initiation and the number of load-cycles required for failure 

resulting from the crack growth. The primary reason for any material to fail is related to the 

crack initiation. In an effort to address fatigue, it is necessary to understand the undergoing 

mechanisms that promote crack initiation.  

Most of the existing work focuses on the investigation of the fatigue response of 

composite materials in terms of crack propagation where a pre-existing notch is introduced in 

the sample. Thus, leaving a wide gap in understanding the phenomena of crack initiation during 

cyclic loading conditions without the presence of a sharp notch. Also, since it has been 

indicated in our previous studies that the dynamic fracture toughness of epoxy composites 

significantly improves when reinforced with micron-sized glass particles, the fatigue response 

of the same needs to be investigated in sufficient detail. Therefore, it is a logical progression 

to investigate the crack initiation behavior and the progressive failure of particulate polymer 

composites under cyclic loading. 

5.2 Methodolgy 

5.2.1 Specimen fabrication 

The particulate polymer composite used in this study is prepared by reinforcing micron-

sized rod-shaped glass particles in an epoxy system. The average longitudinal dimension of the 

glass paricles is 800 µm and the average diameter is 10 µm with a tensile strength of around 3 

GPa. The epoxy system comprised of a medium viscosity Bisphenol-A based resin (Grade-
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LY556, from Huntsman) and a low viscosity aradur hardener of grade HY951 from Huntman. 

The density of the resin and hardener is 1150 Kg/m3 and 980 Kg/m3 respectively. The first step 

is to degass the resin in a vacuum chamber until it seems to be free from the entrapped air. 

Then the glass particles in different volume fractions; 0% (neat epoxy), 5%, 10% and 15% are 

added in the degassed epoxy resin. To ensure uniform dispersion of glass particles in the epoxy 

resin, a magnetic stirrer followed by an ultrasonicator is used. The mixture is again degassed 

to remove the air bubbles followed by the addition of hardener in the ratio of 10:1 (10 parts of 

hardener and 1 part of epoxy) by weight. The settlement of the glass particles is avoided by 

constantly stirring this mixture until it became gel-like. Then this mixture is poured into the 

molds and sheets having different volume fraction of glass particles (0%, 5%, 10% and 15%) 

are cast and cured for 48 hours. After this, the sheets are demolded and machined into 

specimens of desired dimensions for further testing. Figure 34 shows a schematic of all the 

steps followed for the fabrication of the glass-filled epoxy composite. 

 

 

Figure 34 Schematic of the sample preparation 

For performing both tensile and fatigue tests, dogbone-shaped specimens are prepared 

by machining the cured composite sheet. Additionally, a shallow depression is induced in the 

fatigue specimens within the gauge section that served as the region of interest (RoI) (refer to 

Figure 35) to observe crack initiation during tension-tension fatigue loading under Scanning 

Electron Microscope (SEM). 
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After machining, all the prepared specimens are polished with different grades of SiC 

grit paper from 100 to 2000 grit size. Afterwards, the specimens are carefully polished on a 

cotton cloth with 8 μm, 6 μm, 3 μm, 0.25 μm diamond paste to achieve a deformation free 

smooth surface. Further, the specimens are decorated with silver paste around the RoI to give 

a conductive path as the composite specimens are non-conductive. Finally, platinum sputtering 

is done on the surface of specimens to limit the charging of electrons within the RoI completely. 

Due to the random orientation of fibers in the epoxy matrix, different length and shape of 

reinforcement fibers are exposed at the surface. 

5.2.2 Quasi-static tension test 

A uniaxial tensile test is performed on dogbone-shaped specimens of the prepared 

composite to determine the Ultimate Tensile Strength (UTS), elastic modulus and the strain at 

failure. This test is performed using a 10 kN tensile/compression module (from Kammrath & 

Weiss, Germany) at a strain rate of 2.4 × 10−4/s. Three samples of each volume fraction are 

tested to ensure repeatability. 

5.2.3 In-situ fatigue testing 

Since the study focuses on the crack-initiation phenomena, the low cycle fatigue (LCF) test is 

performed using 10 kN tensile/compression module under a scanning electron microscope. 

Tests are performed at room temperature in the displacement control mode at an average 

frequency of 0.25 Hz and the strain ratio (R) is maintained at 0.5. Considering the different 

failure strain for different specimens with varying volume fraction of the glass fillers, the mean 

stress in the first cycle is kept same (35 MPa) for every specimen to make a relevant comparison 

of the fatigue response. To observe the RoI and to capture SEM images of the undergoing 

deformation, crack initiation and propagation, the fatigue tests are paused after every 25 cycles. 

The number of cycles to crack initiation and failure are recorded and reported. 
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Figure 35 Detailed drawing of the specimen used for the crack initiation study [121]. All the 

dimensions are in mm 

 

5.3 Results and discussions 

5.3.1 Tensile test 

The true stress-strain behaviour of different specimens of epoxy reinforced with rod shaped 

glass fillers with a volume fraction of 0%, 5%, 10% and 15% is shown in Figure 36. Out of all 

the specimens, neat epoxy specimens are found to have the highest ultimate tensile strength 

and the failure strain. Although a marginal increase in the UTS of the reinforced epoxy 

specimens is observed with increasing volume fraction. Also, with increasing volume fraction 

of the particles in the epoxy matrix, an increase in the elastic modulus is observed. This is 

attributed to the fact that the presence of glass particles in the epoxy matrix results in stress 

concentrated regions thus lowering the tensile strength. But at the same time these particles 

enhance the stiffness of the matrix and act as anchors to resist the stretching of the polymeric 

chain. This results in lower strains and is also responsible for the higher elastic modulus despite 

lower tensile strength [122].  
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Figure 36 True stress-strain behaviour for different specimens of epoxy reinforced with rod 

shaped glass fillers with a volume fraction of 0%, 5%, 10% and 15% 

5.3.2 Fatigue test 

Corresponding to the applied cyclic loading, the total number of cycles to crack 

initiation and failure are recorded and reported in this section (refer to Table 3). A fractographic 

analysis is also presented to understand the underlying mechanisms that resulted in the 

initiation, coalescence and propagation of cracks at different sites and their effects on the total 

fatigue life. Mean stress variation in all the specimens during the entire LCF testing is shown 

in Figure 37. As the LCF is done in strain controlled manner, stress response is recorded 

throughout the fatigue life for every specimen. It is evident from the data shown in Table 3 that 

the average fatigue life of neat epoxy specimens is least in all the cases.  

The samples with 5% Vf and 15% Vf have almost same average fatigue life but the 

variation in mean stress is different. Softening is observed in all the specimens, however, the 

15% Vf specimens are observed to have undergone a substantially more softening compared to 

the other specimens. In comparison with 0% Vf , 5% Vf counterparts exhibited more softening 

and fatigue life. For 0% Vf and 10% Vf specimens, variation of mean stress is almost the same, 

but 10% Vf specimens exhibited longer fatigue life than any other specimen. Further, the 

number of fatigue cycles for crack initiation in all the specimens reinforced with glass fibres is 

same irrespective of their total fatigue life. This indicates that the variation in mean stress and 

total fatigue life is dependent on different volume fraction and crack propagation mechanisms. 

Therefore in the present study, it is found that the variation in the total failure during fatigue 
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loading is dependent on different crack initiation sites, their distribution due to the different 

volume fractions, corresponding crack coalescence and propagation phase.  

Table 3 Number of load cycles to crack initiation and failure 

 

 

 

 

Figure 37 Variation of mean stress until fracture 

 

5.3.2.1 Crack initiation, coalescence and propagation mechanism 

Crack initiation in all the samples is observed at almost the same number of cycles except for 

the neat epoxy which is found to undergo a catastrophic failure without any indication of crack 

initiation. The reason for this failure is the inherent brittle nature of epoxy resin that offers 

lower fracture energy [122]. The SEM images taken during the LCF testing suggest that for 

Filler volume 

fraction 

No. of load cycles 

Vf For crack initiation For fracture 

0% - 190 ± 10% 

5% 200 ± 14% 315 ± 14% 

10% 200 ± 14% 1170 ± 16% 

15% 200 ± 14% 291 ± 20% 
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different samples, crack initiates at different sites such as in the matrix, at the matrix-fiber 

interface and within the fiber itself.  

During the cyclic loading, the neat epoxy samples failed catastrophically as the epoxy 

matrix cracked after a certain number of cycles and no secondary phase was available to offer 

crack resistance. Further, in the case of samples with 5% Vf  of glass fibers, most of the cracks 

are observed to initiate from the interface of the matrix and fiber, while in 10% Vf  case, the 

dominant crack initiation sites are both, the matrix-fiber interface and the fiber itself (refer to 

Figure 38 and Figure 39) which eventually leads to the fiber breakage. The energy requirement 

for different crack initiation modes is different. As reported in our previous work, the fibre-

matrix interface failure mode is associated with the least energy followed by the matrix 

cracking, and the maximum energy is associated with the fibre breakage [1] due to higher UTS 

of the fiber. As the consequence of this, in 10% Vf  case, the crack is arrested within the fiber 

and prolongs the stage of crack initiation due to which crack propagation is delayed and the 

specimens endure more number of loading cycles. While, in the 5% Vf  case, relatively lesser 

number of fibers are present to arrest the crack and hence the fiber-matrix interface is where 

the crack is arrested before eventually leading to failure.  

Figure 38 (E) and Figure 39 (G) clearly show the distribution of cracks all over the RoI 

in the case of 5% Vf  and 10% Vf. In the case of 15% Vf, the dominant crack initiation site is 

observed to be the matrix-fiber interface and all the cracks initiated within a very confined 

region as shown in Figure 40. 

In the case of 15% Vf , owing to the fact that these specimens of PPC have more fibers 

embedded in the matrix compared to the other two, the stress distribution is such that it leads 

to a localized failure. Here the glass fibers in close proximity act as crack nucleation sites that 

result in coalescing the micro-cracks developed at the fiber-matrix interface. In this context, in 

15% Vf, due to the densely packed reinforcement, nucleation of crack results in a close network 

for crack initiation causing faster crack coalescence throughout the entire RoI (refer to Error! 

Reference source not found.). This results in shorter crack initiation stage and faster transition 

to the crack propagation stage, and thus resulting in a shorter fatigue life. 
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Figure 38 Crack initiation sites observed in 5% Vf specimens are indicated by white 

arrows. Crack initiation in the (A), (B) glass fiber (C), (D) at the fiber-matrix interface and 

(E) crack distribution in the RoI with black arrows depicting the loading direction (F) 

fractured specimen showing separation through crack coalescence in matrix and the fiber-

matrix interface only  
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Figure 39 Crack initiation sites in 10% Vf are indicated by white arrows. Crack initiation in 

the (A), (B), (C) glass fiber (D), (E), (F) at the fiber-matrix interface and (G) crack 

distribution in the RoI with black arrows depicting the loading direction (H) fractured 

specimen showing separation through crack coalescence in matrix and at the fiber-matrix 

interface 

 



62 | P a g e  
 

 

Figure 40 Crack initiation sites in 15% Vf are indicated by white arrows. Crack initiation at 

the (A), (B), (C) matrix-fiber interface. Propagation of crack (D), (E) by making a network 

through the cracks initiated at the interfaces due to high fiber volume fraction in 15% Vf just 

before the fractureare indicated by white arrows, (F) magnified view of the RoI 

Crack propagation analysis in different specimens confirm the role of different crack 

initiation sites on the crack coalescence. In all the reinforced specimens, it is observed that fiber 

cracking does not contribute to further crack propagation as shown in Figure 38 Crack 

initiation sites observed in 5% Vf specimens are indicated by white arrows. Crack initiation in 

the (A), (B) glass fiber (C), (D) at the fiber-matrix interface and (E) crack distribution in the 

RoI with black arrows depicting the loading direction (F) fractured specimen showing 

separation through crack coalescence in matrix and the fiber-matrix interface onlyFigure 38 

(F), Figure 39 (H) and Figure 40 (F). The interfacial cracks are the ones that are majorly 

responsible for the crack coalescence and further propagation through the entire RoI. Similar 

observation is made in the case of interfacial cracks when the longitudinal length of the glass 
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fibre reinforcement is short and aligned with the loading direction. Therefore, in Figure 41, a 

combined data from all the specimens tested corresponding to the angle of longitudinal axis of 

glass fibre with respect to the loading direction versus the length of glass fibre observed at the 

surface (in the ROI) for interfacial cracks is plotted. The range of fiber length observed in RoI 

is 10 - 310 μm. For most of the initiated cracks, the longitudinal axis of the fibers make an 

angle between 60º to 90º with the loading direction. Based on these observations, Figure 41 

shows a probabilistic distinction between the safe zone and the crack initiation zone (encircled 

in red) that can affect the fatigue life of the polymer composites used in this study. 

 

Figure 41 Variation of orientation of glass fibre reinforcement with the length of glass fibre 

observed at the surface for the interfacial crack initiation where the red zone is depicting the 

zone with higher probability of failure 

Further, a detailed fractographic analysis is done to investigate the crack propagation 

stage and the undergoing mechanisms that resulted in initiation, coalescence and propagation 

of cracks at different sites. Figure 42 shows the SEM images of the fractured surfaces of the 

neat epoxy specimens. In Figure 42 (A), the entire cross section of 0% Vf fractured surface is 
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shown and Figure 42 (B) shows that the crack initiates from the surface of RoI, rapidly 

propagates a little and results in a catastrophic failure. Figure 43 (A) shows the entire cross-

section of the fractured surface of 5% Vf samples in which glass fibres are clearly visible. In 

Figure 43 (B) origin of crack initiation from RoI is shown and the morphology of the fractured 

surface clearly indicates the crack propagation direction and the region of catastrophic failure. 

Figure 43 (C) shows the brittle cleavage failure in 5% Vf specimen which is somewhat similar 

to the failure observed in case of neat epoxy. 

Further, fractographs of 10% Vf (refer to Figure 44 (A), (B), (C)) and 15% Vf (refer to 

Figure 45 (A), (B), (C)), clearly show that the crack initiated from the surface of RoI. Figure 

46 shows that in addition to fiber breakages, only a few fibers are pulled out in 10% Vf  

specimens. However, in 15% Vf specimens, relatively more fiber pull-out are observed along 

with fiber breakages (refer to Figure 46). The dominant mode of failure in case of 15% Vf  

specimens is observed to be the fiber-matrix interface separation. Owing to the larger volume 

fraction of fibers in this case, crack coalescing that occurs at the interface results in a 

catastrophic failure. Thus, resulting in a sharp drop in the mean stress and a shorter fatigue life. 

Despite all the reinforced specimens have shown same crack initiation life, the mentioned 

undergoing mechanisms observed during the microscopic investigations contribute to the 

highest fatigue life of 10% Vf  specimens. 

 

Figure 42 Fractographs of fatigue specimens of (A), (B) 0% Vf 
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Figure 43 Fractographs of fatigue specimens of (A), (B), (C) 5% Vf 

 Figure 44 Fractographs of fatigue specimens of (A), (B), (C) 10% Vf 
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Figure 45 Fractographs of fatigue specimens of (A), (B), (C) 15% Vf 

 

 

Figure 46 Fractured surface of RoI for (A) 10% Vf , (B) 15% Vf. The number of fiber pullout 

is higher in 15% Vf specimen due to catastrophic failure 
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Chapter 6 

Conclusions and future scope 

  

 With a comprehensive understanding of the importance of the mechanical behaviour of 

particulate polymer composites under dynamic loading conditions, the current dissertation 

presents a robust and reliable predictive modeling framework for the investigation of the 

dynamic fracture toughness and an experimental study on fatigue behaviour of glass-filled 

epoxy composites. The proposed predictive model is developed based on a supervised machine 

learning algorithm, artificial neural network to successfully predict the dynamic fracture 

toughness corresponding to two different sets of predictor variables. Furthermore, in the 

interest of assessing the effect of inherent parametric stochasticity on the ultimate response of 

glass-filled epoxy composites, a computationally efficient framework of uncertainty 

quantification is presented. In addition to the investigation of fracture behavior, a crack 

initiation study under cyclic loading conditions indicating the fatigue response of these 

composites is also presented.  

Conclusions stemming from these investigations are as follows: 

 The first ANN model used for predicting the SIF history of the considered PPCs 

corresponding to the material properties is validated with the experimental results and 

the accuracy of the model is found to be ~91%. The normalized importance analysis 

results in the parameter importance order as follows: time > aspect ratio > dynamic 

elastic modulus > volume fraction. Also, using the same ANN architecture, 

predictions made for the crack initiation toughness of different aspect ratio of fillers 

are found to be in close agreement with the empirical results which indicate the 

reliability of the proposed framework.  

 The second predictive model which utilized the dataset corresponding to the loading 

conditions has shown a prediction accuracy of ~86%. As a result of the normalized 

importance analysis that reflects the contribution of each input parameter in deciding 

the neural netwotk as per the calculated synaptic weights to predict the SIF history, 

the order of importance is obtained as: time > loading rate > shear wave speed > 

longitudinal wave speed > volume fraction. 

 Results from the predictive model-I indicated that out of the three considered glass 

particles, spherical, flake and rod-shaped, rod-shaped particles reinforced epoxy 
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composite exhibited the highest dynamic fracture toughness. This finding is inline 

with the previously reported experimental investigation.  

 Fractographic investigation has shown that the composite undergoes different failure 

modes in response to the applied dynamic loading. The observed failure modes are 

matrix cracking, filler-matrix interfacial separation, filler pull-out and filler breakages. 

In case of spherical glass fillers, matrix cracking and filler-matrix interfacial 

separation are found to be the dominating failure modes that contributed to the energy 

dissipation and improved the fracture toughness of the resulting composite compared 

to the neat epoxy counterpart. While, in the case of flake-shaped fillers, a few of the 

filler breakages are also observed along with the two modes mentioned in the case of 

spherical fillers which resulted in even more energy dissipation. In the case of rod-

shaped fillers, due to the ~800 µm length of these fillers, more number of filler 

breakages are observed in addition to other failure modes which resulted in highest 

energy dissipation and hence the highest fracture toughness. 

 At higher loading rate, the fillers tend to behave stiffer which results in breakage of 

fillers as the crack continues to grow. This results in higher energy dissipation and 

hence an overall increase in the crack initiation toughness is observed. 

 

Further, a computational bridging is created between the limited experimental 

observations and large-scale data-driven Monte Carlo simulation to quantify the effect of 

inevitable uncertainties in the dynamic fracture toughness of particulate composites. This is 

achieved by exploiting artificial neural network as a surrogate of the original physical 

experiments based on advanced techniques like digital image correlation and scanning electron 

microscopy. The source uncertainty in critical geometric and material parameters such as 

aspect ratio, dynamic elastic modulus and volume fraction are captured at different time 

regimes and subsequently the ANN model is coupled with Monte Carlo simulation for efficient 

propagation and quantification of uncertainty in dynamic fracture toughness. The conclusions 

drawn from this experimental data-driven uncertainty quantification for dynamic fracture 

toughness of particulate glass-filled epoxy composites are as follows: 

 The ANN model used to extract the benchmark solution for the SIF history without 

any stochaticity in the predictor variables has shown a prediction accuracy  of ~96%. 
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 The effect of uncertainty in the input space has the most pronounced effect on the 

stress intensity factor in the pre-crack initiation regime for all the considered 

stochastic cases. 

 Stochasticity in aspect ratio in combination with the dynamic elastic modulus have 

more pronounced effect on crack initiation toughness compared to the other possible 

individual and compound scenarios of uncertainty. 

 The rod-shaped glass fillers have shown the most prominent effect of uncertainty on 

fracture toughness in all the considered stochastic cases. 

 Aspect ratio is found to be the most sensitive input parameter in response to the 

inevitable stochasticity. 

The experimental investigation of the fatigue response of the epoxy composites 

reinforced with rod-shaped glass fillers is carried out and the ultimate tensile strength of 

the resulting composites along with the fatigue life in terms of number of load cycles to 

initiate the crack and number of cycles to fracture are reported. Special attention is given 

to identifying the crack initiation sites and the underlying mechanisms that promote the 

crack growth. The major findings of this study are as follows: 

 The uniaxial tensile test results reveal that the neat epoxy samples exhibit the maximum 

ultimate tensile strength of 70.8 MPa. In the reinforced cases, a marginal increase in 

the UTS is observed with the increasing volume fraction of the glass-particles, 

following an order of 5% (UTS = 61.4 MPa) < 10% (UTS = 63.8 MPa) < 15% (UTS = 

66.2 MPa). 

 With increasing volume fraction of the particles in the epoxy matrix, an increase in the 

elastic modulus is observed. 

 Crack initiation is observed at almost the same number of cycles except for the neat 

epoxy  samples wherein a catastrophic failure is observed. In the case, wherein 5% Vf 

of fillers is used, the crack initiation is observed at the matrix-filler interface. But in the 

case of 10% Vf, the cracks are observed within the filler as well. Moving to the 15% 

filler case, the crack is initiated within a confined region and due to the densely packed 

reinforcement the close network for crack initiation caused faster crack propagation and 

thus resulting in a shorter fatigue life. 

 The particulate fillers are found to act as crack nucleation sites that result in coalescing 

the micro-cracks developed at the filler-matrix interface and within the filler itself. 
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 The interfacial cracks where the longitudinal length of glass fibres is nearly normal to 

loading axis or angle of the longitudinal axis of glass fibres with respect to loading 

direction is high (60º - 90º) has the highest probability of coalescence and further 

propagation. 

 PPC with 10% volume fraction of rod-shaped glass fillers is found to exhibit the 

maximum fatigue life under the applied cyclic loading. 

 

Future scope  

With the above comprehensive investigations on fracture and fatigue behaviour of glass-

filled epoxy composites, this research can be taken further in the following directions: 

 Through independent investigation of two datasets for the importance of several input 

parameters, aspect ratio and loading rate are found to be the most influential ones. 

Thus, it is crucial to investigate the combined effect on the dynamic fracture toughness 

while considering both the parameters simultaneously. Another logical progression to 

this would be to develop a predictive modeling framework that considers the 

combined effect and investigate the effect of parametric uncertainty on the fracture 

toughness of the composite. 

 Since rod-shaped fillers have shown the highest resistance to crack, effect of same 

shape but different aspect ratio can be further investigated. 

 The current framework of uncertainty quantification addresses the parametric 

uncertainties efficiently and the same can be extended to investigate the effect of 

model uncertainties.  

 Another interesting perspective would be to transform the current framework into an 

optimization problem where given a specific value of fracture toughness, right 

combination of parameters could be predicted. 

 Since the fatigue response is investigated with only the rod-shaped fillers, additional 

experimental investigation considering the other two shapes can also be done. 

 

 

 

 



71 | P a g e  
 

Bibliography 

 

[1] Kushvaha V. Synthesis, Processing and Dynamic Fracture Behavior of Particulate 

Epoxy Composites with Conventional and Hierarchical Micro-/Nano-fillers 2016. 

[2] Kushvaha V, Branch A, Tippur H. Effect of Loading Rate on Dynamic Fracture 

Behavior of Glass and Carbon Fiber Modified Epoxy. In: Song B, Casem D, Kimberley J, 

editors. Dynamic Behavior of Materials, Volume 1, Springer International Publishing; 2014, 

p. 169–76. 

[3] Tyson WR, Davies GJ. A photoelastic study of the shear stresses associated with the 

transfer of stress during fibre reinforcement. Br J Appl Phys 1965;16:199–205. 

https://doi.org/10.1088/0508-3443/16/2/313. 

[4] Haque A, Ramasetty A. Theoretical study of stress transfer in carbon nanotube 

reinforced polymer matrix composites. Composite Structures 2005;71:68–77. 

https://doi.org/10.1016/j.compstruct.2004.09.029. 

[5] Cowley KD, Beaumont PWR. The interlaminar and intralaminar fracture toughness of 

carbon-fibre/polymer composites: The effect of temperature. Composites Science and 

Technology 1997;57:1433–44. https://doi.org/10.1016/S0266-3538(97)00047-X. 

[6] Balaganesan G, Velmurugan R, Srinivasan M, Gupta NK, Kanny K. Energy absorption 

and ballistic limit of nanocomposite laminates subjected to impact loading. International 

Journal of Impact Engineering 2014;74:57–66. 

https://doi.org/10.1016/j.ijimpeng.2014.02.017. 

[7] Sun CT, Han C. A method for testing interlaminar dynamic fracture toughness of 

polymeric composites. Composites Part B: Engineering 2004;35:647–55. 

https://doi.org/10.1016/j.compositesb.2004.04.006. 

[8] Gao J, Kedir N, Hernandez JA, Gao J, Horn T, Kim G, et al. Dynamic fracture of glass 

fiber-reinforced ductile polymer matrix composites and loading rate effect. Composites Part B: 

Engineering 2022;235:109754. https://doi.org/10.1016/j.compositesb.2022.109754. 

[9] Sadowski T, Golewski P, Craciun E. Internal structure influence on the impact strength 

and dynamic fracture toughness of hybrid polymer matrix composites with integrated elastomer 

interlayers. Composite Structures 2021;258:113375. 

https://doi.org/10.1016/j.compstruct.2020.113375. 

[10] Prasad MSS, Venkatesha CS, Jayaraju T. Experimental Methods of Determining 

Fracture Toughness of Fiber Reinforced Polymer Composites under Various Loading 

Conditions. Journal of Minerals and Materials Characterization and Engineering 

2011;10:1263. 

[11] Priya IIM, Vinayagam B. Enhancement of bi-axial glass fibre reinforced polymer 

composite with graphene platelet nanopowder modifies epoxy resin. Advances in Mechanical 

Engineering 2018;10:1687814018793261. https://doi.org/10.1177/1687814018793261. 



72 | P a g e  
 

[12] Argatov I. Artificial Neural Networks (ANNs) as a Novel Modeling Technique in 

Tribology. Front Mech Eng 2019;5. https://doi.org/10.3389/fmech.2019.00030. 

[13] Altarazi S, Allaf R, Alhindawi F. Machine Learning Models for Predicting and 

Classifying the Tensile Strength of Polymeric Films Fabricated via Different Production 

Processes. Materials 2019;12:1475. https://doi.org/10.3390/ma12091475. 

[14] Abueidda DW, Almasri M, Ammourah R, Ravaioli U, Jasiuk IM, Sobh NA. Prediction 

and optimization of mechanical properties of composites using convolutional neural networks. 

Composite Structures 2019;227:111264. https://doi.org/10.1016/j.compstruct.2019.111264. 

[15] Bacigalupo A, Gnecco G, Lepidi M, Gambarotta L. Machine-Learning Techniques for 

the Optimal Design of Acoustic Metamaterials. J Optim Theory Appl 2020;187:630–53. 

https://doi.org/10.1007/s10957-019-01614-8. 

[16] Dittanet P, Pearson RA. Effect of silica nanoparticle size on toughening mechanisms of 

filled epoxy. Polymer 2012;53:1890–905. https://doi.org/10.1016/j.polymer.2012.02.052. 

[17] Wang F, Zhang K, Liang W, Wang Z, Tay TE, Lu S, et al. Epoxy/CNT@X 

nanocomposite: Improved quasi-static, dynamic fracture toughness, and conductive 

functionalities by non-ionic surfactant treatment. Polymer Testing 2020;81:106256. 

https://doi.org/10.1016/j.polymertesting.2019.106256. 

[18] Sandeep B, Suresha B, Divakar HN. Fracture toughness of alumina filler filled glass 

fabric reinforced epoxy composites. Materials Today: Proceedings 2021;43:1792–7. 

https://doi.org/10.1016/j.matpr.2020.10.489. 

[19] Kawaguchi T, Pearson RA. The effect of particle–matrix adhesion on the mechanical 

behavior of glass filled epoxies. Part 2. A study on fracture toughness. Polymer 2003;44:4239–

47. https://doi.org/10.1016/S0032-3861(03)00372-0. 

[20] Liang J-Z. Impact fracture toughness of hollow glass bead-filled polypropylene 

composites. J Mater Sci 2007;42:841–6. https://doi.org/10.1007/s10853-006-0074-z. 

[21] Lauke B. On the effect of particle size on fracture toughness of polymer composites. 

Composites Science and Technology 2008;68:3365–72. 

https://doi.org/10.1016/j.compscitech.2008.09.011. 

[22] Piggott MR. The effect of aspect ratio on toughness in composites. J Mater Sci 

1974;9:494–502. https://doi.org/10.1007/BF00737854. 

[23] Fu S-Y, Feng X-Q, Lauke B, Mai Y-W. Effects of particle size, particle/matrix interface 

adhesion and particle loading on mechanical properties of particulate–polymer composites. 

Composites Part B: Engineering 2008;39:933–61. 

https://doi.org/10.1016/j.compositesb.2008.01.002. 

[24] Hulugappa B, Achutha MV, Suresha B. Effect of Fillers on Mechanical Properties and 

Fracture Toughness of Glass Fabric Reinforced Epoxy Composites. Journal of Minerals and 

Materials Characterization and Engineering 2016;04:1. 

https://doi.org/10.4236/jmmce.2016.41001. 



73 | P a g e  
 

[25] Jiang F, Vecchio KS. Hopkinson Bar Loaded Fracture Experimental Technique: A 

Critical Review of Dynamic Fracture Toughness Tests. Applied Mechanics Reviews 2009;62. 

https://doi.org/10.1115/1.3124647. 

[26] Jajam KC, Tippur HV. Quasi-static and dynamic fracture behavior of particulate 

polymer composites: A study of nano- vs. micro-size filler and loading-rate effects. Composites 

Part B: Engineering 2012;43:3467–81. https://doi.org/10.1016/j.compositesb.2012.01.042. 

[27] Fengchun J, Ruitang L, Xiaoxin Z, Vecchio KS, Rohatgi A. Evaluation of dynamic 

fracture toughness KId by Hopkinson pressure bar loaded instrumented Charpy impact test. 

Engineering Fracture Mechanics 2004;71:279–87. https://doi.org/10.1016/S0013-

7944(03)00139-5. 

[28] Kushvaha V, Tippur H. Effect of Filler Particle Shape on Dynamic Fracture Behavior 

of Glass-Filled Epoxy. In: Chalivendra V, Song B, Casem D, editors. Dynamic Behavior of 

Materials, Volume 1, Springer New York; 2013, p. 513–22. 

[29] Klepaczko JR, Petrov YV, Atroshenko SA, Chevrier P, Fedorovsky GD, Krivosheev 

SI, et al. Behavior of particle-filled polymer composite under static and dynamic loading. 

Engineering Fracture Mechanics 2008;75:136–52. 

https://doi.org/10.1016/j.engfracmech.2007.02.016. 

[30] Kitey R, Tippur HV. Role of particle size and filler–matrix adhesion on dynamic 

fracture of glass-filled epoxy. I. Macromeasurements. Acta Materialia 2005;53:1153–65. 

https://doi.org/10.1016/j.actamat.2004.11.012. 

[31] Kitey R, Tippur HV. Role of particle size and filler–matrix adhesion on dynamic 

fracture of glass-filled epoxy. II. Linkage between macro- and micro-measurements. Acta 

Materialia 2005;53:1167–78. https://doi.org/10.1016/j.actamat.2004.11.011. 

[32] Duan Z, He H, Liang W, Wang Z, He L, Zhang X. Tensile, Quasistatic and Dynamic 

Fracture Properties of Nano-Al2O3-Modified Epoxy Resin. Materials 2018;11:905. 

https://doi.org/10.3390/ma11060905. 

[33] Lebar A, Aguiar R, Oddy A, Petel OE. Particle surface effects on the spall strength of 

particle-reinforced polymer matrix composites. International Journal of Impact Engineering 

2021;150:103801. https://doi.org/10.1016/j.ijimpeng.2020.103801. 

[34] Yesgat AL, Kitey R. Effect of filler geometry on fracture mechanisms in glass particle 

filled epoxy composites. Engineering Fracture Mechanics 2016;160:22–41. 

https://doi.org/10.1016/j.engfracmech.2016.03.034. 

[35] Vu-Khanh T. Toughness of Flake-Reinforced Polypropylene: Journal of Thermoplastic 

Composite Materials 2016. https://doi.org/10.1177/089270579100400103. 

[36] Katoueizadeh E, Zebarjad SM, Janghorban K. Mechanical properties of epoxy 

composites embedded with functionalized urea-formaldehyde microcapsules containing an 

oxidizable oil. Materials Chemistry and Physics 2021;260:124106. 

https://doi.org/10.1016/j.matchemphys.2020.124106. 



74 | P a g e  
 

[37] Jajam KC, Tippur HV. Role of inclusion stiffness and interfacial strength on dynamic 

matrix crack growth: An experimental study. International Journal of Solids and Structures 

2012;49:1127–46. https://doi.org/10.1016/j.ijsolstr.2012.01.009. 

[38] Majer Z, majer@fme.vutbr.cz E, Hutař P, Náhlík L. Determination of the Effect of 

Interphase on the Fracture Toughness and Stiffness of a Particulate Polymer Composite. Mech 

Compos Mater 2013;49:475–82. https://doi.org/10.1007/s11029-013-9364-0. 

[39] Bie BX, Han JH, Lu L, Zhou XM, Qi ML, Zhang Z, et al. Dynamic fracture of carbon 

nanotube/epoxy composites under high strain-rate loading. Composites Part A: Applied 

Science and Manufacturing 2015;68:282–8. 

https://doi.org/10.1016/j.compositesa.2014.10.001. 

[40] Owens AT, Tippur HV. A Tensile Split Hopkinson Bar for Testing Particulate Polymer 

Composites Under Elevated Rates of Loading. Exp Mech 2008;49:799. 

https://doi.org/10.1007/s11340-008-9192-7. 

[41] Lee D, Tippur H, Bogert P. Quasi-static and dynamic fracture of graphite/epoxy 

composites: An optical study of loading-rate effects. Composites Part B: Engineering 

2010;41:462–74. https://doi.org/10.1016/j.compositesb.2010.05.007. 

[42] Lee D, Tippur HV, Jensen BJ, Bogert PB. Tensile and Fracture Characterization of 

PETI-5 and IM7/PETI-5 Graphite/Epoxy Composites Under Quasi-Static and Dynamic 

Loading Conditions. Journal of Engineering Materials and Technology 2011;133. 

https://doi.org/10.1115/1.4003487. 

[43] Kushvaha V, Tippur H. Effect of filler shape, volume fraction and loading rate on 

dynamic fracture behavior of glass-filled epoxy. Composites Part B: Engineering 

2014;64:126–37. https://doi.org/10.1016/j.compositesb.2014.04.016. 

[44] Hutař P, Náhlík L, Majer Z, Knésl Z. The Effect of an Interphase on Micro-Crack 

Behaviour in Polymer Composites. In: Murín J, Kompiš V, Kutiš V, editors. Computational 

Modeling and Advanced Simulations, Dordrecht: Springer Netherlands; 2011, p. 83–97. 

https://doi.org/10.1007/978-94-007-0317-9_5. 

[45] Tanimoto Y, Kitagawa T, Aida M, Nishiyama N. Experimental and computational 

approach for evaluating the mechanical characteristics of dental composite resins with various 

filler sizes. Acta Biomaterialia 2006;2:633–9. https://doi.org/10.1016/j.actbio.2006.06.006. 

[46] Cho J, Joshi MS, Sun CT. Effect of inclusion size on mechanical properties of 

polymeric composites with micro and nano particles. Composites Science and Technology 

2006;66:1941–52. https://doi.org/10.1016/j.compscitech.2005.12.028. 

[47] Zhang MH, Chen JK. Analysis of interfacial fracture strength of an inclusion in a 

polymeric composite considering cohesive force. Computational Materials Science 2012;61:6–

11. https://doi.org/10.1016/j.commatsci.2012.03.017. 

[48] Pazhouheshgar A, Vanini SAS, Moghanian A. The experimental and numerical study 

of fracture behavior of 58s bioactive glass/polysulfone composite using the extended finite 

elements method. Mater Res Express 2019;6:095208. https://doi.org/10.1088/2053-

1591/ab3495. 



75 | P a g e  
 

[49] Yang Z, Kang G, Liu R, Chen P. Predicting the mechanical behaviour of highly 

particle-filled polymer composites using the nonlinear finite element method. Composite 

Structures 2022;286:115275. https://doi.org/10.1016/j.compstruct.2022.115275. 

[50] Ghassemieh E, Naseehi V. Prediction of failure and fracture mechanisms of polymeric 

composites using finite element analysis. Part 1: Particulate filled composites. Polymer 

Composites 2001;22:528–41. https://doi.org/10.1002/pc.10557. 

[51] Ponnusami SA, Turteltaub S, van der Zwaag S. Cohesive-zone modeling of crack 

nucleation and propagation in particulate composites. Engineering Fracture Mechanics 

2015;149:170–90. https://doi.org/10.1016/j.engfracmech.2015.09.050. 

[52] Ju JW, Lee HK. A micromechanical damage model for effective elastoplastic behavior 

of ductile matrix composites considering evolutionary complete particle debonding. Computer 

Methods in Applied Mechanics and Engineering 2000;183:201–22. 

https://doi.org/10.1016/S0045-7825(99)00219-4. 

[53] Lee K, Moorthy S, Ghosh S. Multiple scale computational model for damage in 

composite materials. Computer Methods in Applied Mechanics and Engineering 

1999;172:175–201. https://doi.org/10.1016/S0045-7825(98)00229-1. 

[54] Tavarez FA, Plesha ME. Discrete element method for modeling solid and particulate 

materials. International Journal for Numerical Methods in Engineering 2007;70:379–404. 

https://doi.org/10.1002/nme.1881. 

[55] Wolff MFH, Salikov V, Antonyuk S, Heinrich S, Schneider GA. Three-dimensional 

discrete element modeling of micromechanical bending tests of ceramic–polymer composite 

materials. Powder Technology 2013;248:77–83. 

https://doi.org/10.1016/j.powtec.2013.07.009. 

[56] Dai G, Mishnaevsky L. Damage evolution in nanoclay-reinforced polymers: A three-

dimensional computational study. Composites Science and Technology 2013;74:67–77. 

https://doi.org/10.1016/j.compscitech.2012.10.003. 

[57] Kakavas PA, Kontoni D-PN. Numerical investigation of the stress field of particulate 

reinforced polymeric composites subjected to tension. International Journal for Numerical 

Methods in Engineering 2006;65:1145–64. https://doi.org/10.1002/nme.1483. 

[58] Ghajari M, Iannucci L, Curtis P. A peridynamic material model for the analysis of 

dynamic crack propagation in orthotropic media. Computer Methods in Applied Mechanics 

and Engineering 2014;276:431–52. https://doi.org/10.1016/j.cma.2014.04.002. 

[59] Nafar Dastgerdi J, Anbarlooie B, Marzban S, Marquis G. Mechanical and real 

microstructure behavior analysis of particulate-reinforced nanocomposite considering 

debonding damage based on cohesive finite element method. Composite Structures 

2015;122:518–25. https://doi.org/10.1016/j.compstruct.2014.12.009. 

[60] Cannillo V, Bondioli F, Lusvarghi L, Montorsi M, Avella M, Errico ME, et al. 

Modeling of ceramic particles filled polymer–matrix nanocomposites. Composites Science and 

Technology 2006;66:1030–7. https://doi.org/10.1016/j.compscitech.2005.07.030. 



76 | P a g e  
 

[61] Wang Y-F, Yang Z-G. Finite element model of erosive wear on ductile and brittle 

materials. Wear 2008;265:871–8. https://doi.org/10.1016/j.wear.2008.01.014. 

[62] Bansal M, Singh IV, Mishra BK, Bordas SPA. A parallel and efficient multi-split 

XFEM for 3-D analysis of heterogeneous materials. Computer Methods in Applied Mechanics 

and Engineering 2019;347:365–401. https://doi.org/10.1016/j.cma.2018.12.023. 

[63] Msekh MA, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, et al. Predictions of J 

integral and tensile strength of clay/epoxy nanocomposites material using phase field model. 

Composites Part B: Engineering 2016;93:97–114. 

https://doi.org/10.1016/j.compositesb.2016.02.022. 

[64] Hamdia KM, Msekh MA, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, et al. 

Uncertainty quantification of the fracture properties of polymeric nanocomposites based on 

phase field modeling. Composite Structures 2015;133:1177–90. 

https://doi.org/10.1016/j.compstruct.2015.08.051. 

[65] Rizzi E, Papa E, Corigliano A. Mechanical behavior of a syntactic foam: experiments 

and modeling. International Journal of Solids and Structures 2000;37:5773–94. 

https://doi.org/10.1016/S0020-7683(99)00264-4. 

[66] Arencón D, Velasco JI. Fracture Toughness of Polypropylene-Based Particulate 

Composites. Materials 2009;2:2046–94. https://doi.org/10.3390/ma2042046. 

[67] Lauke B, Fu S-Y. Aspects of fracture toughness modeling of particle filled polymer 

composites. Composites Part B: Engineering 2013;45:1569–74. 

https://doi.org/10.1016/j.compositesb.2012.07.021. 

[68] Meng Q, Wang T. An improved crack-bridging model for rigid particle-polymer 

composites. Engineering Fracture Mechanics 2019;211:291–302. 

https://doi.org/10.1016/j.engfracmech.2019.02.028. 

[69] Ayyar A, Chawla N. Microstructure-based modeling of the influence of particle spatial 

distribution and fracture on crack growth in particle-reinforced composites. Acta Materialia 

2007;55:6064–73. https://doi.org/10.1016/j.actamat.2007.06.044. 

[70] Mishnaevsky L. Nanostructured interfaces for enhancing mechanical properties of 

composites: Computational micromechanical studies. Composites Part B: Engineering 

2015;68:75–84. https://doi.org/10.1016/j.compositesb.2014.08.029. 

[71] Segurado J, LLorca J. Computational micromechanics of composites: The effect of 

particle spatial distribution. Mechanics of Materials 2006;38:873–83. 

https://doi.org/10.1016/j.mechmat.2005.06.026. 

[72] Arash B, Exner W, Rolfes R. A finite deformation phase-field fracture model for the 

thermo-viscoelastic analysis of polymer nanocomposites. Computer Methods in Applied 

Mechanics and Engineering 2021;381:113821. https://doi.org/10.1016/j.cma.2021.113821. 

[73] Raffaelli C, Bose A, Vrusch CHMP, Ciarella S, Davris T, Tito NB, et al. Rheology, 

Rupture, Reinforcement and Reversibility: Computational Approaches for Dynamic Network 

Materials. In: Creton C, Okay O, editors. Self-Healing and Self-Recovering Hydrogels, Cham: 

Springer International Publishing; 2020, p. 63–126. https://doi.org/10.1007/12_2020_61. 



77 | P a g e  
 

[74] Nayak R, Tarkes DP, Satapathy A. A computational and experimental investigation on 

thermal conductivity of particle reinforced epoxy composites. Computational Materials 

Science 2010;48:576–81. https://doi.org/10.1016/j.commatsci.2010.02.025. 

[75] Mital SK, Murthy PLN, Goldberg RK. Micromechanics for Particulate-Reinforced 

Composites. Mechanics of Composite Materials and Structures 1997;4:251–66. 

https://doi.org/10.1080/10759419708945883. 

[76] Patnaik A, Satapathy A, Chand N, Barkoula NM, Biswas S. Solid particle erosion wear 

characteristics of fiber and particulate filled polymer composites: A review. Wear 

2010;268:249–63. https://doi.org/10.1016/j.wear.2009.07.021. 

[77] Mishnaevsky L, Dai G. Hybrid and hierarchical nanoreinforced polymer composites: 

Computational modeling of structure–properties relationships. Composite Structures 

2014;117:156–68. https://doi.org/10.1016/j.compstruct.2014.06.027. 

[78] Tzetzis D, Tsongas K, Mansour G. Determination of the Mechanical Properties of 

Epoxy Silica Nanocomposites through FEA-Supported Evaluation of Ball Indentation Test 

Results. Mat Res 2017;20:1571–8. https://doi.org/10.1590/1980-5373-MR-2017-0454. 

[79] Wiangkham A, Ariyarit A, Aengchuan P. Prediction of the mixed mode I/II fracture 

toughness of PMMA by an artificial intelligence approach. Theoretical and Applied Fracture 

Mechanics 2021;112:102910. https://doi.org/10.1016/j.tafmec.2021.102910. 

[80] Daghigh V, Lacy TE, Daghigh H, Gu G, Baghaei KT, Horstemeyer MF, et al. Machine 

learning predictions on fracture toughness of multiscale bio-nano-composites. Journal of 

Reinforced Plastics and Composites 2020;39:587–98. 

https://doi.org/10.1177/0731684420915984. 

[81] Cidade RA, Castro DSV, Castrodeza EM, Kuhn P, Catalanotti G, Xavier J, et al. 

Determination of mode I dynamic fracture toughness of IM7-8552 composites by digital image 

correlation and machine learning. Composite Structures 2019;210:707–14. 

https://doi.org/10.1016/j.compstruct.2018.11.089. 

[82] Hamdia KM, Silani M, Zhuang X, He P, Rabczuk T. Stochastic analysis of the fracture 

toughness of polymeric nanoparticle composites using polynomial chaos expansions. Int J 

Fract 2017;206:215–27. https://doi.org/10.1007/s10704-017-0210-6. 

[83] Pruksawan S, Wang F. Modeling of toughening effect in rigid particulate-filled 

polymer composites by artificial intelligence: a review. Advanced Composite Materials 

2022;0:1–18. https://doi.org/10.1080/09243046.2022.2083304. 

[84] Hamdia KM, Lahmer T, Nguyen-Thoi T, Rabczuk T. Predicting the fracture toughness 

of PNCs: A stochastic approach based on ANN and ANFIS. Computational Materials Science 

2015;102:304–13. https://doi.org/10.1016/j.commatsci.2015.02.045. 

[85] Jin K, Luo H, Wang Z, Wang H, Tao J. Composition optimization of a high-

performance epoxy resin based on molecular dynamics and machine learning. Materials & 

Design 2020;194:108932. https://doi.org/10.1016/j.matdes.2020.108932. 



78 | P a g e  
 

[86] Blackman BRK, Kinloch AJ, Sohn Lee J, Taylor AC, Agarwal R, Schueneman G, et 

al. The fracture and fatigue behaviour of nano-modified epoxy polymers. J Mater Sci 

2007;42:7049–51. https://doi.org/10.1007/s10853-007-1768-6. 

[87] Boonyapookana A, Nagata K, Mutoh Y. Fatigue crack growth behavior of silica 

particulate reinforced epoxy resin composite. Composites Science and Technology 

2011;71:1124–31. https://doi.org/10.1016/j.compscitech.2011.02.015. 

[88] Verma V, Sharma C. Fatigue behavior of epoxy alumina nanocomposite – role of 

particle morphology. Theoretical and Applied Fracture Mechanics 2020;110:102807. 

https://doi.org/10.1016/j.tafmec.2020.102807. 

[89] Basaran C, Nie S, Hutchins CS, Ergün H. Influence of Interfacial Bond Strength on 

Fatigue Life and Thermo-Mechanical Behavior of a Particulate Composite: An Experimental 

Study. International Journal of Damage Mechanics 2008;17:123–47. 

https://doi.org/10.1177/1056789507077437. 

[90] Bellemare SC, Bureau MN, Denault J, Dickson JI. Fatigue crack initiation and 

propagation in polyamide-6 and in polyamide-6 nanocomposites. Polymer Composites 

2004;25:433–41. https://doi.org/10.1002/pc.20036. 

[91] Bortz DR, Merino C, Martin-Gullon I. Carbon nanofibers enhance the fracture 

toughness and fatigue performance of a structural epoxy system. Composites Science and 

Technology 2011;71:31–8. https://doi.org/10.1016/j.compscitech.2010.09.015. 

[92] Moloney AC, Kausch HH, Kaiser T, Beer HR. Parameters determining the strength and 

toughness of particulate filled epoxide resins. J Mater Sci 1987;22:381–93. 

https://doi.org/10.1007/BF01160743. 

[93] Zhao S, Schadler LS, Hillborg H, Auletta T. Improvements and mechanisms of fracture 

and fatigue properties of well-dispersed alumina/epoxy nanocomposites. Composites Science 

and Technology 2008;68:2976–82. https://doi.org/10.1016/j.compscitech.2008.07.010. 

[94] Gadaree KP, Salee G. Fatigue crack propagation in composites with spherical fillers—

part 1. Polymer Composites 1983;4:19–25. https://doi.org/10.1002/pc.750040104. 

[95] Brown EN, White SR, Sottos NR. Retardation and repair of fatigue cracks in a 

microcapsule toughened epoxy composite – Part I: Manual infiltration. Composites Science 

and Technology 2005;65:2466–73. https://doi.org/10.1016/j.compscitech.2005.04.020. 

[96] Antunes FV, Ferreira JM, Costa JD, Capela C. Fatigue life predictions in polymer 

particle composites. International Journal of Fatigue 2002;24:1095–105. 

https://doi.org/10.1016/S0142-1123(02)00016-6. 

[97] Nishioka T, Atluri SN. Path-independent integrals, energy release rates, and general 

solutions of near-tip fields in mixed-mode dynamic fracture mechanics. Engineering Fracture 

Mechanics 1983;18:1–22. https://doi.org/10.1016/0013-7944(83)90091-7. 

[98] Fracture Mechanics: Fundamentals and Applications. Routledge & CRC Press n.d. 

https://www.routledge.com/Fracture-Mechanics-Fundamentals-and-Applications/Janssen-

Zuidema-Wanhill/p/book/9780415346221 (accessed August 25, 2022). 



79 | P a g e  
 

[99] Zhang Z, Friedrich K. Artificial neural networks applied to polymer composites: a 

review. Composites Science and Technology 2003;63:2029–44. 

https://doi.org/10.1016/S0266-3538(03)00106-4. 

[100] Tang H, Lin Y, Andrews C, Sodano HA. Nanocomposites with increased energy 

density through high aspect ratio PZT nanowires. Nanotechnology 2010;22:015702. 

https://doi.org/10.1088/0957-4484/22/1/015702. 

[101] Guth E. Theory of Filler Reinforcement. Journal of Applied Physics 1945;16:20–5. 

https://doi.org/10.1063/1.1707495. 

[102] Zhu Y, Bakis CE, Adair JH. Effects of carbon nanofiller functionalization and 

distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites. 

Carbon 2012;50:1316–31. https://doi.org/10.1016/j.carbon.2011.11.001. 

[103] Trinchero R, Larbi M, Torun HM, Canavero FG, Swaminathan M. Machine Learning 

and Uncertainty Quantification for Surrogate Models of Integrated Devices With a Large 

Number of Parameters. IEEE Access 2019;7:4056–66. 

https://doi.org/10.1109/ACCESS.2018.2888903. 

[104] Sharma A, Mukhopadhyay T, Rangappa SM, Siengchin S, Kushvaha V. Advances in 

Computational Intelligence of Polymer Composite Materials: Machine Learning Assisted 

Modeling, Analysis and Design. Arch Computat Methods Eng 2022. 

https://doi.org/10.1007/s11831-021-09700-9. 

[105] Scarth C, Cooper JE, Weaver PM, Silva GHC. Uncertainty quantification of aeroelastic 

stability of composite plate wings using lamination parameters. Composite Structures 

2014;116:84–93. https://doi.org/10.1016/j.compstruct.2014.05.007. 

[106] Sampaio L (Luiz). Eigenvector perturbation methodology for uncertainty quantification 

of turbulence models n.d. 

[107] Najm HN. Uncertainty Quantification and Polynomial Chaos Techniques in 

Computational Fluid Dynamics. Annual Review of Fluid Mechanics 2009;41:35–52. 

https://doi.org/10.1146/annurev.fluid.010908.165248. 

[108] Karsh PK, Kumar RR, Dey S. Radial Basis Function-Based Stochastic Natural 

Frequencies Analysis of Functionally Graded Plates. Int J Comput Methods 2020;17:1950061. 

https://doi.org/10.1142/S0219876219500610. 

[109] Dey S, Naskar S, Mukhopadhyay T, Gohs U, Spickenheuer A, Bittrich L, et al. 

Uncertain natural frequency analysis of composite plates including effect of noise – A 

polynomial neural network approach. Compos Struct 2016;143:130–42. 

https://doi.org/10.1016/j.compstruct.2016.02.007. 

[110] Dey S, Mukhopadhyay T, Khodaparast HH, Adhikari S. Fuzzy uncertainty propagation 

in composites using Gram–Schmidt polynomial chaos expansion. Applied Mathematical 

Modeling 2016;40:4412–28. https://doi.org/10.1016/j.apm.2015.11.038. 

[111] Cunha A, Nasser R, Sampaio R, Lopes H, Breitman K. Uncertainty quantification 

through the Monte Carlo method in a cloud computing setting. Computer Physics 

Communications 2014;185:1355–63. https://doi.org/10.1016/j.cpc.2014.01.006. 



80 | P a g e  
 

[112] Mukhopadhyay T, Chakraborty S, Dey S, Adhikari S, Chowdhury R. A Critical 

Assessment of Kriging Model Variants for High-Fidelity Uncertainty Quantification in 

Dynamics of composite Shells. Arch Computat Methods Eng 2017;24:495–518. 

https://doi.org/10.1007/s11831-016-9178-z. 

[113] Dey S, Mukhopadhyay T, Adhikari S. Stochastic free vibration analysis of angle-ply 

composite plates – A RS-HDMR approach. Composite Structures 2015;122:526–36. 

https://doi.org/10.1016/j.compstruct.2014.09.057. 

[114] Zhang J. Modern Monte Carlo methods for efficient uncertainty quantification and 

propagation: A survey. Wiley Interdisciplinary Reviews: Computational Statistics 

2021;13:e1539. https://doi.org/10.1002/wics.1539. 

[115] Li X, Gong C, Gu L, Jing Z, Fang H, Gao R. A reliability-based optimization method 

using sequential surrogate model and Monte Carlo simulation. Struct Multidisc Optim 

2019;59:439–60. https://doi.org/10.1007/s00158-018-2075-3. 

[116] Mukhopadhyay T, Naskar S, Dey S, Adhikari S. On quantifying the effect of noise in 

surrogate based stochastic free vibration analysis of laminated composite shallow shells. 

Compos Struct 2016;140. https://doi.org/10.1016/j.compstruct.2015.12.037. 

[117] Mukhopadhyay T. A multivariate adaptive regression splines based damage 

identification methodology for web core composite bridges including the effect of noise. Jnl of 

Sandwich Structures & Materials 2018;20:885–903. 

https://doi.org/10.1177/1099636216682533. 

[118] Rothon R. Particulate-filled Polymer Composites. iSmithers Rapra Publishing; 2003. 

[119] Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based 

sensitivity analysis of model output. Design and estimator for the total sensitivity index. 

Computer Physics Communications 2010;181:259–70. 

https://doi.org/10.1016/j.cpc.2009.09.018. 

[120] Herman J, Usher W. SALib: An open-source Python library for Sensitivity Analysis. 

Journal of Open Source Software 2017;2:97. https://doi.org/10.21105/joss.00097. 

[121] Arora A, Kumar R, Mahajan DK. In-situ Study of the Effect of Hydrogen on Fatigue 

Crack Initiation in Polycrystalline Nickel. Procedia Structural Integrity 2019;14:790–7. 

https://doi.org/10.1016/j.prostr.2019.07.057. 

[122] Garg AC, Mai Y-W. Failure mechanisms in toughened epoxy resins—A review. 

Composites Science and Technology 1988;31:179–223. https://doi.org/10.1016/0266-

3538(88)90009-7. 

 

 

 

 



81 | P a g e  
 

List of publications 

 

Journal publications: 

 Sharma, Aanchna, S. Kumar, Anand and Kushvaha, Vinod. "Effect of aspect ratio on 

dynamic fracture toughness of particulate polymer composite using artificial neural 

network." Engineering Fracture Mechanics 228 (2020): 106907. 

doi.org/10.1016/j.engfracmech.2020.106907. 

 Sharma, Aanchna and Kushvaha, Vinod. "Predictive modeling of fracture behaviour in 

silica-filled polymer composite subjected to impact with varying loading rates using artificial 

neural network." Engineering Fracture Mechanics 239 (2020): 107328. 

doi.org/10.1016/j.engfracmech.2020.107328. 

 Sharma, Aanchna, Mukhopadhyay, Tanmoy Sanjay Mavinkere Rangappa, Siengchin, 

Suchart and Kushvaha, Vinod. "Advances in computational intelligence of polymer 

composite materials: machine learning assisted modeling, analysis and design." Archives of 

Computational Methods in Engineering 29 (2022): 3341-3385. doi.org/10.1007/s11831-

021-09700-9. 

 Sharma, Aanchna, Mukhopadhyay, Tanmoy, Kushvaha, Vinod. “Experimental data-driven 

uncertainty quantification for the dynamic fracture toughness of particulate polymer 

composites.” Engineering Fracture Mechanics (2022): 108724. 

doi.org/10.1016/j.engfracmech.2022.108724 

 Sharma, Aanchna, Arora, Aman, Kushvaha, Vinod, Mahajan, Dhiraj. “Fatigue response of 

glass-filled epoxy composites: A crack initiation and propagation study.” (Under preparation). 

Conference publications: 

 Sharma, Aanchna, Madhushri, Priyanka, Kushvaha, Vinod, and S. Kumar, Anand, 

“Prediction of the Fracture Toughness of Polymer Composites using K-Nearest Neighbor 

(KNN) Method,” IEEE Xplore, 20th International Conference on Computational 

Performance Evaluation (ComPE 2020). 

 Sharma, Aanchna, Kushvaha, Vinod. “Uncertainty Quantification Of The Dynamic 

Fracture Toughness Of Particulate Polymer Composites Using A Surrogate Based 

Methodology”, Proceedings of the 20th European Conference on Composite Materials, 

2022, Lausanne, Switzerland. 


